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Sorting of transmembrane proteins to various intracellular compartments depends on specific signals present within their cytosolic
domains. Among these sorting signals, the tyrosine-based motif (YXXØ) is one of the best characterized and is recognized by μ-
subunits of the four clathrin-associated adaptor complexes (AP-1 to AP-4). Despite their overlap in specificity, each μ-subunit
has a distinct sequence preference dependent on the nature of the X-residues. Moreover, combinations of these residues exert
cooperative or inhibitory effects towards interaction with the various APs. This complexity makes it impossible to predict a priori,
the specificity of a given tyrosine-signal for a particular μ-subunit. Here, we describe the results obtained with a computational
approach based on the Artificial Neural Network (ANN) paradigm that addresses the issue of tyrosine-signal specificity, enabling
the prediction of YXXØ-μ interactions with accuracies over 90%. Therefore, this approach constitutes a powerful tool to help
predict mechanisms of intracellular protein sorting.

1. Introduction

A defining characteristic of eukaryotic cells is the presence of
membrane-bound intracellular compartments. These mem-
branous structures host specific biochemical processes by
virtue of their distinctive lipid and protein composition
[1]. Nevertheless, in order to be able to contribute to the
physiology of the cell, this array of processing stations needs
to be linked and coordinated by a robust trafficking system
of membranous carriers [1, 2]. Indeed, the transport of
cargo by this system plays a crucial role in the establish-
ment/maintenance of each compartment’s identity and in the
delivery of substrates [1, 2].

Given the outstanding relevance of protein trafficking for
the onset of diseases, as well as the significance of trafficking
in pathogenic infection [3, 4], understanding the mecha-
nisms by which the cell targets its proteins to the appropriate
compartment has been the focus of multiple labs [5–9].
A landmark achievement resulting from these efforts was
the realization that some transmembrane proteins contain
sorting signals embedded in the aminoacid sequence of their

cytoplasmic segments [9]. These signals are recognized by
intracellular receptors that mediate the protein inclusion in,
or exclusion from, trafficking carriers [9]. Among this signal-
recognition machinery, the tetrameric clathrin-associated
Adaptor Proteins (APs) emerge as major players in the
protein trafficking system [9, 10]. Four different AP com-
plexes (AP-1 through AP-4) with distinctive intracellular
localizations have been identified and they are believed to
mediate different protein sorting events from and/or to
several compartments [11, 12]. Whereas other subunits are
engaged in interactions with various molecules, the medium
AP μ subunit is in charge of recognizing tyrosine-based
sorting signals fitting a XXXYXXØ consensus (where X =
any amino acid; Y = tyrosine and Ø = residues with a
bulky hydrophobic side chain such as phenylalanine, leucine,
isoleucine, methionine, and valine) [6, 9, 13, 14].

Although the Y and Ø residues within these signals are
critical for μ subunit binding, it is known that the less
conserved X-positions play an important role in defining the
specificity of different Y-signals for different AP complexes
[14, 15]. In fact, the differential interaction of signals with
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APs is responsible for the ultimate intracellular localization
of the corresponding cargo.

The two-hybrid technology was used by the Bonifacino
lab at NIH to conduct the most comprehensive study of μ
subunit specificity for Y-signals available to date [14, 15].
Specifically, this group used the different μ subunits (μ1–
μ4 from AP-1 through AP-4, resp.) as “baits” to screen a
two-hybrid XXXYXXØ signal-library. The sequences of the
signals selected by each μ subunit were established and the
data was statistically analyzed. Further, each set of signals
selected by a particular μ subunit was tested against the
other μ chains generating a vast amount of data about the
signal binding preferences of APs. These investigations
provided unique and extremely valuable information about
the signal specificity of μ subunits [14, 15]. However, they
also highlighted the complexity of μ/Y-signal recognition
process; particularly by indicating that combinations of
residues at certain X-positions display (positive or negative)
cooperative effects, thereby affecting the overall ability of
signals to interact with μ subunits [14, 15]. Unfortunately,
these interdependence effects made it impossible to extract
explicit rules for predicting recognition of Y-signals by AP
μ subunits. A classical alternative to rule-based analytical
models is the Artificial Neural Network (ANN) paradigm
[16–18]. ANNs analyze existing examples of the phenomena
under study and, through an iterative process (“training”
or “learning”), mathematically encode their behavior for
predictive purposes [19–21]. A critical requirement for
the success of ANN approaches is that a critical mass
of information be available for training [22]. Since this
precondition is satisfied in the case of Y-signal recognition
by μ subunits [14], we designed, trained, and validated ANNs
for the prediction of μ/Y-signal interactions.

