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Abstract: Since murine cytomegalovirus (MCMV) was first described in 1954, it has been used
to model human cytomegalovirus (HCMV) diseases. MCMV is a natural pathogen of mice that
is present in wild mice populations and has been associated with diseases such as myocarditis.
The species-specific nature of HCMV restricts most research to cell culture-based studies or to the
investigation of non-invasive clinical samples, which may not be ideal for the study of disseminated
disease. Initial MCMV research used a salivary gland-propagated virus administered via different
routes of inoculation into a variety of mouse strains. This revealed that the genetic background of
the laboratory mice affected the severity of disease and altered the extent of subsequent pathology.
The advent of genetically modified mice and viruses has allowed new aspects of disease to be
modeled and the opportunistic nature of HCMV infection to be confirmed. This review describes
the different ways that MCMV has been used to model HCMV diseases and explores the continuing
difficulty faced by researchers attempting to model HCMV congenital cytomegalovirus disease using
the mouse model.

Keywords: congenital disease; placenta; salivary gland

1. Introduction

It has famously been stated that “mice lie and monkeys exaggerate” [1], but the use of
animal models in the study of infectious disease provides strong evidence for the mecha-
nisms underlying the pathogenesis of infections in humans and provides opportunities
to study interactions between hosts and pathogens that are not provided by collecting
minimally invasive human samples such as blood, feces, saliva and urine. When inves-
tigating infectious diseases, the ability to correlate tissue histopathology with pathogen
replication rates over time or evaluate cell signaling and related immune modulation in
the context of a complete immune system is of inestimable value and provides mechanistic
information, as well as pre-clinical opportunities to test treatment efficacy and toxicity.
The ability of a pathogen to infect both mice and humans allowed the development of
Koch’s postulates [2], an evidence framework still used today to prove the association
of newly described pathogens with infection and subsequent pathological sequelae, al-
beit with modifications to account for the presence of pathogens in commensal flora [3]
and viruses that are attenuated in a culture [4]. An example of this modern reasoning has
been applied for SARS-CoV-1 [5].

There are many animal models where laboratory-inoculated animals exhibit symptoms
or pathogen replication that mimics human infection, even though infection may not occur
in the natural environment. These models are useful in carefully evaluated (and disclosed)
circumstances (discussed in [6] for SARS-CoV-2) and have provided useful information on
infection pathways and the effects of opportunistic infections and potential drug targets [7].
Examples of animal models in non-target species are those developed for influenza and
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respiratory syncytial virus in ferrets [8] and Ebola virus infection, which have been modeled
in suckling (but not adult) immunocompetent mice as well as Syrian golden hamsters [9].
These models and others like them have illuminated pathways used by pathogens to travel
from the site of infection to organs or other sites of tropism, as well as immune responses,
symptom and infection profiles and treatment options.

In animal models for viral disease, the presence of the correct receptor used by the
virus to enter a cell is critical and needs to be largely conserved between species for cross-
species infection to occur [6]. For infections where viruses do not naturally infect another
species due to absence of the correct receptor, transgenic mice have been developed that
allow an animal model to be developed (e.g., for poliovirus) [10]. Some viruses, such as
influenza, naturally infect multiple species (avian species, pigs and humans [11]) while
others, such as cytomegalovirus, are species-specific. Animal models where the pathogen
naturally infects the animal host and the disease is naturally present in wild populations can
provide insights into human disease by illuminating complex host-pathogen interactions
and provide clinically relevant data.

Cytomegaloviruses (CMVs) from the family Herpesviridae and the subfamily Beta-
herpesvirinae are species-specific viruses and have been isolated from many mammalian
species (e.g., human, mouse, rat, guinea pig and various primates; see [12] for a discus-
sion). CMVs have evolved with their hosts [13] and generally do not replicate completely
in vivo in different species after inoculation, even where in vitro growth has been described
(e.g., murine cytomegalovirus (MCMV) will grow in vitro in rat cells but will not grow
in vivo in rats [14]). However, there have been reports of the replication of disparate
CMV in other species in circumstances where xenotransplantation has taken place and
the recipient has received immunosuppressive chemotherapy [15,16]. Juvenile rats have
also been reported to support the growth of MCMV, although older rats (>6 weeks old)
were not susceptible to infection [17]. This review will focus on the use of MCMV to model
human cytomegalovirus (HCMV) disease.

2. Murine Cytomegalovirus Infection as a Model for Human Cytomegalovirus Disease

MCMV infecting its murine host has been used extensively to model human disease
with HCMV [18]. MCMV is a natural pathogen of mice, being found in every wild Mus
musculus population that has been investigated in Australia (for example, those found
in [19,20]). There are many genetic similarities between HCMV and MCMV with mul-
tiple gene homologs, including structural and immune-evasion genes [21]. However,
there are important differences in the organization of the genetic information. For exam-
ple, HCMV has unique long and unique short regions with terminal and internal repeat
sequences [22] compared with MCMV, which has a single unique sequence with short
terminal direct repeats and several short internal repeats [21]. Additionally, the adaptation
of these viruses to cell culture is different, as the in vitro culture of clinical isolates of HCMV
invariably leads to the predictable loss of genetic regions (discussed in [23]) that does not
occur to the same extent with MCMV [24], although a recent report has provided evidence
that deletions occur as MCMV is propagated from salivary glands in culture [25].

