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Abstract:
requiring active surveillance screening. Transrectal Ultrasound Guided Biopsy (TRUS) is the principal

Prostate Cancer (PCa) is mostly asymptomatic at an early stage and often painless

method to diagnose PCa following a histological examination by observing cell pattern irregularities
and assigning the Gleason Score (GS) according to the recommended guidelines. This procedure
presents sampling errors and, being invasive may cause complications to the patients. External Beam
Radiotherapy Treatment (EBRT) is presented as curative option for localised and locally advanced
disease, as a palliative option for metastatic low-volume disease or after prostatectomy for prostate
bed and pelvic nodes salvage. In the EBRT worflow a Computed Tomography (CT) scan is performed
as the basis for dose calculations and volume delineations. In this work, we evaluated the use of
data-characterization algorithms (radiomics) from CT images for PCa aggressiveness assessment.
The fundamental motivation relies on the wide availability of CT images and the need to provide
tools to assess EBRT effectiveness. We used Pyradiomics and Local Image Features Extraction (LIFEx)
to extract features and search for a radiomic signature within CT images. Finnaly, when applying

Principal Component Analysis (PCA) to the features, we were able to show promising results.

Keywords: prostate cancer; radiomic features; classification; risk stratification; computed tomography

1. Introduction

The first described Prostate Cancer (PCa) case goes back to 1853, when John Adams,
a surgeon at the London Hospital, followed a histological examination for cirrhosis of the
prostate gland. He reported the condition as an orphan disease. In 2020, it was the second
most frequent malignancy, with 1.414.259 new cases and responsible for 7.3% of all cancer
deaths in men [1].

The prostate gland is part of the male reproductive system and about the size of
a walnut. It is located in the pelvis surrounding the prostatic urethra and below the
bladder [2]. Histologically and clinically, it is a heterogeneous organ divided into four
anatomic regions [3]. The central zone encompasses the ejaculatory duct and is relatively
immune to cancer. The main body of the prostate gland is the peripheral zone, located
posteriorly to the rectum. Most carcinomas arise here [3]. The transitional zone surrounds
the urethra and the anterior fibromuscular stroma is non-glandular with no pathological
interest [3].

PCais usually asymptomatic at an early stage and screened by Digital Rectal Examination
(DRE) and Prostate Specific Antigen (PSA) blood test. The principal method to diagnose PCa
is the Transrectal Ultrasound Guided Biopsy (TRUS) with samples taken mainly from the
peripheral zone [4]. The pathologist identifies the two most predominant sets of patterns. He
then assigns a score of 1 if prostate cells are uniformly packed, up to a grade of 5 depending on
pattern irregularity. The sum of both is designated the Gleason Score (GS) and is proportional
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to PCa aggressiveness. Several studies showed that a GS of 7 = 4 + 3 has the worst prognosis
than a GS of 7 = 3 + 4. Taking this into account, Epstein et al. [5] proposed a new stratification
by Grade Group (GG), as shown in Figure 1. This new grading system provides the potential
to reduce the overtreatment of indolent cancer and reflects the high heterogeneity of PCa [5].

Gleason’s Pattern
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Figure 1. Stratification by Risk Group (RG). Adapted from [5].

Theoretically GS ranges from 2 to 10 but in practice scores < 6 are never assigned.
Table 1 shows the stratification by risk groups.

Table 1. Stratification by risk groups.

Risk Group Grade Group GS
Low/Very Low 1 <6
Intermediate 2 7 (3+4)
(Favorable/Unfavorable) 3 7 (4+3)

. . 4 8
High/Very High 5 9-10

Grading PCa plays a crucial role in treatment decision outcomes. External Beam
Radiotherapy Treatment (EBRT) is a curative option for localised and locally advanced dis-
eases. Also, as a palliative option for metastatic low-volume disease or after prostatectomy
for prostate bed and pelvic nodes salvage [6].

