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In‑depth transcriptomic analysis 
of human retina reveals molecular 
mechanisms underlying diabetic 
retinopathy
Kolja Becker1, Holger Klein1, Eric Simon1, Coralie Viollet1, Christian Haslinger2, 
German Leparc3, Christian Schultheis3, Victor Chong4, Markus H. Kuehn5,6, 
Francesc Fernandez‑Albert1* & Remko A. Bakker7*

Diabetic Retinopathy (DR) is among the major global causes for vision loss. With the rise in diabetes 
prevalence, an increase in DR incidence is expected. Current understanding of both the molecular 
etiology and pathways involved in the initiation and progression of DR is limited. Via RNA-
Sequencing, we analyzed mRNA and miRNA expression profiles of 80 human post-mortem retinal 
samples from 43 patients diagnosed with various stages of DR. We found differentially expressed 
transcripts to be predominantly associated with late stage DR and pathways such as hippo and gap 
junction signaling. A multivariate regression model identified transcripts with progressive changes 
throughout disease stages, which in turn displayed significant overlap with sphingolipid and cGMP–
PKG signaling. Combined analysis of miRNA and mRNA expression further uncovered disease-relevant 
miRNA/mRNA associations as potential mechanisms of post-transcriptional regulation. Finally, 
integrating human retinal single cell RNA-Sequencing data revealed a continuous loss of retinal 
ganglion cells, and Müller cell mediated changes in histidine and β-alanine signaling. While previously 
considered primarily a vascular disease, attention in DR has shifted to additional mechanisms and 
cell-types. Our findings offer an unprecedented and unbiased insight into molecular pathways and 
cell-specific changes in the development of DR, and provide potential avenues for future therapeutic 
intervention.

Diabetic retinopathy (DR) is a complication of diabetes that results in a progressive loss of visual acuity and is 
a major cause for blindness in diabetics aged 20 and older1. Duration of diabetes is the primary risk factor for 
DR, which includes prolonged exposure to chronic retinal hyperglycemia, hypertension, and hypoxia. Studies 
suggest three out of four diabetics develop DR within the first 20 years of disease2. Early stages of DR often go 
unnoticed until either diabetic eye-screening is performed, or the patient experiences changes in visual function 
and seeks medical attention. Some patients may even be unaware of their underlying diabetic condition until 
diagnosed with DR.

The Diabetic Retinopathy Severity Score (DRSS)—based on data from the Early Treatment Diabetic Retin-
opathy Study3 (ETDRS)—allows for grading of DR severity, including differentiation between non-proliferative 
DR (NPDR) and proliferative DR (PDR). Diabetic macular edema (DME) may occur concomitantly to any stage 
of DR, and negatively affects a patient’s visual acuity (Fig. 1a).

Depending on disease severity, the current standard of care for DR is laser photocoagulation together with 
continued diabetes management and eye screening4. Recently, intra-vitreal injection of Vascular Endothelial 
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Growth Factor (VEGF) neutralizing agents was established as a novel treatment for DR, DME, and other retinal 
diseases. An alternative treatment is provided by intravitreally administered corticosteroids. All current treatment 
options, however, exhibit significant shortcomings including unsatisfactory efficacy5, and high treatment burden, 
which emphasizes the need to investigate novel targeting options and provide alternative treatment avenues. In 
turn, a deeper, molecular understanding of the pathophysiological onset and progression of DR is necessary to 
foster the development of alternative therapeutic strategies.

Several transcriptomic studies analyzing retinae of animal models in the context of DR have been carried out, 
including Streptozotocin (STZ) induced diabetic rodents models6–8, and models of oxygen-induced retinopathy 
(OIR)9,10. Another focus has been the measurement of small non-coding RNA in blood of DR patients11–15. With 
the advent of single-cell RNA-Sequencing (RNA-Seq) technology, retinal gene expression has now also been 
resolved on a cellular level16–19. However, no disease-specific dataset exists for retinae with DR. Ishikawa et al. 
provided a small bulk RNA-Seq dataset of fibrovascular membranes (FVM) of patients with PDR, which were 
comprehensively analyzed20–22. Due to the invasive nature of collecting retinal tissue, obtaining well-character-
ized, treatment naïve samples from patients remains challenging. While in the case of age-related macular degen-
eration, transcriptomic analysis of human retina has led to important progress in the molecular understanding 

Figure 1.   Gene expression differences between sample sites: (a) Schematic of disease progression in DR 
(NPDR: Non-Proliferative Diabetic Retinopathy, PDR: Proliferative Diabetic Retinopathy, DME: Diabetic 
Macular Edema). From left to right the Diabetic Retinopathy Severity Score (DRSS) increases. (b) Principal 
component analysis (PCA) scores of combined and processed mRNA and miRNA expression values for all 
samples. (c) PCA scores of macula samples only. (d) PCA scores of periphery samples only. In all cases, PCA 
was applied to the top 100 most variable features in each sample group (all, macula, periphery). Cumulative R2-
values for two principal components are shown in the upper right corner.
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of disease etiology23,24, comparable data for patients with DR does not exist. Hence, detailed insight into the 
molecular mechanisms relevant for DR in humans remains incomplete.

Here we performed RNA-Seq analysis on a large number of human post-mortem retinal samples from patients 
diagnosed with different stages of DR: NPDR only, NPDR and DME, or PDR and DME. To ensure observed 
gene expression changes were associated with disease and not specific treatments, retinal samples, together 
with extensive clinical records, were obtained from individuals that had not received anti-VEGF or laser pho-
tocoagulation therapy. We further included diabetics found to be free of DR on their last examination, while 
age-matched healthy subjects served as control group. In addition to differential gene expression analysis, we 
identified coordinated expression changes associated with disease progression using a multivariate statistical 
model. While simultaneous measurement of mRNA and miRNA enabled us to investigate disease relevant 
miRNA/mRNA interactions, the integration of human retinal single cell RNA expression data further resolved 
cell specific RNA expression changes.

Results
Gene expression differs between macula and retinal periphery.  We obtained human retina sam-
ples from two distinct retinal sample sites (macula, periphery) within a maximum time window for sample 
collection and preparation of 6 h post-mortem (Supplementary Tables S1 and S2). Extensive clinical records, 
together with the ophthalmologist’s grading of patient eyes according to the simplified DRSS classification, 
served as the basis to assign donors to one of three main disease groups: Diabetics without diagnosis of DR, 
patients diagnosed with NPDR but without DME, patients diagnosed with NPDR or PDR and DME (Fig. 1a; 
Table 1). Retinae from age-matched healthy donors were included as control. Each of the four patient groups 
(Healthy control, Diabetic, NPDR without DME, NPDR/PDR + DME) included 10 samples from the two differ-
ent sample sites, for a total of 80 retina-derived samples. For additional donor and sample level characteristics 
please refer to Supplementary Figure S1.