2.1. Properties of Salivary Gland-Derived and Tissue Culture-Passaged MCMV

Modeling HCMV infection with MCMV with the use of virus stocks prepared from
different sources is complicated. MCMV is generally maintained either as salivary gland
stock (SGV) or as tissue culture-derived stock (TCV), usually prepared from the infec-
tion of embryonic mouse fibroblasts [26]. This influences the nature of the infection that
occurs in vivo [27]. SGV is generally composed of single capsid virions, derived from
the cytoplasmic vacuoles within the serous acinar sinus cells of the salivary gland [28].
It produces acute infection in mice, is lethal when inoculated at a relatively low titer in ju-
venile (3-week-old) mice and has been used in Lethal Dose50 (LD50) studies to demonstrate
innate major histocompatibility (MCH) associated resistance to MCMV in various inbred
mouse strains [29,30]. In contrast, virus stocks made from other organs (e.g., the liver and



Int. J. Mol. Sci. 2021, 22, 214 3 of 19

spleen) and also TCV passaged in embryonic mouse fibroblasts are comprised of both
single and multicapsid virions [31]. TCV is generally not lethal, unless the mouse strain
has a substantial immune deficiency (e.g., severe combined immuno-deficient mice that do
not have B or T cells can be lethally infected with 1 plaque-forming unit (PFU) of SGV [32]).

2.2. MCMV as a Model for HCMV Infection

The recorded movement of MCMV between organs differs, depending on the route
of infection (described in [33] and [12]). There is a strong tropism for the salivary gland,
and active viral replication persists in salivary glands for longer than other organs, regard-
less of the route of infection used. As with all herpesviruses, MCMV infection has a latent
phase [32]. MCMV infection without significant manipulation of the host has successfully
been used to model various aspects of human infection (Table 1). Information from this
natural animal model has greatly improved the understanding of the pathogenesis of
HCMV infection in humans.

Table 1. Human disease caused by human cytomegalovirus (HCMV) modeled by murine cytomegalovirus (MCMV)
infection in mice.

Human Condition Lab Conditions SGV 1/TCV 2

PFU 3 Effect Reference

Viremia
Intraperitoneal (i.p)

inoculation of
BALB/cByJ mice.

SGV/TCV not
specified
106 PFU

White blood cells have viral
DNA but no evidence of

ie1 RNA.
[34]

Viral latency
BALB/c footpad inoculated
at 2 weeks of age. Latency

present after 3 weeks.

TCV
105 PFU

Whole body irradiation leads
to reactivation of infection.

Antibody protects from
viral dissemination.

[35,36]

Pneumonitis

1. Intranasal inoculation into
outbred Swiss mice or

intra-tracheal infection of
BALB/c mice.

TCV
>104 PFU

Severe diffuse interstitial
pneumonitis closely

resembling that seen in
immunocompromised patients

and in newborn infants,
20% died.

[37]

2. Inoculation of newborn
BALB/c. SGV, 6 PFU i.p. Pneumonitis and myocarditis,

95% lethal. [38]

Hepatitis i.p inoculation of
BALB/c mice. SGV, 105 PFU

Hepatitis evident, dose is
Lethal Dose50. [26]

Ocular infection
(retinitis)

1. Intraocular inoculation
(scarified cornea or through

corneal limbus) of
IRC/Sic mice.

2. Intraperitoneal inoculation
of BALB/c mice.

SGV, Tissue Culture
Infectious Dose50

values given.

Different effects SGV vs. TCV. [39]

Inflammatory response in
retina (virus not present) and

iris (virus present).
[40]

Excretion of CMV into
breastmilk

Acute or latently inoculated
C57BL/6 mothers (i.p.),

leukocytes from BM positive
by ie1 mRNA

detection, RTPCR.

SGV
3 × 102–3 × 104 PFU

Evidence of neonatal infection
via breast milk. Inoculation of
milk into CD-1 1-day old mice

results in infection.

[41]

Arterial blood pressure
post CMV infection

i.p. inoculation of
2-week-old C57BL/6 mice.

TCV,
3 × 105

PFU/1mL/mouse

MCMV increased blood
pressure independent of diet.

Increased serum IL-6,
TNF-alpha, and MCP-1.

[42]

Viral myocarditis i.p. inoculation of
C57BL/6 and BALB/c mice.

SGV
104 PFU

Inflammatory foci in the heart
and infection of

cardiac myocytes.
[43]
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Table 1. Cont.

Human Condition Lab Conditions SGV 1/TCV 2

PFU 3 Effect Reference

Infection post bone
marrow transplantation

Irradiated BALB/c mice
inoculated with virus prior

to intravenous (i.v.) purified
bone marrow cells.

105 PFU
Failure in haematopoiesis,

leading to death. [44]

Sexual transmission of
CMV via semen

Spermatozoa plus Smith
MCMV artificially

inseminated (compared with
sperm alone).

SGV
105 PFU

Embryos collected on E14.
One produced cytopathic

effect (second passage).
No significant difference with

numbers or abnormalities.