In the treatment workflow, patients usually do a Computed Tomography (CT) scan
providing the anatomical basics for EBRT planning. In this stage, experts define tumour
and tissue-related volumes. According to the International Commission on Radiation Units
and Measurements (ICRU) guidelines, Organs At Risk (OARs) are structures or tissues that
may suffer morbidity if irradiated. For PCa, the OARs are, by order of priority, rectum,
bladder, bowel bag and femoral heads (right and left). The Gross Tumour Volume (GTV)
is the gross demonstrable extent and location of the tumour. It may also include regional
lymph nodes and distant metastasis if they are indistinguishable from the primary tumour.
The Clinical Target Volume (CTV) is a volume that contains a GTV and a margin that reflects
the probability of subclinical disease occurrence. The dose prescription is to the CTV plus a
clinically acceptable margin that includes organ motion and setup variations (Planning Target
Volume (PTV)) [7].
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During or after treatment, the tumour marker used to evaluate the effectiveness is
the PSA. PSA is an enzyme produced in the prostatic epithelium aiding in the mobility
of sperm cells and fertilization. High levels of PSA may indicate the presence of PCa [8],
although it may also be associated with BPH, enlarged prostate gland [9]. The traditional
PSA level of 4.0 ng/ml is usually the threshold for further evaluation, but this value
remains controversial [4,10].

Heterogeneous solid cancers may limit invasive biopsies but open an opportunity to
medical imaging. Particularly when significant differences in protein expression patterns
proved to correlate to radiographic findings [11]. CT images have a higher spatial resolution
than Magnetic Ressonance Imaging (MRI) allowing the evaluation of density, shape and
texture characteristics. Radiomics, the extraction of features from radiographic images
using data-characterization algorithms, may provide a valuable tool for PCa grading during
EBRT. The hypothesis behind radiomics is that quantitative analysis of medical images
may provide a similar prognosis power as phenotypes and gene protein signatures.

Most studies seem focused on the initial and diagnosis stage of PCa. Therefore,
the prefered imaging modality for radiomic studies is MRI, the de facto standard for PCa
staging and grading. The present study aims to evaluate the potential use of radiomic
features extracted from CT images and provide the baseline for a classifier that predicts
PCa aggressiveness during treatment. Such a tool may improve decision outcomes and
avoid overdiagnosis and overtreatment.

In this work, we evaluated the extraction of radiomic features from pyradiomics and
Local Image Features Extraction (LIFEX) platforms. We searched for a radiomic signature
that could predict prostate cancer aggressiveness. However, the lack of characteristic
metabolic manifestation of CT proved to be a challenge. Using Principal Component
Analysis (PCA) and several variations, we computed Area Under the Receiver Operating
Characteristic (AUROC) values using a One-vs-Rest (OvR) Classifier with a linear kernel
and obtained promising results.

Following this introductory section, we have Section 2 that presents the state-of-the-
art radiomics in prostate cancer. Section 3 hands over the image database and proposed
stratification according to the RG. It also shows the proposed method to overcome the
lack of CT radiomic signatures for PCa aggressiveness assessment. Section 4 shows the
obtained results and grounds the methodology, and finally, Section 5 extends the main
conclusions of this work.

2. Related Work

PCa diagnosis, staging and grading presents several challenges to overcome. Ra-
diomics, the extraction of quantitative features from medical images using data charac-
terization algorithms, have the ability to provide more relevant information, improving
decision outcomes and avoiding overdiagnosis and/or overtreatment.

TRUS is usually used for PCa diagnosis but it may present sampling errors due to the
randomness in needle positioning [4]. Besides it is an invasive procedure and can cause
complications to the patient such as hematuria, hematospermia and inflammation [12].
The addition of radiomic features to ultrasound images may provide the ability to diagnose
PCa without any of these issues. The power of radiomic features to distinguish clinically
significant PCa based on ultrasound images has been addressed by Wildeboer et al. [13],
Liang et al. [14] with promising results. Liang et al. [14] also added clinical parameters
as age, prostate volume, PSA and others. Both studies provided the baseline for deeper
analysis using ultrasound images revealing also the potential to use radiomics in an early
stage of PCa evaluation.

