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Abstract
Current biological writing is afflicted by the use of ambiguous names, convoluted sentences, vague statements and narrative-fitted storylines. 
This represents a challenge for biological research in general and in particular for fields such as biological database curation and text mining, 
which have been tasked to cope with exponentially growing content. Improving the quality of biological writing by encouraging unambiguity 
and precision would foster expository discipline and machine reasoning. More specifically, the routine inclusion of formal languages in biological 
writing would improve our ability to describe, compile and model biology.
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[…] language is just as indispensable a tool for the pur-
suit of biology as microscopes, kymographs and other 
instruments (46)

The primary way to describe biology is still document-
centric natural language (1). Language is, therefore, funda-
mental to the development of biological research. Improving 
its quality to encourage unambiguity and precision fosters 
expository discipline and machine reasoning (2, 3) while striv-
ing towards Boole’s ideal of a language ‘[…] freed from idioms 
and divested of superfluity, […] in a manner the most sim-
ple and literal […]’ (4). This includes the use of standard 
nomenclatures, identifiers and reference databases, clear fac-
tual statements and computational or symbolic languages, i.e. 
formal languages.

The history of attempts to improve biological writings in 
such a way starts, at least, with the creation of standard 
nomenclatures for species dating back to Linnaeus in the 18th 
century (5) and Woodger’s 1929 critique of the language used 
in biology (6, 7). Such attempts have had limited impact. 
Biological documents still contain many ambiguous names, 
convoluted sentences, vague statements and narrative-fitted 
storylines (8–11).

The need for better writing is, nonetheless, increasing, 
because the number of biology-related documents, such as 
scientific articles, patents and grants, keeps growing exponen-
tially (12), as noticed even by the public during the COVID-19 
pandemic (13, 14). Currently proposed solutions to cope with 
this growth appear to be insufficient. First, there is a scarcity 
of accessible and structured biological data derived from these 
documents. Biological databases, which are primary reposito-
ries for such data, are not growing to match current needs 
(15, 16), and the sustainability of their business model has 
been questioned (17–22).

Second, text mining is not, at the moment, a sufficient solu-
tion for the extraction of structured data from text. Arguably, 
taking off in the late 1990s with the release of PubMed (23), 
text mining went through a period of stagnation in perfor-
mance benchmarks until recent advances in natural language 
processing (NLP). While new NLP algorithms have been able 
to master general linguistic tasks with greater ability than 
non-specialist college-educated humans, they are not yet able 
to extract complex biological relations (24–27) with accept-
able performance, according to past community challenges 
(28), and with the exception of certain niche relation types. 
Crucially, complex relations, and associated contextual infor-
mation, play a large role in the description of biological 
processes (29, 30).

Moreover, NLP algorithms have also lagged in tasks for 
which a certain level of factual knowledge is necessary, such 
as open-domain question-answering (31, 32). Knowledge 
graphs, which compile and organize knowledge of the world 
(33, 34), have been used to enrich NLP algorithms, power-
ing them to state-of-the-art performance in both linguistic and 
factual applications (35–39).

Knowledge graphs can be partially created automatically 
but, in order to increase and maintain their quality, they need 
manually curated data (40), which can also be introduced 
through semi-automatic curation workflows based on artifi-
cial intelligence (AI) algorithms (41, 42). The increased use 
of knowledge graphs, including by companies such as Google 
and Meta, shows that improvements in NLP have not led to 
a decrease in, and one could say it has fed, the need for duly 
compiled, manually extracted knowledge. Thus, and perhaps 
counterintuitively, a golden era for NLP, and for AI in general, 
has been paralleled by growth in the use of knowledge graphs.

Improving biological writing has been recognized as one 
way to address the bottlenecks in the extraction of biological 
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data from text. Recently, tips for scientific authors to make 
their articles more ‘text-mining ready’ have been proposed 
(43), and there has been yet another call for the use of standard 
names in biological texts, in this case for gene products (44). 
There is, however, a need to improve biological writing that is 
beyond the still-insufficient adoption of standard terminolo-
gies and text-mining-ready writing tips. Specifically, with the 
adoption of formal languages, such as Biological Expression 
Language (BEL) (2, 45), as part of regular writing practice.

Content written in a formal language, such as that related 
to protein interactions, phylogenies, drug–disease interactions 
or post-translational modifications, could be embedded in-
line within documents or in tables, metadata, equations or 
supplementary files or directly submitted to databases. Chem-
istry provides examples of how this could look in practice 
(46). A realization of the limitations of natural language 
and alchemical symbols (47) led to multiple successful ini-
tiatives in the 19th and early 20th centuries on the subject 
of standard nomenclatures, formulae and equations. Because 
of this, the text mining of chemical names is easier than the 
text mining of, for instance, gene names (48). Incidentally, 
these efforts were originally inspired by Linnaeus’s work in
biology (49).

Within biology, the field of systems biology has also 
had a strong interest in the use of formal languages (50), 
such as SBGN (51) or BioPAX (52). The latter particu-
larly describes signalling pathways and, unlike BEL, rep-
resents direct biological mechanisms with a higher degree 
of granularity and complexity. Signalling pathways repre-
sented in a formal language offer a stark contrast with the 
unsystematic way in which they are described in biological
writings (53).

Imagine, for instance, if the phrase ‘TNF activates SYK’ 
(54) were written as ‘TNF activates SYK (p(HGNC:TNF)) 
-> act(p(HGNC:SYK))’, using, in this case, the BEL lan-
guage inside parentheses. This type of content could easily 
be extractable and would provide a source of readily avail-
able knowledge that would help improve the yield of database 
curation and the performance of AI/NLP algorithms. The 
ultimate goal would not be to improve AI/NLP algorithms 
or curation for their own sake but to improve our abil-
ity to describe, compile and model biology. For authors, 
this could also increase the visibility and impact of their
work (55).

Formal languages should not be seen as computational 
biology any more than chemistry formulae are computational 
chemistry. Biology students can get acquainted (56) with ways 
to apply standard nomenclatures, write clearer factual state-
ments and integrate formal languages in their writing. In the 
end, better biological writing would help both biologists and 
algorithms.
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