Total RNA-Seq resulted in approximately 69 million average reads per sample, with 92% uniquely mapped 
reads (Supplementary Figure S2a). Sequencing of small RNA produced on average 24.7 million reads with a 
unique mapping rate of 55% (Supplementary Figure S2b). Four samples were removed across both sequencing 
datasets: One due to failure to pass primary sequencing metrics QC and three additional samples as they showed 
increased sample correlation (Pearson correlation > 0.98, Supplementary Figure S2c), and originated from the 
same donor but different eyes. After gene filtering, we assigned 15,073 expressed mRNA and 256 miRNA for 
further analysis (Supplementary Figure S2d,e). Principal component analysis (PCA) showed a pronounced 
technical confounder effect on the level of mRNA, which we removed using surrogate variable analysis (See 
Methods and Supplementary Figure S2f,g). In addition, we corrected both miRNA as well as mRNA for age-
related expression biases.

PCA of the processed and combined miRNA and mRNA expression revealed a clear separation of samples 
between macula and periphery (Fig. 1b), indicating the largest difference in gene expression between these retinal 
regions irrespective of disease status. Repeating the PCA analysis for each sample site separately, PDR + DME 
samples in both macula and periphery appear more distinct compared to samples from the remaining disease 
groups (Fig. 1c,d). However, also sample site specific PCA showed no further separation of remaining disease 
groups in the first two principal components.

Differential gene expression changes are limited to late DR stages.  We checked for significant 
expression changes (BH adjusted p value < 0.05) between the different disease groups and healthy control. While 
our analyses did not identify significant retinal expression changes in either age-matched diabetics without DR or 
patients with NPDR but without DME (Fig. 2a, Supplementary Figure S3a), we observed a number of significant 
expression changes in peripheral retinal samples from NPDR patients diagnosed with DME (NPDR + DME). 
Grouping NPDR and PDR samples with occurrence of DME (NPDR/PDR + DME), we detected 534 and 937 
differentially expressed (DE) transcripts in macula and periphery samples respectively. However, the magnitude 
of these expression changes was low, with relative changes in many genes below 50%.

Comparing significant expression changes in the NPDR/PDR + DME groups, we found them to be mostly 
sample site specific: Out of all 1305 identified transcripts (1269 mRNA and 36 miRNA), only 166 overlapped 

Table 1.   Overview table of collected post-mortem human retina samples: the study contains four main 
sample groups (healthy control, diabetics without diagnosis of DR, NPDR, and PDR). In addition, donors 
are subdivided according to the occurrence of DME. Samples were taken from both retinal macula and 
retinal periphery. Throughout the manuscript NPDR/PDR + DME denotes the group of all donors with DME 
diagnosis.

Disease group

Macula Periphery

DME DME

No Yes No Yes

PDR 0 3 0 2

NPDR 10 7 10 8

Diabetic 10 0 10 0

Healthy 10 0 10 0
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between both sample sites (Fig. 2b). On the other hand, inspecting relative expression changes among all tran-
scripts, we could observe that fold changes in the NPDR/PDR + DME group aligned between macula and retinal 
periphery (Supplementary Figure S3b,c). Accordingly, we did not identify any inverse changes in gene expression, 
i.e. RNA showing different directions of expression change between the two sample sites in any of the defined 
disease groups (Pearson correlation coefficients macula vs periphery: 0.58–0.65). Inspecting expression patterns 
of differentially expressed transcripts throughout subsequent disease progression stages, we further observed 
that many significant changes in late disease stages were accompanied by non-significant changes in previous 
disease stages (Supplementary Figure S3c,d).

Among the genes with strongest significant expression changes, we found ADAMTS4 (ADAM Metallopepti-
dase With Thrombospondin Type 1 Motif 4), CCND1 (Cyclin D1), FZD7 (Frizzled Class Receptor 7), and RGS5 
(Regulator Of G Protein Signaling 5) (Fig. 2c). Although increase of VEGFA (Vascular Endothelial Growth 
Factor A) expression is considered central to DR, neither VEGFA nor VEGFB appeared to be upregulated in 
disease progression (Fig. 2d).

Multivariate modeling identifies disease progression associated expression changes.  The lack 
of significant RNA expression changes in early disease stages relative to healthy samples motivated us to search 
for progressive changes throughout consecutive disease stages. With this aim in mind, we applied sparse partial 
least squares (SPLS) regression models25 for each macula and periphery samples to identify mRNA and miRNA 
that are predictive for the subsequent disease stages (Healthy, Diabetic, NPDR, NPDR + DME; Supplementary 
Figure S4a). We further permitted additional flexibility in the regression models, in the sense that we did not 

Figure 2.   Significant changes in late stage disease progression: (a) Barplot with number of significant 
changes in RNA expression between disease groups and healthy control (BH adjusted p value < 0.05). Gene 
expression changes with fold-change below 50% are transparent. Up- and down-regulation are shown in red 
and blue respectively. (b) Venn diagram showing the overlap between macula and periphery of differentially 
expressed transcripts identified in the NPDR/PDR + DME group. (c) Log2 CPM expression values (black 
dots) of significantly changing genes identified from NPDR/PDR + DME samples with strongest mean fold-
change between macula and periphery. Black line denotes median log2 CPM. Boxplot lower and upper hinges 
correspond to the first and third quartiles respectively. Whiskers extend to the largest expression value no 
further than 1.5 interquartile range from the hinge. Outliers are shown in transparent gray. (d) Log2 CPM values 
(black dots) of VEGFA and VEGFB expression throughout subsequent disease groups. Boxplot specifications 
correspond to those given in the previous plot.
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specify the relative order or distance between disease groups, but only start- (Healthy control) and end-point 
(NPDR + DME) of disease progression.

