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Abstract: In this study, we addressed the origin of chicken gut microbiota in commercial production
by a comparison of eggshell and feed microbiota with caecal microbiota of 7-day-old chickens, using
microbiota analysis by 16S rRNA sequencing. In addition, we tested at which timepoint during
prenatal or neonatal development it is possible to successfully administer probiotics. We found that
eggshell microbiota was a combination of environmental and adult hen gut microbiota but was
completely different from caecal microbiota of 7-day-old chicks. Similarly, we observed that the
composition of feed microbiota was different from caecal microbiota. Neither eggshell nor feed acted
as an important source of gut microbiota for the chickens in commercial production. Following the
experimental administration of potential probiotics, we found that chickens can be colonised only
when already hatched and active. Spraying of eggs with gut anaerobes during egg incubation or
hatching itself did not result in effective chicken colonisation. Such conclusions should be considered
when selecting and administering probiotics to chickens in hatcheries. Eggshells, feed or drinking
water do not act as major sources of gut microbiota. Newly hatched chickens must be colonised from
additional sources, such as air dust with spores of Clostridiales. The natural colonisation starts only
when chickens are already hatched, as spraying of eggs or even chickens at the very beginning of the
hatching process did not result in efficient colonisation.
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1. Introduction

Birds or mammals are hatched or born nearly sterile, but immediately after birth they
are exposed to an external environment, rich in different forms of life. Interactions between
ubiquitously present prokaryotes and new-borns are frequent. Age-dependent colonisation
of different animal body compartments by prokaryotic microbiota has been repeatedly
described, including chickens and the chicken intestinal tract [1–4]. The intestinal tract
of chickens is first colonised by E. coli, which is characteristic for chicken gut microbiota
during the first week of life. E. coli is replaced by bacteria from phylum Firmicutes during
the second week of life, mostly by aerotolerant Lactobacillaceae and spore-forming isolates
from the Lachnospiraceae, Ruminococcaceae and Clostridiaceae families. Representatives
of phylum Bacteroidetes and strict anaerobes from phylum Proteobacteria are usually
among the last ones to appear in gut microbiota of chickens in commercial production.
A commonly overlooked fact is that, due to the absence of hens in egg incubation and
hatching, the development of gut microbiota in chickens in commercial production is highly
specific, resulting in microbiota found in the caecum of one-week-old chickens originating
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exclusively from the environment [4,5]. If adult hens were present, the developmental
pattern would be different [6]. However, if hens are excluded from this process, what is the
origin bacterial species colonising chicken caecum in the first weeks of life?

This topic was addressed in the current study. Specifically, we asked two questions.
Firstly, considering that the transmission of microbiota from hens to offspring is interrupted
in commercial production, where do members of Lachnospiraceae or Ruminococcaceae
families come from, and why do they appear in the chicken intestinal tract so shortly
after hatching? Do they originate from eggshells, feed or drinking water? Secondly, at
what timepoint during prenatal or neonatal development is it possible to colonise the
chicken intestinal tract? Answers to these questions are of utmost importance because the
rapid establishment of complex gut microbiota is crucial for chicken resistance to enteric
infections [7–9]. To address these questions, we compared eggshell microbiota with gut
microbiota of 7-day-old chicks. Next, we tested whether similar or different gut microbiota
would develop in chickens hatched from eggs originating from different parent flocks, i.e.,
with different microbiota deposited on eggshells. We also investigated to what extent feed
and drinking water act as a source of gut microbiota. Finally, we tested at what timepoint
during egg incubation or hatching it is possible to administer bacterial strains to achieve
successful gut colonisation.

2. Materials and Methods
2.1. Comparison of Eggshell Microbiota with Caecal Microbiota of 7-Day-Old Chicks

Forty-five fertilised eggs of ISA Brown egg laying line were obtained from a local
hatchery. These eggs originated from 3 different reproductive flocks from different geo-
graphical locations in the Czech Republic (15 eggs per flock). Three eggs from each batch
were used for DNA purification from eggshells and the remaining 12 eggs from each flock
were incubated in a small-scale hatching incubator. Since the hatching efficiency in the
small-scale experiment was around 50%, five, five and four chickens were obtained from
each parent flock, respectively. The chickens were labelled by leg rings and raised in the
same cage. The chickens were sacrificed at the age of one week and caecal contents were
collected for microbiota characterisation by sequencing the V3–V4 variable region of 16S
rRNA genes.