Our results indicate that trained ANNs were capable
of predicting the experimental outcomes of previously
published two-hybrid experiments with over 90% accuracy.
Further, ANNs also successfully forecasted the results from
novel two-hybrid experiments involving Lamp2 and CD63
mutant signals with μ subunits. Importantly, ANNs were
proficient for correctly predicting two-hybrid results even
in the presence of positive or negative cooperativity effects
among residues within a Y-signal. Indeed, the ANNs’ pre-
dictions were correlated with the intracellular localization of
transmembrane proteins bearing analyzed signals.

In summary, our results demonstrate that application
of the ANN paradigm is suitable for the prediction of μ/Y-
signal interactions and providing a solution to this important
problem in cell biology. To further improve the system
performance, we encourage our colleagues to submit their
own experimental results to be used in future rounds of
training and validation.

2. Materials and Methods

2.1. Plasmids and Strains

2.1.1. DNA Constructs. Plasmids used in this study were pre-
pared using standard techniques and following the general

design described in [14]. Thus, XXXYXXØ signals were
cloned in-frame with the TGN38 cytoplasmic tail in the
multiple-cloning site of the two-hybrid vector pGBT9 (Clon-
tech).

Site directed mutagenesis was done using the Quik-
Change kit (Stratagene, La Jolla, CA).

2.1.2. Yeast Culture Conditions and Transformation Proce-
dures. Yeast two-hybrid strain AH109 (Clontech) was grown
in standard yeast extract-peptone-dextrose (YPD) or syn-
thetic medium with dextrose lacking appropriate aminoacids
for plasmid maintenance at 30◦C for 3-4 days unless indi-
cated otherwise. Transformations were performed by stan-
dard Li-Acetate transformation procedures (Clontech yeast
handbook).

2.2. HeLa Cell Culture and Transfection. HeLa cells (Ameri-
can Type Culture Collection, Manassas, VA) were cultured in
DMEM supplemented with 10% (vol/vol) FBS/100 units/mL
penicillin/100 mg/mL streptomycin (Biofluids, Rockville,
MD). The night before transfection, cells were seeded
onto six-well plates (Costar) in 2 mL of medium. The
following day, the cells were transfected with the TAC
constructs in pXS using Fugene-6 reagent (Roche Molecular
Biochemicals). Twenty-four hours after transfection, cells
were fixed and analyzed for expression of the TAC constructs
by immunofluorescence microscopy with the 7G7 anti-TAC
monoclonal antibody.

2.3. Immunofluorescence Microscopy. HeLa cells transiently
transfected with TAC constructs were grown on coverslips,
fixed with 4% formaldehyde and incubated with the 7G7
mouse monoclonal anti-TAC antibody diluted 1 : 500 in
DMEM, 10% FCS, 0.1% saponin for 1 h at room tempera-
ture. After washing with PBS, coverslips were incubated with
a goat anti-mouse IgG antibody conjugated to Alexa488 for
1 h. Coverslips were washed with PBS and mounted on slides
using Aqua-PolyMount (Polysciences) and imaged in a Zeiss
Axiovert 200 M microscope.

