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Abstract

Background: Spatial modeling is increasingly utilized to elucidate relationships between demographic, environmental, and
socioeconomic factors, and infectious disease prevalence data. However, there is a paucity of studies focusing on spatio-
temporal modeling that take into account the uncertainty of diagnostic techniques.

Methodology/Principal Findings: We obtained Schistosoma japonicum prevalence data, based on a standardized indirect
hemagglutination assay (IHA), from annual reports from 114 schistosome-endemic villages in Dangtu County, southeastern
part of the People’s Republic of China, for the period 1995 to 2004. Environmental data were extracted from satellite images.
Socioeconomic data were available from village registries. We used Bayesian spatio-temporal models, accounting for the
sensitivity and specificity of the IHA test via an equation derived from the law of total probability, to relate the observed
with the ‘true’ prevalence. The risk of S. japonicum was positively associated with the mean land surface temperature, and
negatively correlated with the mean normalized difference vegetation index and distance to the nearest water body. There
was no significant association between S. japonicum and socioeconomic status of the villages surveyed. The spatial
correlation structures of the observed S. japonicum seroprevalence and the estimated infection prevalence differed from
one year to another. Variance estimates based on a model adjusted for the diagnostic error were larger than unadjusted
models. The generated prediction map for 2005 showed that most of the former and current infections occur in close
proximity to the Yangtze River.

Conclusion/Significance: Bayesian spatial-temporal modeling incorporating diagnostic uncertainty is a suitable approach
for risk mapping S. japonicum prevalence data. The Yangtze River and its tributaries govern schistosomiasis transmission in
Dangtu County, but spatial correlation needs to be taken into consideration when making risk prediction at small scales.
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Introduction

Schistosomiasis japonica is a zoonotic disease caused by the

digenetic trematode Schistosoma japonicum. Historically, the disease

was endemic in 12 provinces of the People’s Republic of China,

with more than 10 million individuals infected [1–3]. Sustained

control efforts implemented over the past 50 years have confined

S. japonicum to seven provinces and brought down the number of

infected people to less than 1 million [1–3]. The mean infection

intensity has also decreased significantly [2]. However, surveil-

lance and interventions are still warranted in 435 counties

according to the 2005 annual report on the epidemiologic status

of schistosomiasis in the People’s Republic of China [4].

Geographic information system (GIS) and remote sensing

technologies are increasingly utilized for risk mapping and

prediction of schistosomiasis [5,6]. Over the past decade, several

studies have explored the relationship between the occurrence of

schistosomiasis, its intermediate host snails and environmental

factors, particularly land surface temperature (LST) and normal-

ized difference vegetation index (NDVI) [7–14]. Socioeconomic

factors and water contact patterns were also studied [11,15–18].

The flexibility in modeling and parameter estimation renders

Bayesian spatial modeling particularly attractive for risk factor

analysis and mapping [19–21]. Early statistical methods employed

for data analysis followed independent rather than spatially-

correlated approaches. More recently, spatial modeling using

www.plosntds.org 1 June 2008 | Volume 2 | Issue 6 | e250



Bayesian Markov chain Monte Carlo (MCMC) simulation-based

inference has been applied to estimate the relation between

environmental predictors, socioeconomic factors, and schistoso-

miasis. This approach allows the prediction of the prevalence and

intensity of infection at non-sampled locations, taking into account

the spatial correlation present in the data [11,12,21–25].

However, none of the above-mentioned studies pertaining to

the spatial or spatio-temporal distribution of disease risk has taken

into account the uncertainty of the diagnostic technique. In the

case of schistosomiasis japonica, both serological (e.g., enzyme-

linked immunosorbent assay (ELISA), indirect hemagglutination

assay (IHA) [26]) and parasitological methods (e.g., Kato-Katz

technique [27], miracidium hatching test [28]) are used in

epidemiologic surveys. None of these diagnostic approaches has

100% sensitivity, however [28–31]. Although an enhanced

sampling effort (e.g., multiple stool examinations) and simulta-

neous use of different diagnostics improve the sensitivity [32,33]

this strategy is not feasible in routine surveys due to logistic and

financial constraints. In the early 1990s, the Chinese schistosomi-

asis control programme embarked on a two-pronged diagnostic

approach. Local residents in S. japonicum-endemic areas are first

screened with a serological test, followed by stool examination of

seropositive individuals [29]. According to expert opinion, the

sensitivity of ELISA ranges from 90% to 95%, and the specificity

from 85% to 90%. In the case of the Kato-Katz technique, the

estimated sensitivity and specificity are 20–70%, and 95–100%,

respectively [32].