As a result of fitting the model to the expression data, we accurately captured the assumption that the NPDR 
samples are more severe in terms of disease pathology compared to diabetic samples (Fig. 3a—middle panel). 
The fitted models further identified 1322 macula and 285 periphery transcripts displaying progressive changes 
according to consecutive disease stages (Fig. 3a—lower panel), herein referred to as “disease progression” (DP) 
mRNA or miRNA. Combining DP transcripts from both sample sites (union), we obtained 1502 genes, indicating 
that 105 appeared in both macula and periphery (intersect, Fig. 3b). Although the overlap between transcripts 
identified from both sample sites was significant (4.27 fold-enrichment, hypergeometric test, BH adjusted p 
value = 3.7e−41), at the same time a substantial fraction of DP transcripts was identified by one sample site 
only. This suggests once again that, while some commonalities exist, the cellular responses of the peripheral 
and macular retina to diabetic stress appear to be different to some extent. We further observed a significant 
overlap between identified DP and DE RNA (intersect: 351 macula, 126 periphery), likely due to the correlation 
between disease progression and occurrence of DME. Similar to significant expression changes in the NPDR/
PDR + DME groups, we did not observe inverse changes in expression of DP transcripts between macula and 
periphery (Supplementary Figure S4b).

DE and DP transcripts reveal separate sets of disease relevant pathways.  To gain insight into 
the molecular mechanisms involved in different stages of DR, we checked for pathways enriched for disease-
associated mRNA and miRNA. From this analysis we identified 31 pathways significantly associated (hyper-
geometric test, BH adjusted p value < 0.05) with at least one of the four sets of identified transcripts, either 
differentially expressed in NPDR/PDR + DME samples or identified as disease progression associated (Fig. 4a). 
Although significant changes in the NPDR/PDR + DME and disease progression groups partially overlapped, 
pathways associated with each group were not identical. Rather, each of the identified sets showed a distinct 
overlap with different pathways.

For instance, we found a significant enrichment between peripheral DP factors and the sphingolipid signal-
ing pathway. The enrichment analysis further showed a significant overlap between TGF-β signaling and DP 
transcripts identified from macula samples. Interestingly, cGMP-PKG signaling was significantly enriched for 
DP RNA of both macula and periphery, suggesting a role for this pathway in both retinal regions. Vasopressin-
regulated water reabsorption seemed to be particularly important for the retinal macula, as it showed significant 
overlap to both DP and DE transcripts identified from these samples.

Three pathways showed a significant enrichment for DE miRNA and mRNA for both macula and periphery: 
Phagosome, gap junction, and hippo signaling pathway. This observation points to relevance of these path-
ways particularly in late disease stages. The pathway observed with strongest overall enrichment was oxidative 

Figure 3.   Identification of disease progression genes: (a) Convergence properties of sparse partial least squares 
regression model to identify disease progression (DP) transcripts: Minimum Root Mean Squared Prediction 
Error (RMSE) of the regression model after each function iteration for macula and periphery (upper panel). 
Value of dDiabetic and dNPDR model hyperparameters for the best model fit at each function iteration (middle 
panel) for macula and periphery samples. Number of selected transcripts (n) for the best model fit at each 
function iteration (lower panel). (b) Comparison of identified DP RNA with RNA identified from differential 
gene expression analysis (upper panel) and corresponding two-set intersects (lower right panel). Values in the 
lower right panel denote BH adjusted p values (hypergeometric test).
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phosphorylation, which was significantly enriched for DE genes in the periphery (24 genes, 4.2 fold-enrichment, 
hypergeometric test, BH adjusted p value = 1.15e−07).

To elucidate the effect of disease on the identified pathways, we further investigated the direction of expres-
sion changes for each affected pathway (Fig. 4a—middle and right panel). The hippo signaling pathway included 
both significantly up- and down-regulated transcripts. Similarly, gap junction signaling exhibited regulation in 
both directions: Components of the tubulin complex were consistently downregulated, while for example the 
genes PDGFB (Platelet-derived growth factor subunit B) and ADCY6 (Adenylyl cyclase type 6) were observed 
to be upregulated.

As mentioned above, we did not detect any significantly differentially expressed transcripts in early disease 
stages. In order to identify pathways relevant for early disease progression, we therefore tested which pathways 
displayed a significant difference in their fold-change distribution compared to background (GAGE analysis, BH 
corrected p value < 0.05; Table 2). Remarkably, we found specific pathways consistently affected throughout early 
as well as late disease stages. The neuroactive ligand–receptor interaction pathway showed significant difference 
in fold-change distribution in the group of diabetic patients, but also in NDPR as well as NPDR/PDR + DME 
groups (Fig. 4b). In particular, GCGR (Glucagon Receptor) displayed high positive fold-changes persisting 
throughout the different disease stages. On the other hand, complement and coagulation cascades showed a 
significant alteration of its fold-change distribution only during late stages of DR (NPDR/PDR + DME samples) 
potentially suggesting an important role for fibrosis in late DR.

Combined analysis of miRNA and mRNA expression data highlights the role of miRNA in 
DR.  The measurement of both miRNA and mRNA in human retinal samples provided us with the unique 
opportunity to investigate potential disease relevant miRNA/mRNA interactions. Within all identified disease-
associated transcripts (union of DE and DP transcripts from both sample sites, 2315 transcripts), we found 75 
miRNA (Fig. 5a). The relative fraction of miRNA in identified disease-associated transcripts was largest in the 
set of DP RNA identified from periphery samples. Four out of 75 identified disease-associated miRNA showed 
progressive expression changes as well as differential expression in the NPDR/PDR + DME group in both macula 
and periphery samples (Fig. 5b).

Figure 4.   Molecular pathways associated with different disease stages of DR: (a) Barplot showing BH-adjusted 
p values of KEGG 2016 pathway enrichment analysis for each the four identified groups of disease-associated 
transcripts (left panel, Oxidative phosphorylation BH adjusted p value = 1.15e−07). Only pathways with 
BH-adjusted p value < 0.05 are shown. Middle and right panel indicate the direction of change in NPDR/
PDR + DME samples vs healthy control for each of the significantly changing transcripts included in a given 
pathway (Middle panel: Macula; Right panel: Periphery). (b) Distribution of fold-changes for each sample 
group vs healthy controls for transcripts associated with the Neuroactive ligand–receptor interaction pathway. 
Black dots indicate fold-changes of individual genes in the Neuroactive ligand–receptor interaction pathway. 
As example, we specifically plot Glucagon Receptor (GCGR). The background distribution shows fold-changes 
[log2] of all transcripts not included in the pathway.
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Apart from significant or progressive expression changes, an enrichment of miRNA target genes within 
the sets of disease-associated mRNA may further strengthen the evidence for disease relevance of miRNA. 
Accordingly, we were able to identify 21 miRNA out of all expressed miRNA with significant enrichment (hyper-
geometric test, BH adjusted p value < 0.05) of their putative target genes among the different sets of identified 
disease-associated genes (Fig. 5c—middle panel). miRNA miR-96-5p showed enrichment of its target genes in 
both DE as well as DP genes of the macula, while for target genes of all other identified miRNA we only observed 
enrichment in one group of disease-associated genes. Interestingly, eight out of the 21 miRNA with significant 
enrichment of target genes were themselves either differentially expressed in late DR or showed progressive 
change in one of the sample sites (Fig. 5c—left panel). In periphery samples, miR-628-3p showed progressive 
expression changes as well as differential gene expression in the NPDR/PDR + DME group. In addition, target 
genes of the same miRNA showed a significant overlap with differentially expressed genes of the same sample 
site. In contrast, miR-30a-5p was identified in all four defined sets of disease-associated genes, while its targets 
only showed significant enrichment in differentially expressed genes of the macula.