[45]

1 Salivary gland derived virus. 2 Tissue culture-derived virus. 3 Plaque-forming units.

2.3. Mouse Strain Selection Affects the Severity of MCMV Pathogenesis

Investigations of the effect of MCMV in different mouse strains have been pivotal
in the modeling of different disease states. Initial work focused on LD50 calculations
(e.g., [46]), and it was found that the H-2 alleles of different mouse strains determined their
response to infection, including the production of autoantibodies [47] and the induction of
myocarditis [48]. Other mechanisms for resistance to MCMV, such as that demonstrated in
C57BL/6 mice compared with BALB/c mice or the differing resistance of New Zealand
Black and White mice to MCMV infection, were associated with differences in innate
natural killer (NK) cell activation and were strongly associated with particular strains of
viruses [49,50]. Where MCMV was used as a vaccine vector expressing the mouse ovarian
glycoprotein zona pellucida 3 in studies investigating immune-mediated contraception,
the specific m157 (viral ligand) to Ly49H (NK cell activation receptor) rapid response to
infection was broadly associated with vaccine success [51]. This effect was abrogated
through the use of a different virus strain, G4 (isolated from the salivary glands of a mouse
from Geraldton, WA [52]), as the vaccine vector. G4 does not have the same interaction
with NK cell activation receptors, and this demonstrates the importance of vector strain
selection in the development of recombinant CMV-based vaccines [53].

2.4. MCMV-Based Models for Human Disease Requiring Chemical, Genetic or Physical Manipulation

A recent systematic review and metanalysis calculated that the worldwide sero-
prevalence of HCMV is 83% [54]. Increasing CMV disease is broadly associated with
improvements in medicine because it is often associated with acute immunosuppression,
allowing the reactivation of a latent infection. One of the more serious sequelae of CMV
infection is found in solid organ transplant recipients, who often experience reactivation
from latency and associated pneumonitis, hepatitis and potential organ rejection (discussed
in [55]). The likelihood of severe CMV disease increases when the transplanted organ is
from a seropositive donor (previously infected with CMV, with no active viral replication
but a strong CMV-specific humoral response) being transplanted into a seronegative recipi-
ent [56]. In general, outcomes can be improved with the use of antiviral therapy, with a
recent metanalysis suggesting that prophylactic treatment using low doses of valganciclovir
provides improved outcomes in kidney transplant recipients [57]. CMV can also cause
post-transplantation disease in recipients of allogeneic hematopoietic stem cell transplants,
and pre-emptive therapy is often initiated after clinical evidence of CMV reactivation (prior
to fulminant disease). The economic burden of this therapy is marked [58]. The mouse
model of MCMV has been integral in the prediction of useful therapeutics for these clinical
circumstances (reviewed in [59], with a discussion of the appropriate use for this model in
reliably predicting human outcomes).

In order to model CMV-associated diseases occurring due to immunosuppression,
such as retinitis or post-transplantation reactivation, the animal model needs to be manip-
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ulated to ensure similarity to human infection. The modification can be due to chemical
administration (e.g., corticosteroid use), genetic modification of either the virus or the
mouse strain used (e.g., MCMV-deleted m157 virus (∆157) allows C57BL/6 mice to be
used without NK cell activation by the virus) or physiological treatment such as surgery.
These modified models are listed in Table 2.

2.5. MCMV Exacerbates the Effects of Other Clinical Diseases

For some models, the addition of MCMV can exacerbate disease, reflecting human
disease particularly in the intensive care unit setting. These are generally diseases with an
immune modulation component. These models are listed in Table 3.

2.6. Routes of Infection

Many early CMV diseases were modeled using the intraperitoneal route of infection.
The movement of a virus from the site of vaccination and the dissemination of a virus
via peritoneal macrophages to visceral organs and, finally, to the salivary gland has been
well described [60]. This route of inoculation does not correlate well with natural routes
of infection, and other inoculation sites, such as the footpad, have also been used in
some iterations of the MCMV disease model. Inoculation of a virus via the footpad
(also referred to as intrafoot) is thought to model transmission by biting, and the infectious
virus moves to the popliteal lymph node, infecting resident subcapsular sinus macrophages,
although these cells do not allow lytic replication. Viremia and further organ infection may
be due to a cell-free virus [61]. Recently, the intranasal route of inoculation (simulating
transmission from mother to offspring via grooming) has been investigated more rigorously,
and this has demonstrated that the visceral organs do not show the same level of viral
replication as is seen with other routes of administration [62]. When investigated using a
fluorophore-labeled virus, it was demonstrated that infection was via the olfactory neurons
and disseminated by day 16 after inoculation to the salivary gland [63]. The MCMV/mouse
model has recently been used to show temporal differences in virus dynamics and that
there is interplay between different viral strains. Importantly, this work suggests that an
increased number of virus strains present in one mouse is not indicative of more substantial
pathological changes [64].

Table 2. Models for CMV disease, requiring significant laboratory manipulation.

Human
Condition Lab Conditions SGV 1/TCV 2

PFU 3 C 4 G 5 P 6 Effect Reference

Reactivation
after immuno-
suppression

i.p. inoculation of
C3H/St mice.

SGV subcutaneous
infection with

103 PFU
Latency = 8 months

x

Immunosuppression
by rabbit

antilymphocyte
serum and

corticosteroid.