In this study, we employed a Bayesian approach to investigate

the spatio-temporal patterns of S. japonicum infection, and to

identify environmental and socioeconomic risk factors. In our

models, we explicitly took into account the diagnostic uncertainty.

Materials and Methods

Study area
The study was carried out in Dangtu, one of 14 S. japonicum-

endemic counties in Anhui province, southeastern part of the

People’s Republic of China. The first local case of schistosomiasis

japonica was confirmed in 1953. Dangtu is situated on the lower

reaches of the Yangtze River and stretches from 118u229 to

118u539E longitude and from 31u179 to 31u429N latitude. All three

commonly recognized S. japonicum ecotypes are found in Dangtu,

i.e., (i) plains with waterway networks, (ii) marshlands and lakes,

and (iii) hilly and mountainous regions.

Data sources
S. japonicum prevalence data were obtained from the annual

county reports, covering the period from 1995 to 2004. Each year

in September, field teams of the schistosomiasis control station in

Dangtu sampled and surveyed the 114 schistosome-endemic

villages as part of the national control program of schistosomiasis,

which was approved by the institutional review board of the

National Institute of Parasitic Diseases, Chinese Center for Disease

Control and Prevention in Shanghai. The sampling frequency was

in accordance with the prior classification of the respective village.

Hence, villages with ongoing transmission were surveyed annually,

villages where transmission was under control (prevalence ,1%)

were sampled every 2–3 years, and villages which had reached the

criteria for transmission interruption (no human or animal cases

within the past 5 years, no intermediate host snails observed in the

previous year) were only surveyed if new snail habitats had been

identified. During the 10-year surveillance period covered here,

between 43 (in 1999 and 2002) and 68 (in 1998) villages were

surveyed annually (median: 49). In sampled villages, all residents

aged 5 to 65 years were invited to participate. One of the study

requirements was that at least 80% of the eligible individuals

should be tested. A two-pronged diagnostic approach was adopted;

individuals were first screened by the IHA, followed by stool

examination of seropositives. Parasitological diagnosis usually

relied on the Kato-Katz technique [27]. Those found with S.

japonicum eggs in their stool were treated with praziquantel. The

median number of IHA tests performed per village was 778 (lower

and upper quintiles: 302 and 1250). In this study, data from the

Kato-Katz thick smear examinations were not used for further

analysis, since some of the seropositives were not followed-up by

the Kato-Katz technique due to recent treatments with prazi-

quantel, and lack of compliance.

The geographic coordinates of the village committee houses in

the S. japonicum-endemic villages were collected using hand-held

global positioning system (GPS) receivers (Garmin Corp.; Olathe,

KS, USA) and used as a proxi for the location of the village.

Figure 1 shows the 114 S. japonicum-endemic villages in Dangtu

county in relation to identified water bodies. Most endemic villages

are located in the vicinity of water bodies or in the marshlands.

Only four villages are situated in the northeastern hilly and

mountainous region.

A SPOT5 image with a spatial resolution of 2.5 m and covering

the whole study area, taken on February 9, 2004, was purchased

from China Remote Sensing Satellite Ground Station (Beijing,

People’s Republic of China). This image was chosen because of its

high quality (e.g., cloud cover ,10%). With regard to water

bodies, no major changes occurred from 1995 to 2004. Water

bodies were identified using an unsupervised classification function

of ERDAS IMAGINE version 8.6 (ERDAS LLC.; Atlanta, GA,

USA). The shortest straight-line distance between each village and

the closest water body was calculated in ArcGIS version 8.3

(ESRI; Redlands, CA, USA). For each year, one cloud-free

Landsat-5 TM image with a spatial resolution of 30 m was

purchased from China Remote Sensing Satellite Ground Station,

covering the period from 1995 to 2004 (4 scenes were acquired in

April, 3 in March, 2 in June, and 1 in August). LST and NDVI

were extracted using the tools offered by ERDAS (http://gi.leica-

Author Summary

Schistosomiasis is a serious public health problem in the
People’s Republic of China and elsewhere, and mapping of
risk areas is important for guiding control interventions.
Here, a 10-year surveillance database from Dangtu County
in the southeastern part of the People’s Republic of China
was utilized for modeling the spatial and temporal
distribution of infections in relation to environmental
features and socioeconomic factors. Disease surveillance
was done on the basis of a serological test, and we
explicitly considered the imperfect sensitivity and speci-
ficity of the test when modeling the ‘true’ infection
prevalence of Schistosoma japonicum. We then produced a
risk map for S. japonicum transmission, which can assist
decision making for local control interventions. Our work
emphasizes the importance of accounting for the uncer-
tainty in the diagnosis of schistosomiasis, and the potential
of predicting the spatial and temporal distribution of the
disease when using a Bayesian modeling framework. Our
study can therefore serve as a template for future risk
profiling of neglected tropical diseases studies, particularly
when exploring spatial and temporal disease patterns in
relation to environmental and socioeconomic factors, and
how to account for the influence of diagnostic uncertainty.