Due to the inhibitory relationship of miRNA–mRNA interactions, often a negative correlation between 
miRNA and their targets is assumed. We therefore checked for a negative skew in correlation values between 
miRNA and their putative targets (Supplementary Figure S5a). Accordingly, we identified 10 miRNA with a 
significant negative shift (Kolmogorov–Smirnov-Test, one-sided, BH adjusted p value < 0.05) in the distribution 
of correlation values in either macula or periphery (Fig. 5c—right panel, Fig. 5d), which also showed an enrich-
ment of their putative targets among the groups of disease-associated genes.

Taken together, five miRNA (miR-148b-3p, miR17-5p, miR224-5p, miR30a-3p, and miR30a-5p) were identi-
fied as disease-associated miRNA, displayed enrichment of their putative targets in disease-associated genes, 
and showed a significant negative shift in correlation with their target genes.

Integration of retinal single cell RNA‑Seq data provides evidence for loss of RGCs in early 
DR.  Although informative, the analysis of expression changes from bulk tissue samples on its own does not 
resolve cell type associated changes in the progression of DR. However, recently a number of single cell RNA-
Seq (scRNA-Seq) studies of the human retina have been published16–19, providing the opportunity to investigate 
cell specific expression of disease related genes. Comparing cell specific marker genes for the different cell types 
identified from the Voigt et al. 2019 retina scRNA-Seq data (Supplementary Figure S6a), we observed that disease 
related genes (DE and DP from both sample sites) were significantly overrepresented in marker genes related 
to Retinal Ganglion Cells (RGCs) (hypergeometric test, BH-adjusted p value: 1.03e−4; Fig. 6a—upper panel). 
Virtually all of these 60 genes displayed a decrease in expression levels in late disease stages (Fig. 6a—middle and 
lower panel, Supplementary Figure S6b), hinting at a general loss of RGCs during disease progression.

Investigating this further, we estimated the relative fractions of each retinal cell type present in bulk RNA-Seq 
samples using the deconvolution method MuSiC26. In accordance with the general decrease in RGC marker genes, 
the deconvolution approach predicted a continuous decrease in the relative abundance of the RGCs throughout 
the different stages of disease progression (Fig. 6c).

While downregulation of most RGC specific marker genes could be attributed to a loss of RGCs in disease 
progression, marker genes specific to the other retinal cell types showed both up- and down-regulation of 
disease-associated genes in NPDR/PDR + DME samples. For example, although a loss of Müller cells in diabetic 
retinopathy has been proposed27, the observation of positive gene expression changes in genes specific to this 
cell type suggests that a general loss of this cell type is less likely. We followed up on the role of cell type specific 
disease-associated genes in the different cell types again using pathway enrichment analysis (Fig. 6c). Specifically 

Table 2.   Fold-change based pathway enrichment analysis: table shows results of the fold-change based 
pathway enrichment analysis conducted by GAGE. Group refers to the sample group for which fold-changes 
compared to healthy control samples were calculated. Set Size denotes the number of transcripts common in 
the 15,371 expressed transcripts in this study and the indicated KEGG set.

Pathway Group Tissue Set size BH adjusted p value

cAMP signaling pathway NPDR/PDR + DME Macula 145 0.015

Complement and coagulation cascades NPDR/PDR + DME Macula 32 0.000

Complement and coagulation cascades NPDR/PDR + DME Periphery 32 0.018

Cytokine–cytokine receptor interaction Diabetic Periphery 83 0.017

Cytokine–cytokine receptor interaction NPDR/PDR + DME Macula 83 0.035

ECM–receptor interaction Diabetic Macula 58 0.008

Hematopoietic cell lineage Diabetic Macula 24 0.021

Neuroactive ligand–receptor interaction Diabetic Macula 120 0.008

Neuroactive ligand–receptor interaction Diabetic Periphery 120 0.001

Neuroactive ligand–receptor interaction NPDR Macula 120 0.042

Neuroactive ligand–receptor interaction NPDR Periphery 120 0.001

Neuroactive ligand–receptor interaction NPDR/PDR + DME Macula 120 0.005

Protein digestion and absorption NPDR/PDR + DME Macula 47 0.010
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in Müller cells, our results pointed to a functional role of this cell type in processes related to histidine and 
β-alanin metabolism. Endothelial cells are central to disease pathology of DR, as they mediate vascular function 
and regulate the retinal environment. Disease-associated genes specific to this cell type showed a significant 
enrichment with genes related to cell adhesion molecules and leukocyte transendothelial migration.

Discussion
RNA sequencing presents a valuable method to gain a detailed and unbiased understanding of the transcriptomic 
basis of human disease. However, high quality samples of human origin are difficult to obtain. While Ishikawa 
et al. report the microarray analysis of six FVMs20, the magnitude of this dataset remains limited. In addition, 
FVMs display pathologic vascular and fibrotic tissue, only present in patients with PDR. Additional currently 
available transcriptomic studies in the context of DR are restricted to animal models, such as STZ rat or OIR 
mouse. To fill this gap in the human data landscape of retinal pathologies, we collected an extensive and unique 
RNA-Seq dataset of post-mortem retinal samples from patients with DR.