[65]

Pneumonitis

Intranasal
MCMV plus

cyclophosphamide
24 h after viral
inoculation in

BALB/c.

SGV, 105 PFU x Interstitial
pneumonitis.

[66]
Reviewed in

[67]

Atherogenesis

MCMV inoculated
i.p. in APO-E−/−

mice (C57BL/6
background).

SGV 105 PFU
Or 3 × 104 PFU TCV

x

Larger
atherosclerotic

lesions in infected
mice, potentially

caused by
upregulation

of p38.

[68,69]
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Table 2. Cont.

Human
Condition Lab Conditions SGV 1/TCV 2

PFU 3 C 4 G 5 P 6 Effect Reference

Transplant-
arteriosclerosis

Human peripheral
blood

leukocyte/Rag-
2−/−γc−/−

mouse-xenograft-
model inoculated

with HCMV.

Segments of
mammary artery
incubated in vivo

with 105 PFU HCMV
before implantation

x x

Transplant
arteriosclerosis

was significantly
elevated and

increased ICAM-1,
PDGF-R-b and
macrophages.

[70]

Reactivation of
CMV infection

post organ
transplantation

Immunosuppression
of BALB/c mice
receiving donor

kidney (C57BL/6
allograft) leads to
dissemination of

reactivated MCMV.

SGV 107 PFU
MCMV-∆m157.

Mice used as donors
4–8 months post i.p.
inoculation (latency)

x x

Two-step process:
allograft ischemia
and reperfusion
injury (step 1).

Immunosuppression
mediated viral
dissemination

(step 2).

[71]

Sjogren’s
syndrome

1. MCMV inoculated
i.p. in Fas-deficient

C57Bl/6-
lpr/lpr mice.

2. MCMV inoculated
i.p. in tumor necrosis

factor-related
apoptosis-inducing

ligand deficient
BALB/c mice.

SGV, 105 PFU
SGV 104 PFU

x
x

Salivary gland
inflammation and

autoantibody
production.

Autoantibody
production and

lymphocytic
aggregates.

[72]

Reactivation of
CMV infection

post
haemopoietic cell
transplantation

1. BALB/c mice
undergo sublethal
irradiation (6 Gy),

undergo syngeneic
haematopoietic stem

cell transplant 6 h
later, 2 h later

inoculated with
CMV via foot pad.

TCV 105 PFU x

Pulmonary
infection control

depends on CD8 T
cell reconstitution.

[73]

2. CD8 T cell
immunotherapy.

Controls CMV
associated im-

munopathology.

[74]
Reviewed in

[59]

Graft versus
host disease

1. Inoculated with
MCMV 3 days prior

to transplant.
A variety of

H-2 defined mice
inoculated i.v.

with spleen cells
(either MHC1 or
MHCII disparity).
2. Strain specific
antibody therapy.

Latently inoculated
mice (i.p).

1 × LD50 SGV x

Reduction of CTL
and

immunodeficiency
induced, 10 × less

donor
cells required.

[75]

104 (B6 or B6D2F1)
or 5 × 103 PFU
(BALB/c) SGV

x

Strain-specific
antibody therapy

protects from
MCMV

reactivation.

[76]
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Table 2. Cont.

Human
Condition Lab Conditions SGV 1/TCV 2

PFU 3 C 4 G 5 P 6 Effect Reference

Transplant-
arteriosclerosis

Human peripheral
blood

leukocyte/Rag-
2−/−γc−/−

mouse-xenograft-
model inoculated

with HCMV.

Segments of
mammary artery
incubated in vivo

with 105 PFU HCMV
before implantation

x x

Transplant
arteriosclerosis

was significantly
elevated and

increased ICAM-1,
PDGF-R-b and
macrophages.

[70]

CMV retinitis

1. Inoculation into
supraciliary space

(described in [77]) +
immunosuppression
of BALB/c mice via
methylprednisolone
every 3 days starting

2 days prior to
inoculation.

SGV 5 × 103 PFU x

Retinitis abrogated
using i.v. siRNAs
directed against

MCMV immediate
early protein-3

(IE-3).

[78,79]

2. Immunosuppres-
sion using

C57Bl/6J intraretinal
inoculation

PLUS MAIDs.

SGV 104 PFU x

(MAIDS—
retrovirus mixture

defined in [80])
Severity of effect

may be due to
suppressor of

cytokine signaling
(SOCS) 1 and 2.

[81]

Renal allograft
loss due to

MCMV
reactivation

(donor positive)

Donor BALB/c
recipient

C57Bl/6 after renal
transplantation.

TCV MCMV or
∆m157, Infection

with 104 PFU
(∆m157) all donors.
Recipient either 104

PFU ∆m157/WT or
102 ∆m157.

x x
Th17 inhibition
reduced injury

to graft.
[82]

Brain infection in
immunosup-

pressed
patients

Severe combined
immunodeficient

(SCID) mice
(BALB/c

background),
intracranial infection.

Virus expressing
green fluorescent

protein (GFP).

TCV, 106 PFU (GFP),
4.83 × 105 PFU

wildtype
x x

Adoptive transfer
of MCMV-specific
CD4 T cells clears

CMV from the
brain. Treatment
prior to infection
prevents MCMV

replication.