Bayesian Modeling of S. japonicum Prevalence

www.plosntds.org 2 June 2008 | Volume 2 | Issue 6 | e250



geosystems.com). For each scene, the mean LST and NDVI within

a 2-km buffer zone around the centroids of the study villages were

calculated in ArcGIS.

Village-specific socioeconomic data were obtained from the

annually-updated village registries. The available indices included

annual average per-capita income and the proportion of

households with tap water and improved sanitation.

Dangtu county was partitioned into 0.2560.25 km grid cells for

the generation of a smooth prediction map for 2005. The minimum

distance from each grid cell centroid to the nearest water body was

calculated in ArcGIS. For each cell, the mean LST and the mean

NDVI were extracted from the 2005 Landsat scene.

Statistical analysis
LST and NDVI data were standardized by subtracting the

arithmetic mean calculated from data within a 2-km buffer zone

around the centroids of the study villages for each scene and then

dividing the standard deviation using SAS version 8.0 (SAS

Institute Inc.; Cary, NC). Villages were stratified into five wealth

quintiles, based on the annual average per-capita income. The

relationship between S. japonicum seroprevalence and village-

specific environmental and socioeconomic surrogate measures

was examined using scatter plots.

Bayesian spatio-temporal modeling
A Bayesian approach was utilized to explore the spatio-temporal

patterns of the S. japonicum seroprevalence data. The relationship

between seroprevalence and environmental and socioeconomic

covariates was also examined. We applied two different model

specifications. The first set of models assumed no diagnostic error

of the IHA. The second set of models explicitly took into account

the diagnostic error, thus correcting for the estimated ‘true’

sensitivity and specificity of the IHA. For 2005, we created a

smoothed predictive map of the S. japonicum prevalence.

Seroprevalence of S. japonicum in the absence of a
diagnostic ‘gold’ standard

Let nit and zit be the number of examined and positive subjects

by IHA, respectively, of village i (i = 1,…,N) in year t (t = 1,…,T).

We assumed that zit follows a binomial distribution, that is

zit , Binomial(pit,nit), where pit is the seroprevalence following the

standard formulation of the logistic regression model. We

introduced covariate effects on the logit transformation of pit, that

is logit pitð Þ~az
P

k

bkXitk, where a is the intercept, bk denotes a

regression coefficient, and Xitk is the environmental or socioeco-

nomic covariate.

The standard assumption of this formulation is that the

observations are independent. However, our data are spatially

correlated because common environmental factors concurrently

influence the infection risk in neighboring villages. Similarly, the

data are temporally correlated because they have been obtained

through repeated cross-sectional surveys. Ignoring these correla-

tions, we would overestimate the significance of the covariates. To

account for the spatio-temporal correlation, we introduced village-

specific and year-specific random effects, ui and vt, respectively, as

follows: logit pitð Þ~az
P

k

bkXitkzuizvt. We defined a latent

stationary and isotropic spatial process [34] on ui, by assuming that

u = (u1,u2,…,uN)T has a multivariate normal distribution with

variance-covariance matrix S, that is, u,MVN(0,S). We defined

S by an exponential correlation function, i.e., Slm =s2exp(2Qdlm),

where dlm is the shortest straight-line distance between villages l

and m, s2 models the geographic variability, and Q is a smoothing

parameter controlling the rate of decline of the spatial correlation

with distance throughout the study period. For the exponential

correlation function we have adopted the minimum distance at

which correlation becomes less than 5%, which is defined by 3/Q
and expressed in meters. Similar to previous spatio-temporal

modeling of schistosomiasis [12], we defined a first-order

autoregressive process (AR(1)) on vt, assuming that temporal

correlation r exists only with the preceding year [35].

An alternative spatio-temporal structure was modeled by

assuming that spatial correlations evolve over time (space-

time interaction) that is logit pitð Þ~az
P

k

bkXitkzuit, where

ut = (u1t,u2t,…,uNt)
T is the spatio-temporal random effect such that

ut*N 0,Stð Þ,Stlm~s2
t exp {Qtdlmð Þ with the parameter Qt con-

trolling the rate of decline of spatial correlation with distance in

year t. We assessed the significance of covariates by including only

environmental, or only socioeconomic, or both types of covariates.