Multi-parametric Magnetic Ressonance Imaging (mpMRI) is considered the gold
standard for PCa assessment. And, with no wonder, most of the radiomic studies found are
based on this imaging modality. Prostate Imaging Reporting and Data System (PIRADS)
also provides an already established system to enable performance comparisons. In fact,
PIRADS 3 score raises some doubts as it defines clinically significant PCa as equivocal.
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Hou et al. [15] addressed this issue in order to identify clinically significant PCa in PIRADS
3 patients with success. Giambelluca et al. [16] added texture analysis also with PIRADS
3 patients to successfully identify PCa. Chen et al. [17] compared the performance of
radiomic-based model with PIRADS. All selected patients had undergone a TRUS and
histologically confirmed PCa, GS was available, mpMRI and no prior surgery or EBRT.
The same baseline as PIRADS. After statistically selecting six radiomic features the models
built from different mpMRI sequences, all outperformed PIRADS predicting PCa.

Biochemical Recurrence (BCR) is also worth mentioning because it is not taken into
account by PIRADS. BCR is usually defined as a rise in PSA level after radical prostatectomy
or EBRT, although this definition is somewhat controversial. Not all patients with elevated
PSA values will develop metastases [18]. In an attempt to predict BCR prior to treatment,
Shiradkar et al. [19] identified a set of radiomic features highly predictive of BCR compared
to GS, PSA and PIRADS. But the first study to externally validate a radiomics predictive
model for high risk PCa with prostatectomy only, was Bourbonne et al. [20] with 88 patients
from an external institution. The radiomic model based on Apparent Diffusion Coefficient
(ADC) maps achieved an accuracy on the external validation dataset of 76% in predicting
BCR. In a pioneer study, Bosetti et al. [21] suggested that energy and kurtosis features from
Cone Beam Computed Tomography (CBCT) are predictive of BCR with an AUROC of 0.84.

Recently, Providéncia et al. [22] has developed a specially designed algorithm to
classify hotspots from bone scintigraphy images. They extracted hand-crafted intensity
features and used a pretrained Convolutional Neural Network (CNN) for high-level
features following a semisupervised approach, claiming an AUROC of 0.66.

Grading can be challenging for radiomic analysis because the endpoint to address
aggressiveness derives from histological findings (GS). But Abraham and Nair [23] proved
otherwise. Introducing texture features and a Stacked Sparse AutoEncoder (SSAE) for PCa
grade group prediction, Abraham and Nair [23] topped the PROSTATEx-2 challenge with a
quadratic-weighted kappa score of 0.2772. Introducing peri-tumoral radiomic features for
PCa stratification Algohary et al. [24] also achieved great results with an improvement of
3-6% compared to intra-tumoral features alone. Osman et al. [25] was able to distinguish
between GS < 6 and GS > 7 with an AUROC of 0.90 and GS 7(3 + 4) versus GS 7(4 + 3)
with an AUROC of 0.98 from CT images.

The mentioned previous studies sustain the idea that the addition of radiomics to
already well-established guidelines offer benefits. With the phenotypic and predictive
power of radiomic features and the wide availability of CT images, we may provide a tool
to assess treatment responses, increasing effectiveness and survival rates.

3. Materials and Methods

This work is retrospective research that used treatment plans available at Instituto Por-
tugués de Oncologia do Porto Francisco Gentil (IPO-PORTO). All patients had undergone
a CT scan as part of the EBRT treatment and had the GS available. Section 3.1 presents the
image database. In Section 3.3 and Section 3.4 are the methods used to extract and select
features, and finally, in Section 3.5 the methods used to build the classifier.

3.1. The Image Dataset

The image dataset has CT images from 44 patients following a 3-fold GS risk group
stratification, as suggested by Epstein et al. [5] and presented in Table 2. All studies ranged
from 2015 to 2019 with curative intent, and patients were between 48 and 58 years old. Two
16 slices CT scanners from General Electric, GE Optima 580 and LightspeedRT16, available
at the IPO-PORTO, were used, with 2.5 mm slice thickness, 120 Kvp and automatic tube
current modulation.

CT images have a higher spatial resolution than MRI, allowing the evaluation of den-
sity, shape and texture characteristics. Although they lack characteristic manifestation [26]
and seem to be a poor candidate for radiomic feature extraction, their use for volume
delineation in the treatment planning stage makes them widely available.
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All images were anonymized and had the approval of use from the ethics committee
of IPO-PORTO.