2.4. Two-Hybrid Experiments and Result Coding. Potential
interactions between XXXYXXØ signals and a given AP
μ subunit was tested using the two-hybrid technology as
previously described [14]. Briefly, plasmid DNA encoding
for GAL4 DNA Binding Domain (G4BD)-XXXYXXØ and
Gal4 Activation Domain (G4AD)-μ fusion proteins were
transformed into AH109 yeast cells bearing GAL4-based
reporter genes. If the μ moiety is capable of binding the
Y-signal of the DNA-bound G4BD-XXXYXXØ fusion, then
the G4AD-μ will be recruited to the reporter gene leading
to gene activation (Figure 1). The presence of the reporter
gene product, for example His3 (an enzyme involved in
the biosynthesis of the aminoacid histidine), will allow
the cells to grow in selective media, that is, plates lacking
histidine (−His, see Figure 1). Therefore, cell growth in
−His media, visualized as yeast colony formation, constitutes
the experimental readout that corresponds to μ/Y-signal
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Figure 1: Two-hybrid approach and result coding. (a) Clathrin-
associated adaptor complexes bind Y-signals. Scheme depicts a Y-
signal (fitting into a XXXYXXØ consensus) within the cytoplasmic
tail of a transmembrane protein bound by an adaptor complex (AP
in orange). X represents any aminoacid and Ø a residue with a bulky
hydrophobic side chain (F, M, I, L and V). The AP’s μ-subunits bind
signals located at about 6–10 aminoacids from the transmembrane
domain. (b) Two-hybrid strategy used in this study. Yeast two-
hybrid strain (AH109) bearing-integrated reporter genes were
transformed with plasmids expressing the Gal4 binding domain
(BD) fused to a XXXYXXØ-signal (via a TGN38-derived spacer)
and the Gal4 activation domain (AD) fused to the C-terminus of
an AP μ subunit. The GAL4 upstream activating sequences (UAS)
within the reporter gene are bound by the Gal4BD-Y signal fusion.
If the expressed μ subunit binds the featured signal, then the
Gal4AD activates the HIS3 open reading frame. His3 production
allows the cells to grow in absence of the aminoacid histidine
(−His), leading to the formation of colonies. (c) Result coding: The
colony formation two-hybrid readout was coded as follows: growth
in −His (μ/Y-signal interaction) = 1, whereas absence of growth in
−His (lack of interaction) = 0. The SFYYEEI signal used as example
was isolated in a combinatorial two-hybrid screen. Signal’s critical Y
and Ø (I in this signal) are indicated in blue and were alternatively
mutated to A. The interacting pair mouse p53 and SV40 T-large
antigen (TL-Ag) was used as a positive control and as negative
control when cotransformed with any other construct.

interaction. The two-hybrid results were coded as follows:
when visible colonies were formed an Interaction Value, V =
1 was assigned; if no colonies were observed the Interaction
Value was 0 (Figure 1).

2.5. Data Sets. In this work, we used AP μ-subunit/ Y-signal
interaction data coming from two-hybrid library screens,
most of which have been previously published [14, 15].

(a) Training Set: We used extensive collections of about
200 μ/Y-signal interaction data per μ subunit [14, 15] to
train neural networks for the prediction of the interaction of
XXXYXXØ sorting motifs with different adaptor μ subunits.
Since it has been recently demonstrated that μ4 is capable of
binding two types of sorting signals via two different binding
sites [23], we did not train an ANN for prediction of Y signal
interactions with this medium subunit. However, we used
data corresponding to the analysis of cross-reactivity of other
μ-subunits with Y-signals isolated in a μ4 screen.

(b) Validation Set: In order to test the generalization capa-
bilities of our neural network, we used a second set of μ-
sorting signal interaction data including a reserved group
(not used for training) from the published screens [14] and
also naturally occurring Y-based targeting motifs previously
tested by using the two-hybrid technology [15, 24–26].