Seroprevalence of S. japonicum taking into account the
diagnostic error

The model detailed before was based on the assumption that the

IHA reliably diagnoses a S. japonicum infection, i.e., its sensitivity

and specificity are 100%. However, since IHA and other

diagnostic tests have shortcomings [29], we made an attempt to

incorporate the diagnostic error of IHA into our modeling

framework.

Expert opinions on the diagnostic performance of IHA were

gathered by means of a questionnaire survey, as described

elsewhere [32]. The experts’ consensus was that the sensitivity

and specificity of IHA is 80–95% and 70–80%, respectively. These

values were fed into the model as prior information.

Figure 1. Location of the114 S. japonicum-endemic villages and
the identified water bodies in Dangtu county, Anhui province,
southeastern part of the People’s Republic of China in 2004.
doi:10.1371/journal.pntd.0000250.g001
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Let pit be the underlying true prevalence of S. japonicum infection

for village i in year t, and pit the observed prevalence of infection.

Following the model specifications of Booth and colleagues [33] and

Wang et al. [32], we assumed that the number of seropositives zit has

a binomial distribution that is zit , Binomial(pit,nit), and related the

observed and true prevalence via the equation pit =pitsjt +
(12pit)(12cjt). This equation is derived from the law of total

probability, where sjt and cjt are the sensitivity and specificity of IHA

for village j (j = 1,…,J) in year t, respectively, where j is a group of

adjacent villages. The models described previously were fitted, but

with underlying prevalence pit instead of the seroprevalence pit.

Model validation and comparison
The same database was used throughout the study. We

randomly selected 93 out of the 114 S. japonicum-endemic villages

(82%), and used the surveys conducted between 1995 and 2004 for

fitting the models, employing 408 out of the available 508 surveys.

The remaining 100 surveys carried out in the other 21 villages

over the same period served for model validation. In a first step,

we compared the goodness-of-fit of the models by using the

deviance information criterion (DIC) [36]. The model with the

smallest DIC value was considered the best-fitting one. Next, we

evaluated the predictive abilities of different models by calculating

five different Bayesian credible intervals (BCIs) with probability

coverage equal to 5%, 25%, 50%, 75%, and 95% of the posterior

predictive distribution at the test locations, as suggested elsewhere

[19]. Models with a high percentage of records falling into the

narrowest BCIs were considered to have good predictive abilities.

Following a Bayesian model formulation, we adopted vague

normal prior distributions for each regression coefficient bk and

intercept a, vague inverse gamma priors for variances, and a

uniform prior ranging from 21 to 1 for temporal correlation r.

Informative beta prior distributions derived from expert opinion

that is, beta (67.18, 9.60) and beta (224.25, 74.75), were used for

sensitivity sjt and specificity cjt, respectively. We assumed that the

prior for the spatial correlation ranged from 0.01 to 0.99 at the

minimal distance between villages (0.6 km) and from 0 to 0.2 at

maximal distance (49 km), thus uniform priors ranging from 0.017

to 7.675 were used for the spatial decay parameters Q and Qt.

Two-chain MCMC was used for parameter estimation. Model

convergence was assessed by visually inspecting the time series plot

for each parameter, and Gelman-Rubin statistics [37]. The

inference of the parameters was based on 15,000 iterations of

both chains after the burn-in phase. Model fit was carried out in

WinBUGS 1.4.1 (Imperial College and MRC, London, UK).

Results

S. japonicum-endemic villages
Figure 2 shows the observed seroprevalence in the study villages,

according to survey year. Commonly, high seroprevalences were

observed in villages located in close proximity to large rivers. In 27%

of the village surveys the seroprevalence was zero, whereas a mean

seroprevalence $10% was found in 41% of the surveys.

Model outcomes in the absence of a diagnostic ‘gold’
standard

Table 1 summarizes the goodness-of-fit and the predictive

ability of the models which did not take into account the diagnostic

error of IHA. The smaller DIC values of the spatio-temporal

models indicate that they fitted the data better than the non-spatial

ones. The predictive ability of the models could be improved

significantly by considering spatio-temporal random effects.

Moreover, the percentage of testing records falling into smaller

BCIs of the posterior predictive distribution was considerably

higher in the spatio-temporal models than in the non-spatial ones.

Models considering the temporal evolution of spatial correlation

also appeared to better fit the data than those assuming

independent spatial and temporal processes. Considering also

socioeconomic information did not further improve the model.

Hence, the model with environmental covariates and variable

spatial correlation was considered the best-fitting one.