[83]

Hemophagocytic
lymphohistiocy-

tosis

IFN-γ-knockout
(KO) mice on

BALB/c background
or BALB/c

SGV, 5 × 103 PFU x

Severity not
associated with
titer, associated

with inflammation.

[84]

Laboratory
diagnosis

of hepatitis

i.v. inoculation of
C57BL/6 mice with

marker virus
(luciferase, mCherry,

SINFEKL)

TCV, 106 PFU x

Blood
biochemistry levels

given (allowing
diagnosis

of hepatitis).

[85]

1 Salivary gland-derived virus. 2 Tissue culture-derived virus. 3 Plaque-forming units. 4 Chemical modification e.g., chemotherapeutic.
5 Genetic modification of mouse or virus. 6 Physiological treatment (e.g., surgery).
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Table 3. Models demonstrating MCMV-associated effects on other diseases.

Medical Condition Lab Conditions SGV 1/TCV 2

PFU 3 Effect Reference

Ulcerative colitis in
CMV-inoculated

individuals

T cell receptor
alpha−/− mice

(C57BL/6 background)
inoculated i.p. at 7 days of

age with MCMV or
MCMV-enhanced GFP

TCV, 5 × 105 PFU of MCMV
for C57BL/6 mice and 2 ×

104 PFU of MCMV-EGFP for
TCR-alpha−/−

Ulcerative colitis is
exacerbated in latently

infected mice
[86]

Growth of glioblastoma
Mice inoculated i.p.

day 2 of life (P2), tumor
injection week 15

TCV 103 PFU MCMV-∆m157
Tumor growth and

reduction in survival [87]

CMV reactivation after
physical damage

Caecal ligation and
puncture in latently i.p.

inoculated BALB/c mice
TCV, 2 × 104 cgrmPFU

Plus S. aureus to induce
bacterial pneumonia [88,89]

MCMV infection
after cholestasis

C57BL/8 mice bile duct
ligated, inoculated i.p.

∆m157-MCMV-luciferase

SGV/TCV not specified.
2 × 105 PFU

Impaired inflammatory
response, but no

increase in
liver pathology

[90]

Melanomas growth,
repeated injection

recapitulates transient
response

Intra-tumoral inoculation
of MCMV or ∆gL MCMV
(spread deficient) impairs

melanoma growth in
BALB/c mice

TCV (described in [91]),
5 × 105 PFU

Infection of
macrophages leads to

proinflammatory
M1 state

[92]

Idiopathic
pulmonary fibrosis

Latent MCMV infection in
BALB/c mice

(i.p.—4 weeks prior),
intratracheal bleomycin

SGV, 105 PFU
MCMV-exacerbated
fibrosis, activation of

TGF-β1
[93]

Experimental
autoimmune

encephalomyelitis
(EAE)

C57BL/6J and
CD80/86−/− mice

inoculated with MCMV i.p.
and 8 days later,

EAE induced

SGV, 5 × 104 PFU

More severe disease
(e.g., enhanced
demyelination),

severity associated
with number of splenic
CD4+CD28null T cells

[94]

Use of bronchiolar
lavage (BAL) to detect
reactivation of CMV

in sepsis

BALB/c mice inoculated
with MCMV, sepsis by

caecal ligation
and puncture

SGV/TCV not specified;
102, 106

qPCR of BAL cell
pellets similar to that of

lung tissue
[95]

Acute colitis C57BL/6 mice TCV, 3 × 104 PFU
Acceleration of colitis
development, but no

difference in histology
[96]

Allergic airway disease C57BL/6 mice inoculated
intra tracheally TCV, 106 PFU

Exposed to ovalbumin,
CMV-

exacerbated disease
[97]

1 Salivary gland-derived virus. 2 Tissue culture-derived virus. 3 Plaque-forming units.

2.7. Humanized Mouse Models

The manipulation of mice to allow humanized features allows infection with HCMV [98]
and increases the repertoire of testing available for HCMV preventative strategies, as well
as pre-clinical testing of treatments such as chemotherapeutic interventions. For example,
humanized immune system mice have been investigated for future use in modeling vaccine
efficacy [99]. Although this strategy provides additional information, the validity of the
results needs to be carefully evaluated in every model, particularly with respect to the
immune responses generated in the mouse.
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2.8. Immunology and MCMV Studies

This is a large topic and will not be reviewed extensively here, although many fun-
damental discoveries have been possible due to the robust nature of this murine model.
Research using MCMV has allowed specific viral immune defense processes to be eluci-
dated and for basic research investigating the activity and effector functions of immune
cells to be undertaken. These studies have provided important insights into defense from
lifelong HCMV infection, including the interesting phenomenon of memory inflation,
where a disproportionate percentage of the CD8+ T cell response is devoted toward HCMV
immunity [100]. Immune responses to MCMV have been recently reviewed [101].