Figure 5.   Integrated analysis of miRNA and mRNA expression: (a) Number of miRNA in all identified disease-
associated transcripts (upper panel, gray bar) or in each group of identified disease-associated transcripts. Lower 
panel shows relative enrichment (observed vs expected) of miRNA in each of the defined disease-associated 
groups. White labels correspond to BH-corrected p values of a hypergeometric test. (b) Log2 CPM expression 
of miRNA identified in all four groups of disease-associated transcripts (black dots). Black line denotes median 
log2 CPM. Boxplot lower and upper hinges correspond to the first and third quartiles respectively. Whiskers 
extend to the largest expression value no further than 1.5 interquartile range from the hinge. Outliers are shown 
in transparent gray. (c) Barplot of BH-adjusted p values [− log10] of miRNA target enrichment analysis for each 
of the four identified groups of disease-associated genes (left panel). Only miRNA with significant enrichment 
of their target genes in any of the four defined groups of disease-associated mRNA are shown. Dashed line 
indicates the level of significance chosen (BH-adjusted p value < 0.05). Right panel shows BH-adjusted p values 
[− log10] of a Kolmogorov–Smirnov test for negative skew in correlation between miRNA and target mRNA 
expression (Orange: Macula samples, Blue: Periphery samples). (d) Distribution of Spearman correlation values 
between miR-30a-5p and its putative target genes in either macula (upper panel) or periphery samples (right 
panel). Dashed line corresponds to background distribution of 100.000 correlations between non-associated 
miRNA/mRNA pairs. Middle panel represents the scatter plot for individual Spearman correlation values 
between miR-30a-5p and its targets.
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In addition to the limited availability of suitable human retinal samples, observed heterogeneity in disease 
etiology28, as well as genetic and environmental variation in the donor population, further complicate the analysis 
of transcriptome studies. Using differential expression analysis, we were able to meaningfully characterize disease 
mechanisms in particular associated with late stage DR. To simultaneously access information from all collected 
retinal samples, we complemented this analysis by applying a multivariate regression model. In contrast to dif-
ferential gene expression analysis, such a model can capture coherently changing sets of genes with potentially 
low-fold changes, instead of isolated changes in individual disease groups. Interestingly, although our model 
formulation did not impose a fixed sequence of disease stages, the model correctly predicted their relative order 
based only on the available gene expression data. We hypothesize that genes identified by the regression model 
contain causal mechanisms contributing to disease progression and may provide useful biomarkers for its onset.

Although molecular studies and current treatments have shown that VEGFA is central to the etiology of 
DR29–32, VEGFA was neither differentially expressed nor did it show progressive expression changes in our 
analysis. One explanation for this observation could be restricted VEGFA upregulation to local (capillary) focal 
points or cell-types with limited retinal abundance. While also post-transcriptional regulation of VEGFA may 

Figure 6.   Cell specific expression of disease-associated RNA: (a) Enrichment of disease-associated genes with 
cell type specific genes identified from single cell RNASeq data. Barplots indicate the number of cell type specific 
marker genes identified for each cell type (upper panel). Non-transparent area of bars show the overlap of 
disease-associated genes (union of DE and DP genes from macula and periphery) with cell type specific marker 
genes. Middle and lower panel correspond to the direction of expression changes in NPDR/PDR + DME samples 
vs healthy controls of disease-associated genes (Middle panel: Macula; Lower panel: Periphery). (b) Estimation 
of cell type abundances from bulk retinal samples using deconvolution. Black dots show predicted fraction 
of different cell types in each of the bulk retinal samples. Black line indicates the median fraction of different 
cell types in each disease group. Boxplot lower and upper hinges correspond to the first and third quartiles 
respectively. Whiskers extend to the largest cell type fraction no further than 1.5 interquartile range from the 
hinge. Outliers are shown in transparent gray. (c) Enrichment of cell type specific disease-associated genes 
with molecular pathways. Plot shows significant (Hypergeometric test, BH-adjusted p value < 0.01) associations 
between cell type specific disease-associated genes and KEGG 2016 pathways. Color indicates BH-adjusted p 
values [− log10].
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be considered, additional mechanisms or pro-angiogenic factors other than VEGFA are likely to be involved in 
the onset and progression of DR.

Here PDGFB, the inhibition of which is considered a potential therapeutic approach for ocular neovasculari-
zation, displayed significant upregulation in late stage DR, and multiple clinical trials investigating the effect of 
PDGF antagonists have been pursued33,34. PGF (Placental Growth Factor), a known VEGF homologue and sec-
ondary target of anti-VEGF treatment, did not show significant change in any of the disease groups, but instead 
displayed progressive changes throughout the different disease stages in macula samples, highlighting the value 
of the multivariate regression model to identify subtle but important gene expression changes.

In addition to alternative vascular mechanisms, post-transcriptional regulation of VEGF activity may be 
important. For instance, anti-angiogenic properties have been reported for ADAMTS4 through the inhibition 
of VEGF dependent VEGFR (VEGF-Receptor) phosphorylation in human dermal microvascular endothelial 
cells35, suggesting a potentially increased responsiveness to VEGF under conditions of low ADAMTS4 expres-
sion. In our data, ADAMTS4 showed progressive expression changes in addition to significant down-regulation 
in both sample sites, and presented one of the strongest changes in diabetic samples.

While previously mainly considered a vascular disease, attention in DR has recently shifted to additional 
mechanisms and cell-types. In alignment with this new understanding, we identified a number of genes asso-
ciated with potential alternative pathological processes. Prominent early changes were for example noted for 
CRYAA2 (Crystallin Alpha A2) and GCGR, both involved in metabolic processes. CRYAA2 has been described 
as a retinal response mechanism against environmental and metabolic stress, and is potentially involved in 
protection against loss of RGCs36, while GCGR is known for its connection to various diabetic complications37.

Moving away from singular expression changes, enrichment analysis suggested a number of functional path-
ways involved in DR. Three pathways showed significant overlap with differentially expressed genes in late 
DR in both macula and periphery: Phagosome, gap junction, and hippo signaling pathway. Notably, all three 
pathways have previously been discussed in context of DR38–42. On the other hand, we observed an enrichment 
of disease progression transcripts from both macula and periphery with cGMP-PKG signaling, which is known 
to be affected by retinal hypoxia43. Further examples of identified pathways previously studied in the context of 
DR include sonic hedgehog signaling44, sphingolipid signaling pathway45,46, and oxidative stress47, adding to the 
good agreement between our findings and those reported in the experimental literature.

Important for therapeutic intervention, but also to assess disease risk, are accessible biomarkers, such as 
miRNA present in the blood of diabetic or DR patients48. A study investigating circulating vesicles in DR pointed 
to a number of differentially expressed miRNA, including a significant decrease of miR-150-5p14. A progressive 
downregulation of miR-150-5p in both retinal regions with advancing disease stages was also visible in our data. 
Based on blood samples from type 1 diabetics diagnosed with NPDR, a recent study has linked miRNA miR-
27b-3p and miR-320a to progression of DR49. Although miR-320a showed no significant expression change in 
the transcriptomic data, we confirmed disease progression associated expression of miR-27b-3p in the macula. 
Liang et al. identified 10 miRNA significantly different in blood of type 2 diabetic patients with DR compared 
to diabetic patients without DR, including miR-148a-3p and let-7a-5p13. They continued to show that overex-
pression of let-7a-5p significantly increased the proliferation of human retinal microvascular endothelial cells. 
Both miR-148a-3p, as well as let-7a-5p showed significant upregulation and progressive expression in patient 
retina analyzed here.