Figure 2. S. japonicum seroprevalences in the 114 surveyed villages in Dangtu county, Anhui province, southeastern part of the
People’s Republic of China, from 1995 to 2004.
doi:10.1371/journal.pntd.0000250.g002
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Model outcomes when accounting for the diagnostic
error

As shown in Table 2, incorporating the sensitivity and specificity

of IHA as model parameters, resulted in smaller DIC values in the

annual differences in the spatial correlation. When models also

considered socioeconomic information there was no further

improvement. Actually, the percentages of testing records falling

into smaller BCIs were larger in a similar model that only

considered environmental covariates. Thus, the model without

explicit consideration of socioeconomic data was considered the

best-fitting one. However, its predictive ability was inferior to that

of the best-performing model which did not take into account the

diagnostic error of IHA (4% versus 31% of the test records falling

into the 5% BCI).

Relationship between S. japonicum infection and
covariates

Table 3 summarizes the results of the best-fitting spatio-

temporal models regarding the observed S. japonicum seropreva-

lence and the ‘true’ infection prevalence. The prevalence increased

with the mean LST (regression coefficients: 0.201 and 0.669 for

seroprevalence and ‘true’ infection prevalence, respectively), and

was negatively correlated with the mean NDVI (regression

coefficient: 20.327 and 21.044, respectively). The seroprevalence

was also inversely related to the distance to the closest water body

(regression coefficient: 20.277 and 21.069, respectively). The

estimated variances using the model with adjusting for the

diagnostic error were larger, as suggested by larger 95% BCIs.

The relationship between the serostatus and socioeconomic

covariates was not further explored since the selected variables

neither improved the goodness-of-fit nor the prediction ability of

the models.

Spatio-temporal pattern of S. japonicum infection
The best-fitting spatio-temporal models indicated that the

spatial correlation structures of the observed seroprevalence and

the ‘true’ prevalence differed from one year to another, albeit not

significantly (Table 3). Generally, the spatial correlation of the

seroprevalence declined at a slower pace than that of the ‘true’

prevalence (smaller values of the parameter Q indicate a slower

decay of the correlation with distance). For the measured

seroprevalence, the shortest distance at which the spatial

Table 1. The number of testing records falling in the 5%, 25%, 50%, 75%, and 95% BCIs of the posterior predictive distribution and
the corresponding DIC value when modeling S. japonicum seroprevalence without taking into account the diagnostic error.

Model specification Percentage falling in DIC

5% BCI 25% BCI 50% BCI 75% BCI 95% BCI

All covariates, non-spatial 1 3 3 7 16 24,316

All covariates, spatio-temporal 1 10 30 50 74 87 9,823

Socioeconomic, spatio-temporal 1 9 25 47 72 87 9,911

Environmental, spatio-temporal 1 12 28 42 68 92 10,624

All covariates, spatio-temporal 2 27 53 73 89 97 2,431

Socioeconomic, spatio-temporal 2 28 44 68 86 96 2,434

Environmental, spatio-temporal 2 31 56 76 89 97 2,428

Socioeconomic: only socioeconomic covariates included.
Environmental: only environmental covariates included.
Spatio-temporal 1: independent spatial and temporal random effects assumed.
Spatio-temporal 2: spatial correlations evolving over time assumed.
doi:10.1371/journal.pntd.0000250.t001

Table 2. The number of testing records falling in the 5%, 25%, 50%, 75%, and 95% BCIs of the posterior predictive distribution and
the corresponding DIC value when modeling the underlying ‘true’ prevalence of S. japonicum infection.

Model specification Percentage (%) falling in DIC

5% BCI 25% BCI 50% BCI 75% BCI 95% BCI

All covariates, non-spatial 1 5 12 15 25 9,891

All covariates, spatio-temporal 1 2 6 17 26 42 8,463

Socioeconomic, spatio-temporal 1 3 9 17 23 36 8,883

Environmental, spatio-temporal 1 1 7 16 21 35 9,002

All covariates, spatio-temporal 2 1 10 17 32 49 7,180

Socioeconomic, spatio-temporal 2 0 11 20 29 45 7,191

Environmental, spatio-temporal 2 4 10 18 37 51 7,184

Socioeconomic: only socioeconomic covariates included.
Environmental: only environmental covariates included.
Spatio-temporal 1: independent spatial and temporal random effects assumed.
Spatio-temporal 2: spatial correlations evolving over time assumed.
doi:10.1371/journal.pntd.0000250.t002
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correlation was below 5% was determined in 1995 (5.9 km; 95%

confidence interval (CI): 0.5–17.8 km). The maximum value of

55.6 km (95% CI: 21.0–144.4 km) was modeled for 2003. For the

underlying ‘true’ prevalence, the respective distances were 0.7 km

(95% CI: 0.4–3.0 km in 2001) and 3.7 km (95% CI: 0.4–20.7 km

in 1999; Figure 3). The model for the measured seroprevalence

further indicated a fast decline of the spatial correlation with

distance in 1995, 1998, and 2001, and a slower decay over the

respective ensuing two years.