2.8.1. Innate Immune Responses

Innate immune responses determine the severity of infection, and NK cells play an
important early role in defense from MCMV infection. Research in this area (originally
undertaken to describe the difference in LD50 between different mouse strains [102]) has
demonstrated the presence of NK cell activating receptors and the antigen-specific inflation
of NK cell populations [103], responsible for the increased resistance of C57BL/6 mice
to MCMV infection compared with BALB/c mice [104]. Altered NK cell development
and the development of long-lasting NK cell memory has been demonstrated using the
mouse model (reviewed in [105]), altering the perception of NK cells as only contributing
to innate immune processes. Recent evidence that infection via the intranasal route infects
restricted cell types suggests that the route of infection needs to be carefully assessed in
these models [106]. Cytokines produced as a result of MCMV infection are responsible for
tissue damage, as well as suppression of pathology, and were discussed in detail in a recent
review [107].

2.8.2. Adaptive Immune Responses

Strong humoral and cell-mediated immunity is induced after primary infection with
MCMV, with CD8+ T cells being important for the control of viral clearance from many
organs [108] and having recently been confirmed to inhibit MCMV-associated effects on
hematopoiesis in bone marrow graft rejection [109]. The importance of CD4+ T cells in
viral clearance is well established [108], and more recent reports have shown that CD4+
T cells produce granzyme B and may directly kill infected cells in vivo [110]. Antibody
responses to viral infection were characterized in different mouse strains in early research,
which showed that autoantibodies were produced as part of the response to primary
infection [47] and were due to polyclonal B cell responses [111]. Administration of a
passive antibody reduces MCMV organ titers but does not prevent infection [112]. How-
ever, recent data suggests that the administration of an antibody toward glycoprotein B,
even where the antibody is unable to neutralize the virus, may provide protection from
disease [113].

2.9. Congenital Infection with Cytomegalovirus

One of the aspects of HCMV infection that has repeatedly been attempted using vari-
ous manipulations of the basic MCMV/mouse model is congenital infection. In humans,
symptomatic CMV infection is present in 0.07% of births [114]. The most serious sequelae
are associated with primary maternal infection during the first trimester of pregnancy,
including still births [115] as well as disseminated CMV inclusion disease [116]. If the
transmission occurs later in pregnancy, the risk of transmission is greater (around 40%
and 70%, respectively), but the risk of the most serious sequelae is diminished [117]. In-
fection outcomes have a spectrum of symptoms, ranging from pneumonitis, hepatitis and
growth restriction to mental retardation, impairment in motor function and escalating
sensorineural hearing loss (SNHL) or, alternatively, children can remain clinically nor-
mal [118]. Congenital CMV (cCMV) infection is diagnosed using a combination of maternal
serology, ultrasonography and amniocentesis, and the severity of disease cannot always
be predicted with accuracy [119]. Virtually as soon as MCMV was isolated, attempts were
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made to model congenital disease, mostly with frustrating outcomes [120]. Experimental
manipulation of the mouse/MCMV model to simulate human cCMV disease is shown in
Table 4. To date, the most successful model of congenital disease is the guinea pig model
(discussed in [121]). However, the disease is generally acute, and there are limitations with
reagent availability and the lack of inbred lines for experimentation. Guinea pigs also have
a much longer gestation period (around 65 days, compared with 21 days for mice) and
often have three or fewer pups.

Table 4. Mouse models of human congenital cytomegalovirus (cCMV) disease (chronological order).

Inoculation Details Mouse SGV 1/TCV 2

PFU 3 Effect Year Reference

Inoculation of
pregnant mice

(approx.) Day 8
Inoculation of fetal
and neonatal mice

Outbred Harvard

1000 fifty-percent
tissue culture

doses (stock was
stored as SGV)

Placental infection, but no
evidence of fetal infection
after maternal infection.

Fetal infection (often
lethal) shows that fetal
mice are susceptible.

1969 [122]

Pregnant mice
inoculated i.p.

or intramuscularly
on E8

TO Swiss outbred and
BALB/c

SGV 1.1 × 107

(Infective Dose50)
at various

concentrations

i.p. administration
produced more fetal

wastage and smaller litter
sizes. Placental weights
not changed. Maternal

illness pronounced.

1978 [123]

MCMV injected into
endometrial lumina on

day of implantation
CF1 (Albino Swiss) TCV, 100–200 PFU

Reduced litter sizes,
malformed fetuses (neural

tube defects).
1987 [124]

Maternal i.p.
inoculation on Day

8 of pregnancy

BALB/c,
BALB/K, CBA

SGV,
3.57 × 103 PFU

Dose dependent, effect
related to MHC. No fetal
infection. Some placental

infection.

1991 [125]

In utero inoculation of
fetuses, Day 8 BALB/c and CBA SGV, 11 PFU High resorption rate in

BALB/c. 1991 [125]

Microinjection of
fertilized ova, cultured

to blastocyst
and implanted

F1 SJL × C57BL/6J 2 pL MCMV DNA
(2.5 µg/mL)

Maldeveloped fetuses,
increased resorptions. 1993 [126,127]

Inoculation of
conceptus D8.5 ICR mice TCV, 104 PFU

Microphthalmia and
cerebral atrophy,

potentially model of
subclinical cCMV.

1995 [126,127]

Intraplacental
inoculation of 10 ng

TNF-alpha (D12.5), i.v.
inoculation of mother

2 h later

ICR mice TCV, 105 PFU
Some growth retardation
and microcephaly (25%). 2000 [128]

Maternal inoculation
of SCID mice i.p. SCID mice SGV, 103 PFU

(varied)

Maximal placental
transmission with

maternal infection at
E4 (i.p.).