2.2. Housing Conditions

Chickens were kept in fully air-conditioned barrier rooms, in plastic boxes with slatted
floors. Feed and drinking water were supplied ad libitum. Temperature was set to 34 ◦C on
day 1; this decreased by 2 ◦C per day. In addition, the boxes were equipped with brooders.
A light regime started with 24 h light on day 1, followed by 22 h light and 2 h dark on
day 2, 20 + 4 h on day 3, 19 + 5 h on day 4, and 18 + 6 h on day 5, and so on.

2.3. DNA Purification from Eggshells

Three visually clean eggs from each farm were used for DNA purification from
eggshells according to [10], as follows: The inner and outer shell membranes were removed,
and 50 mg of eggshell was placed in a 2 mL tube with 2.5 mm zirconium silicate beads
and 1600 µL of 0.5 M EDTA. The shells were disrupted in a MagnaLyser (Roche, Basel,
Switzerland) at 7000 rpm for 60 s, followed by overnight incubation on a shaker heated to
44 ◦C. Finally, DNA was purified from the supernatant using the DNeasy tissue kit and
following the instructions of the manufacturer (Qiagen, Hilden Germany).

2.4. Feed as a Source of Gut Microbiota

Two groups of ISA Brown chickens with 4 birds per group were formed (different
from the chickens used above for comparison of caecal and eggshell microbiota). The
control group was provided with conventional feed and water throughout the whole
experiment. The experimental group was provided with a fresh batch of autoclaved
(121 ◦C for 20 min) feed and water on a daily basis. The two groups of chickens were kept
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in the same room, but in two different cages separated by 2 m distance to minimise any
group separation effect. The experiment was terminated when the chickens were one week
old. The body weight of all chickens was determined and caecal contents were collected
during post-mortem analysis. In addition, a single sample of feed before (conventional feed)
and after (sterile feed) autoclaving was saved for DNA purification and feed microbiota
characterisation. To test the viability of bacteria in the conventional feed, an aliquot of the
feed was homogenised, serially diluted in PBS, and each dilution was plated on WCHA
agar plates. The agar plates were incubated anaerobically at 37 ◦C for 48 h and the bacterial
mass was washed with 5 mL of PBS from the dilution plate with approx. 1000 growing
colonies. Washed bacteria were pelleted by centrifugation at 14,000× g for 1 min and the
pellet was used for DNA purification.

2.5. Definition of Optimal Age for Administration of Bacterial Strains Intended for
Gut Colonisation

Forty-eight fertilised eggs of ISA Brown line were obtained and assigned to 3 groups
with 16 eggs per group. The first group of eggs remained untreated throughout the
whole experiment. The second set of 16 eggs was sprayed on day 1 of egg incubation
with a mixture of Pseudoflavonifractor capillosus, Anaerotruncus colihominis, Butyricicoccus
pullicaecorum, Blautia producta, Clostridium lactatifermentans, Clostridium glycyrrhizinilyticum
and Oscillibacter valericigenes. These bacterial species were selected as spore-forming species
that might be able to survive as spores on the eggshells [11]. The last group of 16 eggs was
treated with the same bacterial mixture on day 1 and the treatment was repeated on day 20
of embryonic development. Eight chickens from control group eggs, nine chickens treated
once in the beginning of embryonic development and 12 chickens treated twice during
embryonic development were obtained and sacrificed one week after hatching. Caecal
contents were collected, DNA from caecal contents was purified and bacteria present in
the mixture were quantified by strain-specific real-time PCR (see below).

In the second experiment of this type, Megamonas hypermegale and Bacteroides caecicola
were used for spraying eggs and hatching chickens of Ross 308 line. These bacterial strains
were selected as capable of efficient colonisation of the chicken caecum [12]. A mixture of
these isolates was sprayed over the tray with 50 eggs on day 21 of embryonic development,
either at the moment when the first chickens just began to hatch (when less than 10% of
chickens were already hatched), or 10 h later, when 90% of chickens were already hatched.
Five hatched chickens were taken from each group together with 5 control, non-treated
chicks. These chickens were sacrificed when one week old, caecal contents were collected,
DNA was purified and the presence of bacteria from the mixture was determined by
strain-specific real-time PCR. This experiment was repeated twice.