Prediction of the ‘true’ S. japonicum prevalence in 2005
The S. japonicum prevalence in Dangtu county was predicted for

2005, based on the spatial correlation structures observed in the

preceding year. The predicted seroprevalence in the county

ranged from 0.05% to 22.9% (posterior median). Most of the

predicted high-seroprevalence areas are located in close proximity

to water bodies, especially the Yangtze River, and in the southeast

of the county (data not shown). The predicted ‘true’ S. japonicum

prevalence ranged from nil to 3.7% (posterior median). The

locations for which a relatively high ‘true’ prevalence was

predicted are again located in the vicinity of water bodies

(Figures 4a and 4c). The distribution of the prediction error is

depicted in Figures 4b and 4d.

Discussion

In this study, we estimated the ‘true’ S. japonicum prevalence in a

schistosome-endemic county of the People’s Republic of China by

explicitly taking into consideration the diagnostic error of a widely

used serological test, i.e. IHA. Additionally, we explored the spatial

distribution over time, and produced a predictive risk map for the

year 2005. Since antibody-based immunological tests, such as IHA

and ELISA, cannot distinguish between an active and a recently

cleared infection, these techniques result in low specificity in areas

where chemotherapy is provided on a regular basis [31]. Thus, the

analysis of uncorrected seroprevalence data would only be

suggestive of the overall infection pressure [38]. In order to better

understand the epidemiologic characteristics of schistosomiasis

japonica, we accounted for the lack of sensitivity and specificity of

the standard serological test employed in our study setting by using

a Bayesian approach, and compared the outcome with that of the

uncorrected model that assumed 100% sensitivity and specificity.

In recent years, significant progress has been made with

Bayesian spatio-temporal models. Thus our understanding of the

epidemiology of infectious diseases in general [39,40], and

schistosomiasis in particular [22], has been improved. We used

two types of spatio-temporal models; one assumed independent

spatial and temporal random effects, and the second assumed that

spatial correlations evolved over time (space-time interaction).

Similar approaches have been successfully employed before

[12,41,42]. We considered a stationary spatial process, although

recent investigations suggest that non-stationarity is a more

reasonable approach [19,21]. The reasons were as follows. First,

Dangtu county is small, spanning 50 km at most. Second, the local

environment in this setting is rather uniform, and the study area

mainly consists of plain regions with waterways, marshlands and

lakes. In future analyses, it would be interesting to investigate

anisotropic processes.

Remotely-sensed environmental data are increasingly utilized in

schistosomiasis research [5,11,43,44]. Temperature and vegetation

coverage are among the most frequently investigated environ-

mental features, as they can be readily derived from satellite

images. Their utility for an enhanced understanding of the local

epidemiology of schistosomiasis has been demonstrated extensively

[8,11,44]. In this study, LST and NDVI were extracted from

Landsat-5 TM images, and averaged values for each village for

individual survey years were calculated for 2-km buffer zones

around the centroid of each village. The 2-km buffer zone

approximately corresponds to an average village in Dangtu, and

most daily activities take place within such a range. Prevailing

weather conditions did not allow us to obtain all remotely-sensed

data in the same month, i.e., April, the first month of the local

transmission season [12]. To remedy this issue, we standardized

the indices.

Table 3. Bayesian hierarchical logistic model regression coefficients (posterior median with 95% BCI in brackets) in the best-fitting
models when modeling seroprevalence and underlying ‘true’ prevalence of S. japonicum infection, respectively.

Parameter (variable) Modeling seroprevalence Modeling underlying prevalencea

a (intercept) 23.180 (23.567, 22.736) 28.053 (28.836, 26.876)

b1 (LST mean) 0.201 (0.086, 0.337) 0.669 (0.270, 1.116)

b2 (NDVI mean) 20.327 (20.479, 20.176) 21.044 (21.549, 20.651)

b3 (distance to water body) 20.277 (20.435, 20.112) 21.069 (21.770, 20.353)

Q1 (spatial decay 1995) 0.505 (0.169, 6.549) 3.904 (0.701, 7.493)

Q2 (spatial decay 1996) 0.144 (0.050, 0.439) 3.554 (0.522, 7.481)