3. Results and Discussion

Here we describe a novel approach to the analysis of
protein trafficking mediated by sorting signals. Specifically,
we describe the design and application of an artificial intelli-
gence approach based on the neural network paradigm.

We trained three different ANNs, which predict whether
a given Y-based sorting signal will be recognized or not by
three adaptor medium subunits (μ1, μ2, and μ3). Although it
is clear that μ4 binds to Y-signals in a Y- and Ø-dependent
manner, it recognizes at least two kinds of sorting signals
[23]. Therefore, since μ4 two-hybrid screens for Y-signals
may have produced mixed results corresponding to more
than one type of signal selected, we excluded this medium
subunit from the current development. Following training,
ANNs (one per adaptor medium subunit) were assembled in
a single system. Algorithm and current weight sets are freely
available upon request.

3.1. Design of ANN for the Prediction of μ/Y-Signal Two-
Hybrid Interaction. ANNs are algorithms capable of pre-
dicting the outcome of complex processes not viable for
deconvolution into simple sets of rules [19, 20]. Therefore,
we reasoned that these approaches would be suitable for the
analysis and prediction of μ/Y-signal two-hybrid Interaction
Values (see Figure 1 and Section 2.4).

A typical artificial neural network (see Figure 2 for an
example) is made up of independent computing units (“neu-
rons”) organized in “layer” groups. Following adjustment
by the corresponding “connection weights”, the computing
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Figure 2: Neural networks for the analysis of Y-signals. (a) ANN architecture: the neurons in the network are represented by circles and
the connections between units by arrows. The input layer is made up of 5 clusters (one for each X position within the XXXYXXØ motif)
containing 20 nodes each (representing the 20 possible residues—only 3 per cluster is shown) plus the Ø cluster with only 5 nodes (for F,
M, I, L, and V), yielding 105 neurons in total. Neurons from the hidden layer are labeled h1 and h2, whereas the output neuron is marked
o, both types of units rely on a logistic activation function, depicted as a sigmoidal output-input response. Final network output is denoted
as V (Interaction Value). The weights associated to the input hidden layer and hidden-output layer connections are indicated as Wih and
Who, respectively. The Bias neurons are not showed. (b) ANN Signal analysis. Sequences (a hypothetical RSDYEPL signal is shown in red)
are analyzed at every position. Within each of the 6 input clusters, only the neuron representing the aminoacid present at that position is
activated (represented in red). This group of input neurons “fire” to the each hidden neuron according to the corresponding connection
weight. Each hidden neuron compiles a total input and elaborates a sigmoidal output that is sent to the o-neuron, which in turn produces
the network output V .
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results from lower layers are used by the upper layer neurons
as inputs for their own calculations.

During “training”, a neural network uses iterative pro-
cesses to adjust its internal parameters (connection weights)
so that its output function can produce the expected response
(e.g., interaction value) for each element of a large set of
known experimental data. If properly trained and validated,
the network will predict unknown experimental outcomes.

The tyrosine-signal neural network (TySNN) is a feed-
forward ANN designed to address the question: “Does this
AP μ subunit bind this Y-signal?” by predicting an interaction
value, V .

After trying several network architectures (not shown),
we concluded the most robust system consisted of one
hidden layer containing 2 neurons fully connected with
the input layer as well as with the unique node within
the output layer (Figure 2(a)). Therefore, TySNN is made
up of three neuron layers: an input layer (106 neurons),
a hidden layer (2 neurons, h1, and h2), and one output
(o) neuron (Figure 2(a)). The input layer is comprised of
5 clusters that represent each X-position in a XXXYXXØ
signal. Each cluster contains 20 neurons representing the
20 possible aminoacids that can be found at that specific
X-position. A sixth cluster of 5 neurons represents the 5
possible aminoacids (F, M, I, L, and V) to be found at the
Ø-position (Figure 2(a)). An extra, constitutively activated,
“bias”-neuron [20] was added yielding a total amount of 106
input neurons.