2.6. DNA Purification

All collected samples were stored at −20 ◦C before DNA purification and the storage
never exceeded 3 months, to minimise sample degradation. Each sample was homogenised
using a MagnaLyser (Roche, Basel, Switzerland) and the homogenate was subjected to
DNA purification. QIAmp DNA Stool kit (Qiagen, Hilden, Germany) was used for DNA
purification from caecal contents, while DNeasy tissue kit (Qiagen, Hilden, Germany)
was used for DNA purification from eggshell or bacterial mass collected from agar plates.
Purified DNA was stored at −20 ◦C.

2.7. Quantitative Real-Time PCR

Strain-specific primers (Table 1) were designed as described previously [13]. Real-
time PCR was performed in 3 µL volumes in 384-well microplates using QuantiTect
SYBR Green PCR Master Mix (Qiagen, Hilden, Germany) and a Nanodrop pipetting
station (Innovadyne, Santa Rosa, CA, USA) for dispensing PCR mixtures, as reported
elsewhere [13].
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Table 1. List of primers used for the detection and quantification of target bacterial species.

Target Species Forward Primer Reverse Primer

Pseudoflavonifractor capillosus GCCAGGAATTTCCCTTCTTC GGCAGTCTCATGGAGGTAGC
Anaerotruncus colihominis GCAAATGGGCGTATCCTCAA CTGTTCAATTTCCCGGCAC

Butyricicoccus pullicaecorum CGAGCAGGCAAACGACAA CCAGGTCTTGGTACCGTCC
Blautia producta GAGAAAAAGGGGCAACAACA TCAGCATCTTTTCCCCAATC

Clostridium lactatifermentans GGTATCCCCCACGCTTATTT CCTGCGGTCAATTCTTTGAT
Clostridium glycyrrhizinilyticum CTGCAGATAACGCACAGGAA GTACCGGCAGGCATATCTGT

Oscillibacter valericigenes TGTGAGTCCCAGCTCTACGA GCAGGGCCTCTCTCCATTTG
Megamonas hypermegale ATTCGCCTTCACGACAATTC TTACGATATCGGCGAGAACC

Bacteroides caecicola TATACCATGCACGATGAACC AAATACCTTCTTCCCTCACG

2.8. Microbiota Characterisation by Sequencing of V3/V4 Variable Region of 16S rRNA Genes

The concentration of purified DNA was determined spectrophotometrically and
DNA samples diluted to 5 ng/mL were used as a template in PCR with forward primer 5′-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-MID-GT-CCTACGGGNGGCWG
CAG-3′ and reverse primer 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-MID-
GT-GACTACHVGGGTATCTAATCC-3′. MIDs represent different sequences of 5, 6, 7, or 9
nucleotides in length, which were used to identify individual samples in the sequencing
run. PCR amplification was performed using a KAPA HiFi Hot Start Ready Mix kit (Kapa
Biosystems, Woburn, MA, USA) and the resulting PCR products were purified using AM-
Pure beads. Sequencing was performed using MiSeq Reagent Kit v3 (600 cycle) and MiSeq
apparatus according to the manufacturer’s instructions (Illumina, San Diego, CA, USA), as
described previously [6]. The fastq files were imported into QIIME software [14]. Forward
and reverse sequences were joined, and chimeric sequences were predicted by the slayer
algorithm and excluded from downstream analyses. The non-chimeric sequences were
classified by RDP Seqmatch with an operational taxonomic units (OTU) discrimination
level set to 97%. Principal coordinate analysis (PCoA) implemented in QIIME was used for
data visualisation.

2.9. Statistics and Data Availability

The Mann–Whitney test was used to identify differently abundant taxa among the
samples. A t-test was used for comparison of body weights of chickens fed either a
conventional or a sterile diet. Differences with p < 0.05 were considered as significant.