2007 [129]

MCMV inoculated i.p.
into newborn pups BALB/c TCV, 500 PFU

1. Infection in brain.
2.P3–P5 prednisolone

cochlear inflammation.

2008
2019

[130],
reviewed
in [131]

[132]
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Table 4. Cont.

Inoculation Details Mouse SGV 1/TCV 2

PFU 3 Effect Year Reference

i.p. inoculation of
neonatal mice

plus intracerebral
inoculation of E.

coli-derived
lipopolysaccharide

BALB/c mice TCV, 105

Labyrinthitis, significant
increase in mean sound
pressure level responses
due to disruption of the
blood labyrinth barrier.

2008 [133]

i.p. RM427+
(recombinant virus

expressing LacZ from
ie2) mated 5–12 days

later, evaluated on
D17–18 of pregnancy

C57BL/6 TCV, 106

Increased vasodilation in
pregnancy implicating

CMV in
hypertensive disorders.

2009 [134]

Intracerebral
inoculation of
neonatal mice

BALB/c TCV, 17–1700 PFU Sensorineural hearing loss
with dose response. 2015 [135]

Acute group
inoculated i.p.

MCMV at
E7.5 pre-pregnancy,

inoculated i.p. mated
one month later,

PBS E12.5

BALB/c mice SGV, 5 × 103 PFU

Acute toll-like receptor
2 and 4 upregulation in
acute group. Increased

placental size in
pre-pregnancy group.

2018 [136]

1 Salivary gland derived virus, 2 Tissue Culture derived virus 3 Plaque forming Units.

2.9.1. Mouse Models of Congenital Infection

Early studies of cCMV used relatively high titers of SGV and generally resulted in
fetal loss (resorption) and growth restriction that was attributed to maternal illness or
placental insufficiency [122,125]. It is important to note that the mice in these early studies
were not likely to be specific pathogen free and undetected co-infections may have affected
these data. Experimental maternal infection with MCMV was often associated with smaller
placentae, and although placental infection was reported by some researchers, transmission
to the fetus was rarely detected, and resorption of fetuses was common. This suggested
that fundamental differences between the mouse and human placentae may be responsible.

2.9.2. Comparative Anatomy of Mouse and Human Placentae

There are many similarities between the placentae of humans and mice, with the most
notable being that both are hemochorial (i.e., having a trophoblast surface that is in direct
contact with maternal blood). The most obvious difference, and one that probably results
in reduced fetal infection, is that mice have three trophoblast layers—one is mononuclear
and two are syncytial—separating the maternal and fetal blood, compared with the single
syncytiotrophoblast layer found in human placentae [137,138]. The three-cell layer has
previously been theorized to act as a physical barrier to the transmission of MCMV [122].
However, the reported congenital infection of severe combined immunodeficient (SCID)
mouse pups leading to intrauterine growth restriction and microcephaly suggested that this
physical barrier may not be responsible for differences between mice and humans [129].
The use of TCV rather than SGV has allowed some more subtle infections to be mod-
eled, particularly involving infection of the placenta without significant resorption of
fetuses (Figure 1). Female mice were mated and inoculated i.p. with MCMV TCV stock,
either K181Perth, the origins of which have been recorded previously [52], or the Smith
strain [139] on either E0.5 (the day of fertilization) or E4.5 (the day of implantation), and pla-
centae were collected on E18.5. The placentae were weighed (UWA Animal Experimentation
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Ethics Committee approval 100/788). Figure 1 demonstrates that the placental size was
significantly increased in mice infected on the day of fertilization compared with those
infected on the day of implantation. Increased placental thickness is a hallmark of cCMV
disease in humans [140].
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Figure 1. Effect of MCMV infection during pregnancy on placental weight (placental 
weights of E18.5 fetuses inoculated on day 0.5 or day 4.5 of pregnancy). Female BALB/c 
mice (n = 5) were infected with 2 × 104 PFU MCMV (K181Perth or Smith strain TCV) or 
the same volume of phosphate buffered saline (PBS) on the day of fertilization (E0.5) 
or on the day of blastocyst implantation (E4.5, viruses only) via the intraperitoneal 
route. Placentae were collected on E18.5 and weights were recorded. Mean ± SD are 
shown in red. ** p < 0.01. *** p < 0.001, ANOVA, Tukey’s multiple comparison test. 
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MCMV infection, but neuronal stem progenitor cells are susceptible to infec-
tion, with brain infection occurring particularly at the cerebral subventricular 
zone [141]. Experiments using brain slice cultures have shown that the sus-
ceptibility of brain cells, particularly neural stem progenitor cells, to CMV in-
fection may be associated with neurogenesis (reviewed in [142]). The suscep-
tibility of newborn pups to brain infection after i.p. inoculation has been de-
scribed, and the protection afforded by CD4+ T cells [143], CD8+ T cells [144], 
and antibodies [130] has been noted. This model has provided important in-
formation about sensorineural hearing loss [132]. Latent MCMV in brain tis-
sue has been reactivated in brain slices in a culture from mice infected as new-
born pups [145]. 