The network reads each position of the XXXYXXØ signal
and sends inputs to every neuron in the corresponding
position-cluster. Within a cluster, an input = 0 is sent to
all neurons except to the one representing the aminoacid
found at the position and that receives an input = 1
(Figure 2(b)). All neurons from the input layer send an
output value to both hidden neurons equal to their input
multiplied by the corresponding connection weights (Wih,
Figure 2(a)). The resulting values constitute the input to the
hidden layer. Each hidden neuron compiles a total input
and elaborates an output following a sigmoidal activation
function (see Appendix and [19, 20] that is transmitted to
the output neuron according to their corresponding Who

weights (Figure 2(a)). In turn, the output neuron sums the
inputs coming from both h1 and h2 and elaborates the
network output (predicted Interaction Value, V) through its
own sigmoidal activation function. The network predicted
V values are translated from a real number in the range (0.0;
1.0) into an appropriate binary output. Thus, an arbitrary
output value >0.5 is considered a “yes” result while any value
≤0.5 means “no” (i.e., There is or there is not an interaction
between the sorting signal and the μ subunit, resp.).

3.2. Evaluation of the Artificial Neural Network Performance.
The networks were initialized using small weight values
randomly generated and following a normal distribution
with mean = 0.00 and standard deviation = 1/[number
of neurons]1/2 (i.e., ≈0.10) ([20] and Figure 3(a)). During
training, the predicted binary V values (see above) were
compared to the known experimental results (training set,

Table 1: TySNN performance.

μ1a μ2a μ3a

Ab 0.95 0.96 0.93

MCCc 0.98 0.99 0.96

a. ANN trained for the Y-signal preference of the indicated μ subunit.
b. Accuracy: ratio between correct and total number of examples. Value
range: [0; 1].
c. Mathews’ Correlation Coefficient: see text for details. Value range: [−1; 1].

[14]) and the weights were modified to minimize the
differences (see appendix for details). More specifically,
training was performed following a “batch” scheme; that is,
the weight changes were accumulated and only applied after
one run of the whole set of training examples or “epoch” (see
appendix for further details on the algorithm and network
architecture). The process was repeated until convergence
was attained (Figure 3(b)).

Two parameters were used to measure the performance
of the neural networks.

(1) Accuracy (A). Represents the ratio between the num-
ber of correctly predicted outcomes (C) and the total
number of examples (N).

A = C

N
. (1)

(2) Mathews’ correlation coefficient (MCC) [27].

MCC = pn− uo

(n + u)(n + o)
(
p + u

)(
p + o

) × 1
2

, (2)

where p is the number of true positives predictions, n the
number of true negatives predictions, u the number of false
positives, and o the number of false negatives. MCC is used
as a reliable performance indicator that is independent of the
proportion of positive and negative results in the training set
[28].

Accuracy and the total error E (see appendix) were also
used to monitor the evolution of network learning during
training (see Figure 3(c) for an example).

In general, the shape of the curves obtained indicated
the presence of local minima (Figure 3). In fact, some of our
networks’ current weight sets may correspond to low local,
rather than global, minima.

Table 1 summarizes the performance of the networks
following training. In all cases we observed above 90%
accuracy in predicting the result of a potential μ/Y-signal
interaction. These values support the suitability of the ANN
paradigm for predicting Y-signal specificity for clathrin-
associated adaptor complexes.