3. Results
3.1. Comparison of Eggshell Microbiota and Caecal Microbiota of 7-Day-Old Chicks

Caecal microbiota of 7-day-old chickens differed from eggshell microbiota (Figure 1A).
Microbiota of 7-day-old chickens consisted of Firmicutes and Proteobacteria. On the
other hand, eggshell microbiota consisted of representatives of Firmicutes, Bacteroidetes,
Actinobacteria and a low representation of Proteobacteria (Figure 1B). The differences were
also demonstrated at the OTU level (Figure 1C). When the abundance of OTUs, which
formed at least 0.25% of either caecal or eggshell microbiota, was compared, only two OTUs
were present in similar abundance in the microbiota of 7-day-old chickens and eggshells,
while 72 OTUs were specific to either type of sample (Figure 1D,E).
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Figure 1. Comparison of eggshell microbiota and caecal microbiota of one-week old chicks. (A), weighted Principal Coor-
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(B), microbiota composition of individual caecal and eggshell samples at phylum level (blue—Proteobacteria, green—
Firmicutes, magenta—Bacteroidetes, yellow—Actinobacteria). Microbiota of eggshells resembled caecal microbiota of 
adult hens due to the presence of Bacteroidetes and Actinobacteria and low representation of Proteobacteria. (C), individ-
ual samples at OTU level (top 100 OTUs were used for figure generation) showing completely different composition of 
caecal microbiota of one-week-old chickens and eggshells microbiota before incubation (see Table S1 for OTU composi-
tion). (D), absolute values of log10 ratios of abundances of OTUs forming more than 0.3% of total microbiota, either in the 
caecum or in eggshells. Since the biological meaning of the ratios in (D) is influenced also by abundance in of each micro-
biota member, either in the caecal or eggshell microbiota, these are shown in (E). Abundance in caecal microbiota is shown 
for the OTUs more abundant in the caecum, and vice versa, abundance in eggshell microbiota is shown for the OTUs more 
abundant in eggshell microbiota. 

The caecal microbiome of 7-day-old chickens was characteristic for this particular age 
[1,4,5]. Eggshell microbiota was a mixture of adult hen microbiota and environmental mi-
crobiota (Table S1). Eggshell microbiota was dominated by microbiota deposited by the 
hen during egg laying, since Faecalibacterium prausnitzii and Oscillibacter ruminantium 
formed 7.20% and 5.98% of total eggshell microbiota, respectively. In addition, different 
Bacteroides species formed 12% of total microbiota, and Megamonas hypermegale and M. 
funiformis formed 1.20% and 1.94% of all eggshell microbiota, respectively. These are all 
microbiota members characteristic for adult hens. The third most abundant OTU of egg-
shell microbiota was represented by Clostridium sporogenes forming 4.79% of eggshell mi-
crobiota. In addition, Actinomycetales (genera Corynebacterium, Brachybacterium or Yan-
iella) formed 1.40% of eggshell microbiota, indicating the environment as a source [15,16]. 
Bacillus coagulans formed 2.13% of total eggshell microbiota and Staphylococcaceae (gen-
era Jeotgalicoccus, Salinicoccus and Staphylococcus) formed 1.09% of eggshell microbiota, 
further showing the contribution of the environment [17–20]. 

Figure 1. Comparison of eggshell microbiota and caecal microbiota of one-week old chicks. (A), weighted Principal
Coordinate Analysis (PCoA) of caecal microbiota of one-week-old chickens (blue dots) and microbiota of eggshells (red
dots). (B), microbiota composition of individual caecal and eggshell samples at phylum level (blue—Proteobacteria, green—
Firmicutes, magenta—Bacteroidetes, yellow—Actinobacteria). Microbiota of eggshells resembled caecal microbiota of adult
hens due to the presence of Bacteroidetes and Actinobacteria and low representation of Proteobacteria. (C), individual
samples at OTU level (top 100 OTUs were used for figure generation) showing completely different composition of caecal
microbiota of one-week-old chickens and eggshells microbiota before incubation (see Table S1 for OTU composition). (D),
absolute values of log10 ratios of abundances of OTUs forming more than 0.3% of total microbiota, either in the caecum or
in eggshells. Since the biological meaning of the ratios in (D) is influenced also by abundance in of each microbiota member,
either in the caecal or eggshell microbiota, these are shown in (E). Abundance in caecal microbiota is shown for the OTUs
more abundant in the caecum, and vice versa, abundance in eggshell microbiota is shown for the OTUs more abundant in
eggshell microbiota.

The caecal microbiome of 7-day-old chickens was characteristic for this particular
age [1,4,5]. Eggshell microbiota was a mixture of adult hen microbiota and environmental
microbiota (Table S1). Eggshell microbiota was dominated by microbiota deposited by
the hen during egg laying, since Faecalibacterium prausnitzii and Oscillibacter ruminantium
formed 7.20% and 5.98% of total eggshell microbiota, respectively. In addition, different
Bacteroides species formed 12% of total microbiota, and Megamonas hypermegale and M.
funiformis formed 1.20% and 1.94% of all eggshell microbiota, respectively. These are
all microbiota members characteristic for adult hens. The third most abundant OTU of
eggshell microbiota was represented by Clostridium sporogenes forming 4.79% of eggshell
microbiota. In addition, Actinomycetales (genera Corynebacterium, Brachybacterium or
Yaniella) formed 1.40% of eggshell microbiota, indicating the environment as a source [15,16].
Bacillus coagulans formed 2.13% of total eggshell microbiota and Staphylococcaceae (genera



Microorganisms 2021, 9, 1480 6 of 11

Jeotgalicoccus, Salinicoccus and Staphylococcus) formed 1.09% of eggshell microbiota, further
showing the contribution of the environment [17–20].