From a treatment perspective, miRNA present an interesting therapeutic intervention strategy as they typi-
cally influence the expression of multiple genes, are easy to synthesize, and show limited toxicity. For example, 
miR-329 was shown to exhibit anti-angiogenic properties by suppressing expression of CD146, an adhesion 
molecule that acts as a co-receptor for VEGFR250. Consequently, treatment of mouse models of pathological 
angiogenesis with miR-329 significantly reduced retinal neovascularization. Accordingly, we detected a progres-
sive down-regulation of miR-329 in subsequent disease stages also in human samples. While expression changes 
between studies of peripheral blood and retina match for specific miRNA, this was certainly not the case for all 
miRNA. In the future, longitudinal studies should assess the potential of identified miRNA to stratify diabetic 
patients with high-risk of developing DR.

By investigating cell-specificity of DR associated genes in retinal scRNA-Seq data from healthy donors, a 
recent study showed expression of known DR genes mainly present in RGCs51. Here we show that this observa-
tion is likely caused by continuous down-regulation of RGC-specific genes in the progression of DR, hinting at a 
general loss of this cell type. In our analysis, partial loss of RGCs was already visible in diabetic patients without 
diagnosis of DR. This agrees with optical coherence tomography studies, which displayed RGC damage already at 
this somewhat pre-pathological stage of DR52. In addition to a general reduction of entire cell types, we observed 
more gradual pathway and cell specific alterations in disease progression, namely Müller cell mediated changes 
in β-alanine and histidine signaling, and expression changes in cell adhesion molecules in endothelial cells.

Collection of high quality retinal samples from diseased patients remains a challenging task. While the human 
retinal transcriptome data and its analysis presented in this study confirm many known aspects of DR pathology, 
and provide novel insights into the molecular and cellular basis of DR, we believe additional patient samples and 
metadata could prove useful. In particular, retinal samples from donors with late stage DR may help to separate 
the overlapping effects of PDR and DME and add statistical power to the presented computational analysis. Pro-
spective longitudinal collection of patient data, such as OCT images, and blood samples, may further improve 
DRSS grading and aid the identification of biomarkers reflecting disease outcome. While in the past, studies 
have focused on the impact of DR on the neural retina, large-scale transcriptomic studies on the retinal pigment 
epithelium are currently still missing. In the context of disease progression markers, but also in the light of the 
missing VEGF RNA-regulation observed in our study, measurement of additional large-scale data modalities 
such as proteomics and metabolomics should be considered. Here we believe that integrative machine learning 
efforts will be indispensable in order to manage the growing data complexity.
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We believe that the presented transcriptome analysis of human retinae strengthens the current data landscape 
of vision-threatening eye diseases, serves to improve our understanding of the molecular basis of disease etiol-
ogy, and offers potential strategies for future investigations into improved treatments of DR and DME. In the 
future, a detailed comparison between disease models and observed human expression changes in DR may help 
to evaluate the ability of animal models to reflect human disease, and hereby judge their utility in investigating 
therapeutic strategies in a pre-clinical setting.

Methods
Sample collection and RNA isolation.  Post-mortem human eyes from 43 donors were obtained through 
the Iowa Lions Eye Bank (Coralville, IA) after written informed consent of the next-of-kin was obtained and pre-
served within 6 h post-mortem. Upon donor selection, we did not include donors with a known history of HIV, 
Hepatitis B or C, or those placed under hospital isolation precautions. Further, eyes from donors suffering from 
neurodegenerative diseases of unknown etiology were excluded. Donors were categorized into one of four dis-
ease groups: (a) diabetic donors with no apparent visual impairment or visible pathology of the retina at last eye 
exam, (b) donors diagnosed with non-proliferative diabetic retinopathy (NPDR) but without diabetic macular 
edema (DME), (c) patients diagnosed with NPDR with additional indication of DME, or (d) donors diagnosed 
with proliferative diabetic retinopathy (PDR) and DME. The diagnosis was based on the early treatment dia-
betic retinopathy study Diabetic Retinopathy Severity Score (ETDRS-DRSS). Additional retinal samples were 
taken from healthy donors to serve as the control group. The study was designed such that donors of all groups 
approximately matched in age and gender distribution. Note that none of the donors received treatment for 
their retinal indication. Potential independent treatments are listed in Supplementary Table S1. The study design 
was reviewed by the University of Iowa Institutional Review Board and found not to involve human subjects 
research.

From each donor group (healthy control, diabetic, NPPR, and NPDR/PDR + DME), 10 tissue samples were 
collected from the macula region as well as the retinal periphery. All tissue samples were taken with a 6 mm 
biopsy punch, snap frozen in liquid nitrogen, and preserved at − 80 °C until use. Both miRNA and total RNA was 
extracted using miRNeasy kits (Qiagen) after homogenization of the retina with Qiashredders (Qiagen). RNA 
was eluted into 30 μL of dH2O. RNA was quantitatively and qualitatively assessed using the fluorescence-based 
Broad Range Quant-iT RNA Assay Kit (ThermoFisher), and the Standard Sensitivity RNA Analysis DNF-471 
Kit on a 48-channel Fragment Analyzer (Agilent), respectively. Concentrations averaged at 100 ng/µL while 
RIN ranged from 4 to 9.