Table 2. Number of cases and images per risk group.

Risk Group Class # Cases # Images
Low/Very Low 0 3 56
Intermediate 1 31 664
High/Very High 2 10 209

Total 44 929

3.2. Volumes of Interest

In EBRT planning, tumor and tissue related volumes are defined by the ICRU. The rec-
ommended tool to shape absorbed dose distributions is to define the PTV. Knowledge of
uncertainties and variations in tumor volume and machine parameters must be known a
priori and thus this volume is very institution dependent. Modern EBRT treatment plan-
ning systems use priority rules and weights in the OARs in an optimization framework.
The goal is to minimize dose at OARs while preserving the prescribed dose at the PTV [7].
For PCa the OARs are, by order of priority rectum, bladder, bowel bag and femoral heads
(right and left). In the treatment planning system dose constrains for each OAR must be
taken into account [7]. Figure 2 shows the volumes of interest for prostate adenocarcinoma.

Figure 2. Volumes of interest for prostate adenocarcinoma treatment planning. In orange the CTV;
in red the PTV; in green the rectum; the bladder in dark blue and in light blue the femoral heads.
Adapted from Gregoire et al. [7].

Experts at the institution delineated all Volumes Of Interest (VOIs) and OARs fol-
lowing an ATLAS based semi-automatic approach. The CTV was chosen as the feature
extraction region because it contains the most clinical and pathological information.

3.3. Feature Extraction

Radiomics are the extracting and quantifying image features in a given volume. Com-
bined with other patient information and clinical outcomes, they can provide a potential
tool for decision support models [27]. Radiomics extracts two types of features: semantic
and agnostic. Semantic features describe lesions with prognostic values, such as size, shape
or necrosis. Agnostic features provide first-order, second-order or higher-order statistics.
First-order statistics focus on individual voxels reducing the volume to a single value.
Second-order descriptors are texture features grouping voxels with similar statistics and
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are very useful to measure tumour heterogeneity. Higher-order statistics search for pattern
repetitions in the volume [27]. Table 3 shows some of the features that can be extracted.

Table 3. Examples of radiomic features.

First-order Mean, Medium, Maximum, Minimum, Entropy, Skewness, Kurtosis,

Second-order Autocorrelation, Contrast, Difference Average, Difference Entropy,
Inverse Difference Moment, ...

Higher-order Coarseness, Busyness, Complexity, Strength, Gray Level
Non-Uniformity, Gray Level Variance, ...

Features should comply with the Image Biomarker Standardisation Initiative (IBSI),
an independent international collaboration that aims at standardizing the extraction of
image biomarkers for high-throughput quantitative analysis (radiomics). With this in
mind, we used two platforms for feature extraction: PyRadiomics [28], a highly tested
and maintained open-source platform, and LIFEx [29], a freeware for radiomic feature
calculation in multimodality imaging.

3.3.1. Pyradiomics

Pyradiomics is an open-source python package that allows feature extraction both in
2D or 3D. It is also available as an extension for the 3D Slicer platform [30].

Figure 3 shows the viewing layout of 3D Slicer. Axial, coronal and sagittal views are
perfectly loaded and displayed in the platform as well as a 3D volumetric reconstruction of
the OARs and the CTV. All structures and volumes are perfectly registered with the CT
series with the z component of every element and planar orientation matching.

R S: -10.0000mm | 1 [

Right Femoral Head s =2Lett Femoral Head

R: -17.5782mm

Figure 3. 3D Slicer Interface. Visualization of image series, OARs and CTV. Top-left: Axial view.
Top-right: Volumetric reconstruction. Bottom-left: Coronal view. Bottom-right: Sagittal view.