3.2. Gut Microbiota of 7-Day-Old Chickens Originating from Different Parent Flocks

Next, we analysed the microbiota composition in the caeca of chickens originating
from three different parent flocks, which were hatched and raised together during the first
week of life. PCoA showed that all the chickens were randomly distributed and there was
no clustering according to origin of the reproductive parent flock (Figure 2). The chickens
were, therefore, colonised from environmental sources and not by the microbiota of their
(different) parents.
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Figure 2. Weighted PCoA of caecal samples of chickens from three different parent flocks. No
clustering according to origin of chickens defined by different colours was observed. Parents,
therefore, did not play any role in the establishment of gut microbiota in the chickens in commercial
production.

3.3. Feed as a Source of Gut Microbiota

Next, we tested the role of feed in the development of caecal microbiota during the first
week of life. Two groups of chickens were provided with either autoclaved feed (sterile feed)
or the same feed without autoclaving (conventional feed). Caecal microbiota of both groups
of chickens was similar and differed from feed microbiota (Figure 3A). Characterisation
of feed microbiota was complicated by the fact that sequences corresponding to plant
chloroplast rRNA formed 59.1% of all sequences obtained for the conventional feed sample
(Figure 3B). In sterile feed, the DNA including the chloroplast DNA was degraded; it was
impossible to purify any DNA from this type of sample (Figure 3C) and obtain 16S rRNA
amplification products (Figure 3D). Consequently, the number of reads obtained for the
sterile feed sample was extremely low (Figure 3E) and OTU composition in sterile feed
must be considered with great care.
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Figure 3. Feed as a source of chicken gut microbiota. (A), weighted PCoA analysis of microbiota in conventional (brown
dot) and sterile feed (red dot) differed from the caecal microbiota of one-week-old chickens fed with conventional (green
dots) or sterile feed (yellow dots). Conventional feed microbiome was dominated by chloroplast rRNA sequences from
plants used for feed manufacturing. Top 30 OTUs from conventional feed showed in (B) formed 87.3% of all reads, and
chloroplast assigned reads (shown in shades of green) formed 59.1% of all reads (see Table S2 for taxa composition). DNA
in feed samples was degraded by autoclaving and low DNA concentration (C), low quality of PCR products ((D), c1–c7
stands for 7 caecal samples, followed by amplification products obtained using DNA from sterile or conventional feed as
template) and low number of sequences (E) were obtained for the sterile feed sample.

Microbiota of chickens fed a conventional or sterile diet, despite qualitative similarities,
exhibited quantitative differences at the OTU level. Whether chickens were fed with
conventional or sterile feed, the top 15 OTUs represent more than 90% of total microbiota
for both groups. Out of these, Anaerostipes caccae was significantly more abundant in
the microbiota of chickens fed conventional feed, while Flavonifractor plautii, Enterococcus
hirae and Clostridium paraputrificum were more abundant in the microbiota of chickens fed
sterile feed (Figure 4A). The same OTUs represented minor fractions in conventional feed
microbiota and in the washes from anaerobically incubated WCHA agar plates inoculated
with serially diluted homogenates of conventional feed. Similarly, OTUs common in
the conventional feed (Pantoea vagans, Curtobacterium flaccumfaciens, Erwinia aphidicola,
Pseudomonas trivialis, Stenotrophomonas rhizophila, Sphingomonas olei) or in bacterial pools
washed from agar plates after anaerobic culture (Bacillus licheniformis) did not efficiently
colonise the chicken caecum (Figure 4B). All results suggest that feed did not act as the
major source of gut microbiota, although autoclaving of feed affected its nutritional values
and allowed for a different microbiota composition to develop in the chickens. The effect
of autoclaving feed was confirmed by the lower body weight of chickens provided with
the autoclaved feed in comparison to those fed conventional feed (Figure 4C).