Transcriptome profiling with total RNA sequencing.  Retina-derived RNA samples were normalized 
on the MicroLab STAR automated liquid platform (Hamilton). Total RNA input of 240 ng was used for library 
construction with the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina #E7760, together with 
the NEBNext rRNA depletion Kit #E6310 upstream and the NEXNext Multiplex Oligos for Illumina #E7600 
downstream (all New England Biolabs). The only deviation from the manufacturer’s protocol was the use of 
Ampure XP beads (Beckman Coulter) at the double-stranded cDNA purification step, instead of the recom-
mended SPRIselect Beads. Final sequencing libraries were quantified by the fluorescence dye-based method-
ology High Sensitivity dsDNA Quanti-iT Assay Kit (ThermoFisher) on a Synergy HTX (BioTek). Total RNA 
libraries were also assessed for size distribution and adapter dimer presence by the High Sensitivity NGS Frag-
ment DNF-474 Kit on a 48-channel Fragment Analyzer (Agilent). Sequencing libraries were normalized on the 
MicroLab STAR (Hamilton), pooled as two 40-plex pools and spiked in with PhiX Control v3 (Illumina). The 
two individual pools were then separately clustered on a cBot instrument with a HiSeq 3000/4000 PE Cluster 
Kit and subsequently sequenced on a HiSeq 4000 Sequencer (all Illumina) with dual index, paired-ends reads at 
75 bp length (Read parameters: Rd1: 76, Rd2: 8, Rd3: 8, Rd4: 76) to reach a minimum depth of 50 million Pass-
filter reads per sample.

Library preparation and sequencing for small RNA.  RNA sequencing libraries were prepared using 
QIASeq miRNA Library Kit (Qiagen) according to the manufacturer’s instructions. In brief, 200 ng of RNA 
was used for the 3′ Adapter Ligation to the RNA followed by the 5′ Adapter Ligation. The tagged RNA library 
was translated into cDNA using reverse-transcription primer that contain integrated UMIs (Unique Molecular 
Indices), a universal sequence was also added in reverse transcription (RT) that is recognized by sample indexing 
primers during library amplification. RT was followed by a cDNA cleanup. During PCR amplification specific 
index PCR reverse primer were used and RT product was enriched to the final cDNA library. This was followed 
by a size selection purification via Magnetic beads. The library concentrations were quantified with the Quant-iT 
PicoGreen dsDNA Assay Kit (Quant-iTTM) using CLARIOstar (BMG LABTECH) and the library quality was 
determined by checking cDNA fragment size using a High Sensitivity DNA Kit on the Agilent Bioanalyzer 2100 
(Agilent). miRNA Libraries were normalized to 8 nM and subjected to cluster generation on a cBot system, fol-
lowed by sequencing on an Illumina HiSeq4000 instrument (Illumina).

Processing of mRNA reads.  Due to insufficient quality according to primary RNA-Seq quality control 
metrics, sample 45 (NPDR, macula) was removed for subsequent analysis. Sequencing reads from the RNA-
seq experiment were processed with a pipeline built upon the implementation of the ENCODE’ “Long RNA-
seq” pipeline: Filtered reads were mapped against the Homo sapiens (human) genome hg38/GRCh38 (primary 
assembly, excluding alternate contigs) using the STAR aligner software53 (STAR version 2.5.2b) allowing for soft 
clipping of adapter sequences. For quantification of transcript levels the annotation files from Ensembl version 
86 were used, which corresponds to GENCODE 25. Samples were quantified with the above annotations, using 
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RSEM54 (RSEM version 1.3.0) and featureCount55 (featureCount version 1.5.1). Quality controls were imple-
mented using FastQC56 (FastQC version 0.11.5), picardmetrics (picardmetrics version 0.2.4), and dupRadar57 
(dupRadar version 1.0.0) at the respective steps.

Normalized log2 Counts Per Million (CPM) mRNA expression values were calculated using the voom func-
tion provided by the limma R package58 (limma version 3.44.3). In total seven sample pairs qualified as technical 
replicates as they were collected from the same donor and sample site, but different eyes (see Table S1 for details). 
We removed three of these samples (samples 65, 75, 79), which showed high correlation between log2 expression 
values. mRNA were filtered by minimum read counts using the filterByExpr function of the edgeR package59 
(edgeR version 3.30.3) and. In addition, a Gaussian mixture model (mclust60 version 5.4.6) was applied, fitting 
two Gaussian distributions to mean CPM expression data. mRNA assigned to the cluster with higher mean were 
retained. The pcaMethods package61 (pcaMethods version 1.80.0) was used to calculate principal components of 
the mRNA (all features included), which we correlated with technical sample metrics derived from Star, fastQC, 
picardmetrics, or featureCounts. Surrogate variables describing the observed technical confounder effect were 
estimated using the sva R package62 (sva version 3.36.0). Finally, mRNA expression was corrected for donor age 
as well as the estimated surrogate variable. In more detail, we designed linear models with mRNA expression of 
each individual transcript as response, and donor age as well as the estimated surrogate variable as covariates 
(lm function, stats R package version 4.0.2). For each linear model, a t-test was performed on the covariate to 
assess its statistical significance. In case the p-value for a transcript was below 0.05, the expression values of that 
transcript were replaced by the residuals of the linear model plus the intercept of the model.

Processing of miRNA reads.  Sequenced read quality was checked with FastQC (FastQC version 0.11.5). 
Subsequently miRNA-sequencing read adapters were detected using minion and trimmed using reaper from the 
kraken package63 (kraken version 13–274). The trimmed reads were aligned using the STAR Aligner (version 
2.3.0e) on the miRBase 21 reference. In the following miRNA read counts were quantified using subread64 (ver-
sion 1.4.5-PR1).

As recent studies suggest active miRNA to require high expression levels65, the threshold for filtering 
expressed/active miRNA was set at voom normalized log2 CPM > 100 for any of the available samples. miRNA 
expression values were corrected for age using the same confounder correction method as described above. 
Identifiers of mature miRNA were mapped to their precursor using the miRBaseConverter package66 (miR-
BaseConverter version 1.12.0).

Identification of disease‑associated genes.  Quantified expression data (counts) and normalized 
expression values have been uploaded to the GEO database (Accession number: GSE160310). Principal Com-
ponent Analysis (PCA) of the merged miRNA and mRNA data was again carried out using the pcaMethods 
R package. Top 100 variable features (mRNA/miRNA) were used for dimensionality reduction. We used the 
lmFit function of the limma package to compare gene expression of defined disease groups (Diabetic, NPDR, 
NPDR + DME, PDR/NPDR + DME) to healthy controls and identify significantly changing transcripts (Benja-
mini–Hochberg (BH) corrected p value < 0.05). Log2 CPM expression values of differentially expressed tran-
scripts in the NPDR/PDR + DME group were clustered using the degPatterns function made available by the 
DEGreport package67 (DEGreport version 1.24.1).