Q3 (spatial decay 1997) 0.091 (0.031, 0.251) 3.721 (0.555, 7.474)

Q4 (spatial decay 1998) 0.265 (0.119, 0.632) 3.893 (0.556, 7.486)

Q5 (spatial decay 1999) 0.149 (0.052, 1.537) 0.801 (0.145, 7.170)

Q6 (spatial decay 2000) 0.089 (0.033, 0.252) 1.317 (0.121, 7.342)

Q7 (spatial decay 2001) 0.221 (0.072, 5.326) 4.544 (1.005, 7.513)

Q8 (spatial decay 2002) 0.057 (0.021, 0.181) 4.152 (0.664, 7.507)

Q9 (spatial decay 2003) 0.054 (0.021, 0.143) 4.047 (0.672, 7.488)

Q10 (spatial decay 2004) 0.363 (0.138, 4.599) 4.487 (1.016, 7.515)

Best-fitting models: spatial correlations evolving over time assumed and only environmental covariates included.
aAdjusted for diagnostic error of IHA.
doi:10.1371/journal.pntd.0000250.t003
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Three important findings emerged from our study. First, LST

was positively associated with S. japonicum prevalence, whereas the

NDVI and distance to water bodies were negatively associated.

These observations are consistent with previous findings [12,23].

However, the non-spatial models revealed that the prediction

ability of these covariates was poor whether or not the diagnostic

error of IHA was taken into account. It is thus conceivable that the

environmental factors explained the local S. japonicum prevalence to

a small degree only. The effects of socioeconomic factors such as

the annual average per-capita income, the proportion of

households with piped water supply, and the proportion of

households with access to improved sanitation were even smaller,

contrasting results for S. mansoni in Côte d’Ivoire [11,45]. Possible

explanations for this finding are that socioeconomic factors could

be disconnected from the epidemiology of schistosomiasis at small

spatial scales, and improved water supply and sanitation do not

necessarily change the water contact pattern of villagers [15]. A

model incorporating socioeconomic variables measured at the

individual level rather than at the village level as done here, might

result in a better fit.

Second, the spatial correlation of the seroprevalence and the

estimated ‘true’ prevalence of S. japonicum occurred over greater

distances for the former than the later. Our study is the first to

compare the range of spatial correlation of the seroprevalence with

that of the underlying prevalence. Additional investigations in

different settings are warranted to verify this finding and explore

possible reasons. Spatial correlation has also been documented for

S. haematobium and S. mansoni in different African settings [11,23].

The importance of the spatial correlation was underscored by the

finding that the predictive ability of the model was greatly

improved when spatio-temporal random effects were incorporat-

ed. The inclusion of the uncertainty about IHA sensitivity and

specificity lowered the predictive ability, and increased the

prediction errors since additional sources of errors were considered

and the spatial correlation occurred over shorter distances. Whilst

the spatial correlation varied from one year to another, no strong

temporal trend was observed in our study. One possible reason is

that the duration of our inquiry (i.e., 10 years) is not long enough

for capturing prevailing temporal patterns.

Third, smoothed risk maps for 2005 were created based on the

spatial correlation found in the preceding year. Since no significant

temporal trend was detected from 1995 to 2004, it was decided to

use the most recent data only. It is evident that most human

infections were predicted to occur in close proximity to the

Yangtze River and its tributaries. It has already been noted before

that Oncomelania hupensis in the waterways connected to the Yangtze

River are difficult to eliminate, and that snails can readily re-

colonize cleared areas [2]. The prediction maps highlighted the

areas (villages) at high risk of S. japonicum infection, and emphasized

the important role of the Yangtze River in the transmission of

schistosomiasis in Dangtu county. Implications for the local

schistosomiasis control program are that control measures should

be targeted to those villages at highest risk.

One limitation of our study is that about 20% of the eligible

population (aged 5–65 years) in the sampled villages was not

surveyed. It is hard to predict whether non-compliance biased our

risk profiles. Another limitation is that non-surveyed villages were

excluded from the analysis in the corresponding year(s) and their

Figure 3. The minimum distance (posterior median and 95% BCI) at which spatial correlation was less than 5% in Dangtu county,
Anhui province, southeastern part of the People’s Republic of China from 1995 to 2004. (A) For seroprevalence (diagnostic error ignored);
(B) for underlying prevalence (diagnostic error taken into account).
doi:10.1371/journal.pntd.0000250.g003
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effects on the estimates were not taken into consideration in the

models, since there might be too many parameters to be estimated.

In conclusion, we have presented an in-depth study on the

spatio-temporal pattern of S. japonicum within a single county.