Pyradiomics excluded some features due to mathematically similarities to the ones
defined in IBSI. For example, the Sum Variance and the Dissimilarity are identical to the
Cluster Tendency and Difference Average correspondingly [28]. It is important to note that
shape descriptors are independent of the grey value and therefore extracted from the label
mask. All other features can be retrieved from the original or derived (filtered) masked
images. In this work, we did not consider filtered images. Results returned as an ordered
dictionary with the unique feature name and additional information on the extraction [28].
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3.3.2. LIFEx

LIFEx is a software developed for visualizing multiple imaging modalities and spe-
cially designed for feature extractions. It is currently at version 7.1.0 and being actively
developed. It presents a very intuitive interface and massive and well-established doc-
umentation. It presents a Digital Imaging and Communications in Medicine (DICOM)
browser to read images locally or from a network, and even non-DICOM formats are
supported. The viewer displays axial, coronal and sagittal slices perfectly aligned and
synchronized. A simple drag and drop interface allows to upload structures and desired
VOIs [29].

The number of features is smaller when compared to pyradiomics because it is more
oriented to Positron Emission Tomography (PET)/CT texture analysis and MRI. In fact,
it presents a specific module for PET Standardized Uptake Value (SUV) calculation and
another for MRI Perfusion. The results are saved in a csv file for further analysis.

Figure 4 shows the LIFEx interface displaying axial, coronal and sagittal views. The se-
lected CTV is displayed in blue. The right menu presents several options for segmentation
and measuring tools. The left menu with resampling and window-level adjustments and
the top menu with all the available feature extraction modules.

Figure 4. LIFEx Interface. Visualization of image series and CTV in blue.

For textural analysis, it allows customization of several parameters such as spatial
resampling, intensity discretization and rescaling. It is a user-friendly software specially
designed for radiomic features studies.

Both platforms, pyradiomics and LIFEXx, offer the possibility to extract features from
derived images. Wavelets allow overcoming non-rotational invariance. Laplacian of
Gaussian (LoG) will emphasize areas of grey level change [28]. In this work, we only used
original, non-derived images.

Table 4 summarizes the number of features per feature class possible to extract from
pyradiomics and LIFEx.
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Table 4. Pyradiomics and LIFEx feature classes.

# Features
Feature Class Pyradiomics LIFEx
First Order Statistics 19 12
Shape based 26 4
GLCM 24 6
GLRLM 16 —
GLRM — 11
NGLDM _ 3
NGTDM 5 _
GLSZM 16 11
GLDM 14 —
Total 120 47

3.4. Dimensionality Reduction

Features were standardized by removing the mean and scaling to unit variance. Each
image or volume descriptor represents a point in the feature space. But some are highly
correlated, which means overlapped axis. To overcome this issue, we used PCA, which
projects the data points to an uncorrelated and orthogonal axis to maximize variance [31].
Dimensionality reduction occurs with the selection of higher variance components.

For this task, we used Scikit-learn, a machine-learning python package [32]. It offers
a few variations of PCA, such as linear dimensionality reduction using Singular Value
Decomposition (SVD), non-linear dimensionality reduction using kernels (KernelPCA),
sparse components that optimally reconstruct data, linear dimensionality reduction using
truncated SVD and using the most significant singular vectors to project the data to a
lower-dimensional space (IncrementalPCA) [32]. We tried all of these options searching for
a combination that would maximize performance.

3.5. Model Building and Classification

The adopted methodology allows having a dataset with multiple image features
labelled with a particular output, the GS. CT images are not the de facto standard for PCa
evaluation, so we attempted a more conservative approach. We used an OvR multiclass
strategy with an Support Vector Machine (SVM) as a baseline. With this approach, we
fitted one classifier per class against all the others. To assess performance, we computed
the AUROC curve. For this particular task, we used the python library Scikit-learn [32].

The model was built considering stratified randomized folds. The folds were made by
preserving the percentage of samples for each class and the test size was 20% of all slices
or volumes.

Our feature extraction pipeline encompasses several steps:

(a) CT images from EBRT;
(b)  Manually delineated segmentation by professional experts;
(c) Feature extraction from pyradiomics and LIFEx.

In Radiomic studies, the model is a radiomic signature that relates to a specific clinical
endpoint. In our case, such a signature was not possible to find. The model was built with
the components obtained from PCA as exemplified in Figure 5.
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Figure 5. Radiomics Pipeline.

4. Results

CT images are an essential part of EBRT. Although mpMRI shows higher soft-tissue
contrast and thus more PCa informative features, this also comes with a higher cost. In this
work, we seek to find the potential of CT images for PCa grading and risk stratification.