We believe the accuracy of the networks can be further
improved with subsequent training, aiming to reach the
global minima. However, in order to avoid overtraining with
a single data set, new results should be used. Therefore,
we encourage our colleagues to participate in this effort by
submitting their own μ/Y-signal binding results. In addition,
the spreadsheet macro that runs the ANN algorithm is freely
available upon request.
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Figure 3: ANN training. Connection weights between the Input and hidden layers before (a) and after training (b): values shown were
taken from the training of μ1 ANN. weights were initialized with small random quantities (0.00± 0.10) as shown in (a) and converged into
a broader value range (b). (c) ANN training. The evolution of the total error and accuracy (see main text and Appendix for details) was
monitored as a function of the number of Epochs (i.e., number of iterations of a complete set of sequences).
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Figure 4: Binding of Cd63-Lamp2 chimeric Y-signals to μ2. (a) Two-hybrid experiments between μ2 subunit and WT or chimeric Y-signals
were performed as described in Figure 1 and Section 2.4. Cd63-specific and Lamp2-specific residues are denoted in blue and red, respectively.
(b) HeLa cells transiently transfected with TAC-fusion proteins were fixed, permeabilized, and incubated with mouse anti-TAC antibody
followed by an Alexa 448-conjugated secondary antibody. Representative cells showing TAC fusion protein localization are shown. Arrows
(left panel) point to intracellular structures observed in TAC-HTGYEQF (Lamp2 signal) fusion; Arrowheads (right panel) highlight plasma
membrane enrichment of TAC-HTGYEMV chimeric signal fusion protein. Scale bar: 1 μm.

3.3. Biologically Relevant Predictions and Detection of Cooper-
ative Effects among Residues within a Signal. ANNs described
in this work were trained using two-hybrid interaction
data. Therefore, ANNs predict two-hybrid interaction values
from experiments performed under similar conditions (see
Section 2.4). It should be noted that two-hybrid results can
significantly correlate with the targeting behavior of proteins
expressed in cells [15].

Analysis of the relative relevance of residues within the
signal suggests that positions Y − 3, Y − 2, Y + 2, and Ø
usually have major effects on the overall ability of the Y-signal
to interact with μ subunit.

Importantly, TySNN was able to correctly predict the
specificity of a subset of naturally occurring signals, includ-
ing the sorting signals for lamp2 (HTGYEQF) and CD63
(RSGYEVM). Interestingly, these signals display a similar
interaction pattern against the different μ subunits: both
could bind μ2 and μ3 but showed negligible interaction with
μ1 [15]. Although the residues immediately flanking the
critical Y within these signals are identical (Y − 1 and Y +
1), the ones occupying the positions Y − 3, Y − 2, Y + 2, and
Ø are different (Figure 4(a)).

In order to test the relevance of these residues for the
interaction of these naturally-occurring and highly similar
Y-signals with μ subunits, we asked TySNN to predict
the specificity of chimeric signals as indicated in Figure 4.
Surprisingly, TySNN predicted negligible reactivity of the
chimeric signal HTGYEVM with μ2. This prediction was
surprising as μ2 has been described as the medium subunit
with the most relaxed specificity [14]. Also, through this
result, TySNN indicated the existence of negative cooperative
effects among residues at different positions within a signal.
Importantly, we tested this prediction experimentally and
observed a complete correspondence with actual two-hybrid
results (Figure 4(a)).

Further, we introduced both lamp2 (HTGYEQF) and the
chimeric (HTGYEMV) signal into the cytoplasmic tail of
interleukin-2 receptor α-subunit (also known as TAC) and

expressed them in heLa cells. Intracellular localization of
TAC-fusion proteins can be easily detected by immunofluo-
rescence with an anti-TAC antibody (7G7). In fact, the TAC-
Lamp2 fusion protein showed a largely intracellular, perin-
uclear immunofluorescence staining, compatible with a late
endosomal-lysosomal localization (Figure 4(b)). In contrast,
the TAC-chimeric signal fusion protein showed a strong
plasma membrane staining compatible with deficient inter-
nalization due to impaired recognition by μ2 (Figure 4(b)).
These results support the applicability of the predictions of
the ANN system to in vivo intracellular˜trafficking problems.