3.4. Definition of an Optimal Time Point for Administration of Bacterial Strains during Hatching

Finally, we attempted to fine the timepoint during prenatal or neonatal development
at which it is possible to efficiently colonise chickens. A mixture of seven different spore-
forming species was sprayed over the eggs on day 1 of embryonic development, or both
on day 1 and day 20 of embryonic development. When the caecal microbiota composition
was determined in one-week-old chicks, none of the strains used for egg treatment were
detected in the chicken caecum (Table S3). Next, we used an additional two strains,
Megamonas hypermegale and Bacteroides caecicola, which efficiently colonised the chicken
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caecum [12]. A mixture of these two isolates was sprayed over the box with incubated eggs
on day 21 of embryonic development, either at the moment when less than 10% of chickens
were already hatched, or approximately 10 h later, when 90% of chickens were hatched. No
colonisation was recorded when the boxes with eggs and a few already hatched chickens
were treated. In contrast, successful colonisation of all tested chickens was observed when
the tray was sprayed when 90% of chickens were already hatched (Figure 5).
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4. Discussion

In this study, we addressed the origin of microbiota that appears in the chicken caecum
shortly after hatching. Although hens deposit their microbiota on eggshells and adult-type
microbiota was found on the eggshells [1,21–23], this was not vertically transmitted. The
fact that parents do not act as a source of gut microbiota for newly hatched chickens in com-
mercial production was also confirmed by hatching chickens from eggs originating from
different parent flocks. Samples from these chickens did not form separate clusters, their
microbiota was similar, and these chickens, therefore, had to be colonised from the same
environmental sources after hatching. The fact that transmission via eggshell deposition is
not efficient was confirmed also by experimental deposition of spore-forming Clostridiales
onto the eggshell, either at the beginning of egg incubation or a day before hatching.

The eggshells were contaminated by Actinomycetales and Staphylococcaceae. These
bacteria are common in chicken litter [15,16,24] or in the air of poultry houses [18,25] and
are known from previous reports to contribute to eggshell microbiota [26–28]. Whether
viable or not, these were definitively not transferred to the chicken intestinal tract. Feed and
drinking water also did not act as a major source of gut microbiota. There were variations in
quantities of different OTUs in chickens fed conventional and sterile feed, but qualitatively
the same major OTUs were present in microbiota of both groups of chicks. When checking
for viable anaerobic bacteria in conventional feed, Bacillus licheniformis dominated, followed
by Lactobacillus iners and Clostridium symbiosum, but none of these bacteria colonised the
chicken intestinal tract. The second most common OTU in the caeca of one-week-old
chicks, Blautia luti, formed 0.16% of total feed microbiota, which does not exclude its feed
origin. However, Bl. luti did not grow after anaerobic culture of feed samples, which
suggests that it was present in the feed in inactivated form. Moreover, the eight most
abundant anaerobes from the caeca of chicks, Flavonifractor plautii, Erysipelatoclostridium
ramosum, Clostridium paraputrificum, Anaerostipes caccae, Clostridium perfringens, Clostridium
saccharogumia, Pediococcus acidilactici and Romboutsia timonensis, each formed 0.02% or less
of the total feed microbiota, and except for Romboutsia timonensis, none of these OTUs
were detected in washes from anaerobic cultures. Feed, therefore, does not represent
a major source of gut microbiota for chickens in commercial production although feed
shapes gut microbiota composition, as observed in the chickens fed with conventional and
sterilised feed.

Finally, we tested at what time during the hatching period it is possible to administer
gut microbiota and achieve successful colonisation. Spraying of eggs or even chickens at
the very beginning of the hatching process, when the majority of chickens were still in
eggs, did not result in efficient colonisation. This also means that spraying of eggs any time
during incubation with strict anaerobes, i.e., before the hatching, will not result in efficient
colonisation. Chickens could be colonised only when already hatched, not considering in
ovo inoculation with facultative anaerobes [29,30]. The early administration of probiotics,
therefore, results in treatment failure, while delayed treatment of chickens with complex
microbiota is also not recommended since such products do not act therapeutically [7].
Therefore, the window for reasonable administration is quite short, lasting for a few
hours at hatching, before placement on a farm where chickens may become colonised by
microbiota of unintended composition. Although this window is rather short, it is still
long enough to logistically arrange the whole production process and include probiotic
treatment at an appropriate time and place.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9071480/s1, Table S1. OTU table of caecal and eggshell microbiota. Table S2.
OTU table of feed microbiota and chicken caecum microbiota fed conventional or sterile feed. Table S3.
Real-time PCR quantification of 7 strains from phylum Firmicutes used for spraying of eggs on day 1
and/or day 20 of embryonic development.
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