4.1. What Are the More Grade Relevant Features?

The fundamental idea behind radiomics is to find a signature. In other words, a feature
or a set of features that shows a high correlation with the GS.

We computed the heatmaps and dendrograms of all calculated features from pyra-
diomics and LIFEx. Using the nearest point algorithm and correlation metrics, we clustered
all features based on the pairwise distances between observations [32]. Figures 6 and 7
show the obtained hierarchical cluster heatmaps for pyradiomics and LIFEx. The dendro-
gram reveals a high inter-correlation between features. Also, there is no apparent relation
with the RG (represented between the dendrogram and the correlation matrix as Grade).
The low soft-tissue contrast and the lack of metabolic manifestation of CT will provide a
challenge for a possible radiomic signature.

For classification purposes, a high inter-correlation between features is not a desirable
scenario. In radiomic studies, the number of extracted features does not allow adequate
interpretability for clinical levels. In this particular case, feature selection seems unfeasible
based on the analysis of Figures 6 and 7. There is no apparent pattern considering the clus-
tering by RG following the correlation matrix. Besides, features reveal a low dissimilarity,
observed by the close node distance in the dendrogram. To overcome this issue, we tried a
dimensionality reduction technique mentioned in radiomic studies [26].
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Figure 6. Hierarchical cluster heatmap for pyradiomics features.
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Figure 7. Hierarchical cluster heatmap for LIFEx features.

4.2. PCA Variations

PCA allows the reduction of dimensionality of large datasets by projecting the most
meaningful data to a lower-dimensional space. This reduction may come at the cost of
accuracy but, it increases visualization and analysis and faster machine learning algorithms.
The sklearn library provides several variations [32]:
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e PCA: Linear dimensionality reduction using SVD;
*  SparsePCA: Sparse components that can optimally reconstruct original data;
e  KernelPCA: Non-linear dimensionality reduction using kernels;
®  TruncatedSVD: linear dimensionality reduction by means of truncated SVD;
¢ IncrementalPCA: Linear dimensionality reduction using SVD but only keeping the
most significant singular vectors.
In this work, we explored the differences in performance by computing AUROC values
for each of the mentioned PCA methods, as well as the optimal number of components.
Sklearn estimates the maximum number of components according to Equation (1).

min((#samples x 0.8, #features)) 1)

For our dataset, the maximum number of components is 34. Figure 8 shows the
obtained results for both sets of features (pyradiomics and LIFEx) and for PCA variations
and number of components. The obtained values result from 30 runs of the classification
pipeline. The multiple OvR classifiers were built with Support Vector Classification and a
linear kernel.
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Figure 8. AUROC Values for multiple PCA variations and number of principal components.

Tables 5 and 6 show the best obtained values. On average, six components are enough
to maximize performance (not shown for simplicity). The present study does not attempt
to compare pyradiomics and LIFEx but to establish a baseline for deeper studies.

Table 5. Pyradiomics Best AUROC values.

Low/Very Low Intermediate High/Very High
PCA 0.88 0.79 0.88
SparsePCA 0.88 0.79 0.88
KernelPCA 0.88 0.79 0.88
TruncatedSVD 0.88 0.79 0.88

IncrementalPCA 0.88 0.79 0.88
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Table 6. LIFEx Best AUROC values.
Low/Very Low Intermediate High/Very High
PCA 0.75 0.71 0.75
SparsePCA 0.88 0.64 0.88
KernelPCA 0.75 0.71 0.75
TruncatedSVD 0.88 0.86 0.75
Incremental PCA 0.75 0.71 0.75

5. Discussion

The low soft-tissue contrast and the lack of metabolic manifestation on CT provides
a challenge for a radiomic signature. The extracted features, either from pyradiomics or
LIFEx, reveal a poor correlation with the RG. The stratification of patients is crucial to
decide treatment workflows. The GS is a histological characterization of observed cell
patterns. Several studies suggest improvements in the classification framework when
adding radiomic intel. With this in mind, we applied several PCA methods, reducing
dimensionality by projecting features to a more well-behaved space. The downside is that
we lose the ability to identify a radiomic signature for CT to predict PCa aggressiveness.