Importantly, we explicitly took into account the diagnostic error of

the serological screening test, and employed a Bayesian modeling

approach, through which the underlying ‘true’ prevalence of S.

japonicum infection could be estimated and predicted. There is

considerable spatial correlation and annual variability of S.

japonicum infection. Hence, for small-scale prediction, accounting

for the spatial correlation seems more important than considering

the risk factors included in our study. Finally, the Yangtze River

and its tributaries play an essential role in the local epidemiology

of schistosomiasis japonica.

Supporting Information

Alternative Language Abstract S1 Translation of the abstract

into Chinese by Xiao-Nong Zhou.

Found at: doi:10.1371/journal.pntd.0000250.s001 (0.05 MB PDF)

Alternative Language Abstract S2 Translation of the abstract

into German by Peter Steinmann.

Found at: doi:10.1371/journal.pntd.0000250.s002 (0.03 MB

DOC)

Acknowledgments

We thank the staff of the Dangtu County Station for Schistosomiasis

Control for their dedication to data collection and management, and we

acknowledge the panel of experts for their opinion regarding the test

properties of IHA.

Author Contributions

Conceived and designed the experiments: X. Wang, X. Zhou, Z. Chen, J.

Utzinger. Performed the experiments: X. Wang, X. Zhou, Z. Chen, K.

Yang, X. Wu. Analyzed the data: X. Wang, X. Zhou, P. Vounatsou, J.

Utzinger, K. Yang, X. Wu. Contributed reagents/materials/analysis tools:

X. Wang, X. Zhou, P. Vounatsou, J. Utzinger, K. Yang, P. Steinmann, X.

Wu. Wrote the paper: X. Wang, X. Zhou, J. Utzinger, P. Steinmann.

References

1. Chen MG, Feng Z (1999) Schistosomiasis control in China. Parasitol Int 48:

11–19.

2. Zhou XN, Wang LY, Chen MG, Wu XH, Jiang QW, et al. (2005) The public

health significance and control of schistosomiasis in China–then and now. Acta

Trop 96: 97–105.

Figure 4. Prevalence maps of S. japonicum infection in Dangtu county, Anhui province, southeast China in 2005. (A) Map of predicted
prevalence, and (B) map of prediction error when diagnostic error is ignored; (C) Map of predicted prevalence, and (D) map of prediction error when
diagnostic error is considered.
doi:10.1371/journal.pntd.0000250.g004

Bayesian Modeling of S. japonicum Prevalence

www.plosntds.org 8 June 2008 | Volume 2 | Issue 6 | e250



3. Utzinger J, Zhou XN, Chen MG, Bergquist R (2005) Conquering schistosomi-

asis in China: the long march. Acta Trop 96: 69–96.
4. Hao Y, Wu XH, Xia G, Zheng H, Guo JG, et al. (2006) Schistosomiasis

situation in People’s Republic of China in 2005. Chin J Schisto Control 18:

321–324.
5. Yang GJ, Vounatsou P, Zhou XN, Utzinger J, Tanner M (2005) A review of

geographic information system and remote sensing with applications to the
epidemiology and control of schistosomiasis in China. Acta Trop 96: 117–129.

6. Malone JB (2005) Biology-based mapping of vector-borne parasites by

geographic information systems and remote sensing. Parassitologia 47: 27–50.
7. Zhou XN, Lin DD, Yang HM, Chen HG, Sun LP, et al. (2002) Use of Landsat

TM satellite surveillance data to measure the impact of the 1998 flood on snail
intermediate host dispersal in the lower Yangtze River Basin. Acta Trop 82:

199–205.
8. Malone JB, Yilma JM, McCarroll JC, Erko B, Mukaratirwa S, et al. (2001)

Satellite climatology and the environmental risk of Schistosoma mansoni in Ethiopia

and east Africa. Acta Trop 79: 59–72.
9. Kristensen TK, Malone JB, McCarroll JC (2001) Use of satellite remote sensing

and geographic information systems to model the distribution and abundance of
snail intermediate hosts in Africa: a preliminary model for Biomphalaria pfeifferi in

Ethiopia. Acta Trop 79: 73–78.

10. Bavia ME, Malone JB, Hale L, Dantas A, Marroni L, et al. (2001) Use of
thermal and vegetation index data from earth observing satellites to evaluate the

risk of schistosomiasis in Bahia, Brazil. Acta Trop 79: 79–85.
11. Raso G, Matthys B, N’Goran EK, Tanner M, Vounatsou P, et al. (2005) Spatial

risk prediction and mapping of Schistosoma mansoni infections among schoolchil-
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