4. Conclusions

Our results indicate that ANNs can handle the complexity
of the μ/Y-signal interaction process. Therefore, candidate
protein cargo with a suitable Y-signal within their cyto-
plasmic tail can be identified based on their predicted
ability to interact or not with the various μ subunits.
However, the investigator should be aware that for a YXXØ
motif to be recognized by APs in vivo, it must also satisfy
other requirements, for example, proper spacing from the
corresponding transmembrane domain [9]. As mentioned in
previous sections, further training with additional naturally
occurring Y-sorting signals should enhance the predictive
power of this approach towards cytoplasmic domains of
transmembrane proteins.

Importantly, trained ANNs have been successfully used
to extract information about the principles ruling the
phenomenon under study [29]. Therefore, we anticipate that
upon further developments, results obtained with TySNN
will contribute to the establishment of explicit rules for the
analysis of Y-based sorting signals. In fact, this work already
reports the conclusions concerning the relative importance
of certain X-positions for the recognition of the Y-signal by
the different AP medium subunits. Moreover, improvements
to the algorithm reported here will be directed to provide
for the capability to analyze quantitative data rather than
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binary “Yes/No” results. Specifically, ANNs can be trained
to predict the strength of μ/Y-signal interaction based on
β-galactosidase activity or cell growth in the presence of
different concentrations of the competitive inhibitor 3AT in
two-hybrid experiments [24].

Finally, we envision that this approach may be used in
the analysis of results from future screens. For example, there
is almost no information regarding the specificity of APs for
signals in plants and Saccharomyces cerevisiae. Therefore, we
believe a systematic study of μ/Y-signal interactions, like the
ones conducted by the Bonifacino lab [13–15], should be
pursued in yeast and plants.

Along the same lines, a screen to define the specificity
of APs for dileucine signals is also lacking. The Bonifacino
lab also developed a successful three-hybrid approach [30]
that should be adapted for the screening of putative com-
binatorial dileucine signal libraries. Further, a similar ANN-
based approach can be adopted for screens involving other
signal/motif receptors than APs. We anticipate that use of the
ANN paradigm would be of great benefit for rapidly utilizing
the information generated by all these efforts and for the
analysis of data from other challenging endeavors in the area
of vesicle trafficking.

Appendix

Neural Network Architecture and Data Flow

As described in Section 3.1, the identity of the residues
within the XXXYXXØ signal determines which neuron
within the X- and Ø-position clusters (at the input layer) is
turned on (i.e., “on” output value = 1; “off” output value
= 0). Then, each input neuron i sends a “message” to each
hidden neuron j, equal to its off/on output value (Oi) times
the connection weight (Wij). Thus, the total net input (I)
received by each hidden neuron is

I j =
∑

OiWij . (A.1)

In turn, neurons from the hidden layer as well as the unique
node in the output layer (Figure 2) produce a response
according to a sigmoidal activation function

Oj = 1
(
1 + e−αIj

) , (A.2)

where Oj represents the output response from a given hidden
or output neuron j receiving a net input I j (modulated by an
α factor) [21]. The final output (O) is then compared with
the expected interaction value (V) (from the training data
set) by using an error function (E) (Figure 2(a))

E =
∑

k (V −O)2, (A.3)

where k is the number of examples in the training data set.
A weight correction to minimize the error function is

estimated according to

ΔWij (n) = −η
(

dE

dWij

)

+ mΔWij (n−1), (A.4)

where ΔWij (n) and ΔWij (n−1) represent the change of the
weights calculated at iterations n and n − 1, respectively.
η is the learning rate parameter and m is the momentum
constant [31]. The weight corrections are implemented, on
the initially random Wij , in the opposite direction to data
flow (back-propagation), and then another feed-forward run
is started by using the newly updated Wij values.

The learning rate η is continuously optimized according
to a “line search” algorithm [32] for maximal convergence
efficiency to an E minima (Figure 3). The iterations will
continue until convergence is reached, leading the network
to learn by backpropagation [33–35].
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