This study does not intend to be a comparison of pyradiomics and LIFEx. Instead,
it intends to be a baseline to provide deeper insights and a classification framework to
evaluate EBRT responses.LIFEx seems more PET/CT, and MRI perfusion oriented, offering
features that seem more optimized for such imaging modalities. Pyradiomics offers more
features and is more imaging modality agnostic. A huge number of features may represent
an issue. The results seem better overall using pyradiomics. Also, they seem almost
invariant to the PCA method used.

The built models allow the establishment of three classifiers, one for each risk group.
In our dataset, the “Low /VeryLow” class is under-represented. This issue will be addressed
in the future with the addition of more cases. Also, this is quite an unbalanced dataset
considering the distribution of the cases per class.

Both platforms, offer the ability to extract features from derived images, i.e., from
wavelets and LoG filters. In our work, we only used the originals. In the future, derived
images will be considered and may offer other insights.

6. Conclusions

PCa grading is a complex task with multiple variables to be evaluated. The present
study provides the baseline to develop an accurate classifier to predict PCa aggressiveness
during treatment using CT images. Such a tool may improve decision outcomes and avoid
overdiagnosis and overtreatment.

CT images provide a challenge to find a radiomic signature to predict PCa aggressive-
ness. The application of PCA methods allows the development of a classifier capable of
stratifying patients according to the RG.

The well-established guidelines like PIRADS do not take into account a treated
prostate. With the biological and morphological changes induced by EBRT, reclassify-
ing or regrading PCa is challenging. With the present study, we do not intend to perform a
direct comparison with PIRADS and mpMRI. Instead, we aspire to provide a baseline for
a framework capable of reevaluating PCa aggressiveness during treatment. In the EBRT
workflow, an initial CT scan is mandatory to provide tissue attenuation coefficients for
dose estimations and anatomical intel for volume delineation. The addition of radiomic
information can increase the predictive power of CT images. Complemented with the
valuable initial findings given by mpMRI, PET/CT and histology, we may walk towards
ongoing treatment optimizations. CBCT is also freely available in the EBRT workflow for
patient setup verifications. This study may provide the necessary methods to use CBCT as
a restaging imaging modality for PCa during treatment.
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In the future, we intend to contribute with a clinically implemented system capable of
providing valuable intel on the effectiveness of EBRT, improving decision outcomes and
survival rates.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC Apparent Diffusion Coefficient

AUROC Area Under the Receiver Operating Characteristic
BCR Biochemical Recurrence

CBCT Cone Beam Computed Tomography

CNN Convolutional Neural Network.

CT Computed Tomography

CTV Clinical Target Volume

DICOM Digital Imaging and Communications in Medicine
DRE Digital Rectal Examination

EBRT External Beam Radiotherapy Treatment

GG Grade Group

GLCM Gray Level Co-occurrence Matrix

GLDM Gray Level Dependence Matrix

GLRLM Gray Level Run Length Matrix

GLRM Grey-Level Run Length Matrix

GLSZM Gray Level Size Zone Matrix

GS Gleason Score

GTV Gross Tumour Volume

IBSI Image Biomarker Standardisation Initiative

ICRU International Commission on Radiation Units and Measurements
IPO-PORTO Instituto Portugués de Oncologia do Porto Francisco Gentil
LIFEx Local Image Features Extraction

LoG Laplacian of Gaussian

mpMRI Multi-parametric Magnetic Ressonance Imaging
MRI Magnetic Ressonance Imaging

NGLDM Neighborhood Grey-Level Difference Matrix
NGTDM Neighbouring Gray Tone Difference Matrix

OAR Organ At Risk

OvR One-vs-Rest

PCA Principal Component Analysis

PCa Prostate Cancer

PET Positron Emission Tomography

PIRADS Prostate Imaging Reporting and Data System
PSA Prostate Specific Antigen

PTV Planning Target Volume
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RG Risk Group
SSAE Stacked Sparse AutoEncoder
S10AY Standardized Uptake Value
SVD Singular Value Decomposition
SVM Support Vector Machine
TRUS Transrectal Ultrasound Guided Biopsy
VOI Volume Of Interest
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