We identified disease progression associated RNA using a modified Sparse Partial Least Squares (SPLS) regres-
sion model available in the spls R package25 (spls version 2.2.3, Supplementary Figure S4a). As before, we analyzed 
macula and periphery samples separately. In order to fit the regression model, we converted disease group labels 
into numeric values: The numeric value of healthy control samples was set to 0, while that of NPDR + DME sam-
ples was set to 3. As the number of PDR samples was too low (Macula: 3; Periphery: 2), these samples were not 
included in the regression analysis. Numeric values for the Diabetic group (dDiabetic) and NPDR group (dNPDR) 
were not set a priori, but included as additional hyperparameters of the model. Ranges for dDiabetic and dNPDR were 
set to 0.1 and 2.9. We further ranked features (miRNA/mRNA) according to their association with the numeric 
target vector using spearman correlation. The number of top ranked features included in the model (n) was not 
fixed, but added as an additional hyperparameter of the model. The minimum number of features was set to 
50, while the maximum number of features was 15,329. Native hyperparameters of the SPLS model include κ 
(concavity of the objective function), η (thresholding parameter), and K (number of hidden components). While 
κ was set to a fixed value of 0.5, the ranges for η and K were set to {0.1, 0.9} and {1, 12} respectively. All model 
parameters were estimated by minimizing the root mean squared prediction error resulting from a 5 × 20 cross-
validation implemented using the caret R package68 (caret version 6.0.84). Minimization was carried out using 
scatter search optimization implemented in the MEIGOR R package69 (MEIGOR version 1.18.0). As the objective 
function is dependent on integer valued parameter values and evaluation of the cost function is computationally 
expensive, we did not include a local solver in the optimization procedure. The maximum number of function 
evaluations was set to 1,000, while additional parameters remained at their default values.

Pathway enrichment analysis.  KEGG pathway enrichment analysis for disease-associated transcripts 
was performed using a hypergeometric test. We chose all 15,329 expressed transcripts identified from the reti-
nal samples to serve as background for the statistical test. KEGG 2016 gene sets with an overlap of less than 
10 transcripts with the background set were removed from our analysis. Further, all pathways from pathway 
categories “Human Diseases”, and “Drug Development” were excluded. Multiple testing was corrected using the 
Benjamini–Hochberg procedure (stats R package version 4.0.2).Please note that KEGG pathway gene sets are 
potentially subject to license restrictions (https://​www.​kegg.​jp/​kegg/​legal.​html). The authors of this manuscript 
have purchased an end-user license.

https://www.kegg.jp/kegg/legal.html
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Fold-change based pathway analysis was carried out using the gage R package70 (gage version 2.38.3) together 
with KEGG 2016 gene sets described above. Changes towards both directions were tested simultaneously (same.
dir = FALSE). The compare option of gage was set to ‘unpaired’. Maximum set size was set to 2,000. All other 
algorithm options remained at their default values.

Integrated mRNA/miRNA analysis.  Enrichment of miRNA in disease-associated transcripts was 
assessed using a hypergeometric test. As background the set of all 15,329 expressed transcripts was chosen. 
Fold-enrichment refers to the ratio of observed vs expected number of miRNA. Multiple testing correction was 
applied using the Benjamini–Hochberg procedure.

Known interactions between miRNA and target genes were collected using the miRTarBase database71 queried 
on 29.07.2019 (miRTarBase release 7.0). Only interactions between expressed miRNA or mRNA were included. 
Enrichment between known targets of differentially expressed miRNA and disease-associated mRNA from each 
of the four identified groups was calculated using a hypergeometric test. As background the set of all 15,071 
expressed mRNA was chosen. miRNA with less than 10 targets in the set of expressed mRNA were excluded from 
the analysis (249 miRNA included). Multiple testing correction was carried out using the Benjamini–Hochberg 
procedure.

Correlation analysis was performed using Spearman correlation (stats R package version 4.0.2). The distribu-
tion of correlation values between miRNA and their known targets was compared to the background distribution 
of correlations (100,000 samples) via a Kolmogorov–Smirnov test (stats R package version 4.0.2). miRNA with 
less than assigned 10 targets among expressed mRNA were excluded from this analysis (249 miRNA included). 
Multiple testing correction was performed using the Benjamini–Hochberg procedure.

Integration of human retinal single cell RNA sequencing data.  Normalized expression data of 
human retina single-cell expression published by Voigt et  al.16 was downloaded from the Gene Expression 
Omnibus database under the accession number GSE130636. Cell specific marker genes were identified using 
the Seurat R package72 (Seurat version 3.2.2). More specifically, we made use of the FindMarkers function pro-
vided by the Seurat package, choosing ‘wilcox’ as the statistical method to identify genes showing significant 
increased expression. Only genes expressed in human retinal bulk data presented in this study were included 
in this analysis (13,484 genes). The threshold for cell specificity was set at a Bonferroni-corrected p value < 0.01 
and only markers unique to a single cell type were considered. All other parameters of the method were set to 
their default values. In order to compare disease-associated genes (DE and DP gene from macula and periphery) 
with cell type specific marker genes we performed a hypergeometric test, corrected via the Benjamini–Hochberg 
procedure. As background, the intersect between expressed genes in the human retina bulk data presented in 
this study with genes present in the human retina single-cell expression data was chosen.

The deconvolution analysis was performed using the MuSiC R package26 (MuSiC version 0.1.1). As reference 
data we utilized normalized expression values provided by the human retina single-cell RNA sequencing data 
mentioned above. Single cell expression data was down-sampled to include a maximum number of 500 cells 
from each cell type (Amacrine cells: 98; Bipolar cells: 500; Cone: 304, Endothelial cells: 254, Horizontal cells: 82; 
Microglia: 154; Mueller cells: 500; Pericytes: 111; RGC: 326; Rod: 500; Unknown cell type: 494).

Enrichment analysis for cell type specific disease-associated genes with KEGG 2016 pathways was carried 
out using a hypergeometric test. Prior to this Ensembl gene IDs were mapped to HGNC gene symbols using 
Ensembl version 86. As background we chose all genes expressed in both bulk and single cell RNA expression 
data (13,464 genes). KEGG 2016 pathways with an overlap of less than 10 transcripts with the background set 
were removed from the analysis. Pathway categories “Human Diseases”, and “Drug Development” were excluded. 
Multiple testing correction was performed using the Benjamini–Hochberg procedure.

Ethics declaration.  Post-mortem human eyes were obtained through the Iowa Lions Eye Bank (Coralville, 
IA) after written informed consent of the next-of-kin was obtained. The study design was reviewed and approved 
by the University of Iowa Institutional Review Board. All methods were carried out in accordance with relevant 
guidelines and regulations.

Code availability
Code associated with this manuscript has been uploaded to https://​github.​com/​bi-​compb​io/​diabe​tic_​retin​opa-
thy_​iowa.
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