3. Conclusion—Do Mice Lie? 
The MCMV/mouse model is a robust example of an animal model that 

should be used with a clear understanding of the differences between the hu-
man and mouse viruses, their adaptation to cultures and physiological differ-
ences between species, including differences in immune responses. MCMV 
has been very useful in modeling broad aspects of HCMV disease in many 
different situations, now greatly expanded with the use of recombinant vi-
ruses and genetically modified mouse strains. This has resulted in many dif-
ferent clinical conditions being accurately simulated and has allowed the op-
portunistic nature of HCMV, including its effect on the exacerbation of unre-
lated diseases, to be demonstrated. The only type of disease that is 

Figure 1. Effect of MCMV infection during pregnancy on placental weight (placental weights of
E18.5 fetuses inoculated on day 0.5 or day 4.5 of pregnancy). Female BALB/c mice (n = 5) were
infected with 2 × 104 PFU MCMV (K181Perth or Smith strain TCV) or the same volume of phosphate
buffered saline (PBS) on the day of fertilization (E0.5) or on the day of blastocyst implantation
(E4.5, viruses only) via the intraperitoneal route. Placentae were collected on E18.5 and weights
were recorded. Mean ± SD are shown in red. ** p < 0.01. *** p < 0.001, ANOVA, Tukey’s multiple
comparison test.

2.9.3. Mouse Brains Are Refractory to MCMV Infection

Mouse embryonic stem cells have been reported to be refractory to MCMV infection,
but neuronal stem progenitor cells are susceptible to infection, with brain infection oc-
curring particularly at the cerebral subventricular zone [141]. Experiments using brain
slice cultures have shown that the susceptibility of brain cells, particularly neural stem
progenitor cells, to CMV infection may be associated with neurogenesis (reviewed in [142]).
The susceptibility of newborn pups to brain infection after i.p. inoculation has been
described, and the protection afforded by CD4+ T cells [143], CD8+ T cells [144], and an-
tibodies [130] has been noted. This model has provided important information about
sensorineural hearing loss [132]. Latent MCMV in brain tissue has been reactivated in brain
slices in a culture from mice infected as newborn pups [145].

3. Conclusion—Do Mice Lie?

The MCMV/mouse model is a robust example of an animal model that should be
used with a clear understanding of the differences between the human and mouse viruses,
their adaptation to cultures and physiological differences between species, including differ-
ences in immune responses. MCMV has been very useful in modeling broad aspects of
HCMV disease in many different situations, now greatly expanded with the use of recom-
binant viruses and genetically modified mouse strains. This has resulted in many different
clinical conditions being accurately simulated and has allowed the opportunistic nature of
HCMV, including its effect on the exacerbation of unrelated diseases, to be demonstrated.
The only type of disease that is consistently difficult to replicate is congenital disease,
due mostly to fetal resorption associated with acute maternal disease and potentially exac-
erbated by differences in placental structure and in the receptivity of the brain to MCMV
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replication. However, the use of TCV rather than SGV and the detection of viruses by
means other than cultures, as well as careful evaluation of neonatal mouse inoculation,
has provided some exciting alternative models with predictive capacity. Identifying the
subtle differences in experimental procedures used by different researchers will improve
experimental plans and aid in the appropriate interpretation of results.
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Abbreviations
MCMV Murine cytomegalovirus
HCMV Human cytomegalovirus
SGV Salivary gland virus
TCV Tissue culture virus
PFU Plaque forming unit
i.p. Intraperitoneal
i.v. Intravenous
TNF Tumor necrosis factor
MCP-1 Monocyte Chemoattractant Protein-1
ICAM-1 Intercellular Adhesion Molecule 1
TGF-β Transforming Growth Factor-beta
CTL Cytotoxic lymphocytes
PDGF Platelet-derived growth factor
E0.5 Day of fertilization
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of the central nervous system—the murine cytomegalovirus model. Cell Mol. Immunol. 2015, 12, 180–191. [CrossRef]

132. Sung, C.Y.W.; Seleme, M.C.; Payne, S.; Jonjic, S.; Hirose, K.; Britt, W. Virus-induced cochlear inflammation in newborn mice alters
auditory function. JCI Insight 2019, 4, e128878. [CrossRef] [PubMed]

133. Li, L.; Kosugi, I.; Han, G.P.; Kawasaki, H.; Arai, Y.; Takeshita, T.; Tsutsui, Y. Induction of cytomegalovirus-infected labyrinthitis in
newborn mice by lipopolysaccharide: A model for hearing loss in congenital CMV infection. Lab. Investig. 2008, 88, 722–730.
[CrossRef] [PubMed]

134. Gombos, R.B.; Wolan, V.; McDonald, K.; Hemmings, D.G. Impaired vascular function in mice with an active cytomegalovirus
infection. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, 937–945. [CrossRef] [PubMed]

135. Ikuta, K.; Ogawa, H.; Hashimoto, H.; Okano, W.; Tani, A.; Sato, E.; Kosugi, I.; Kobayashi, T.; Omori, K.; Suzutani, T. Restricted
infection of murine cytomegalovirus (MCMV) in neonatal mice with MCMV-induced sensorineural hearing loss. J. Clin. Virol.
2015, 69, 138–145. [CrossRef] [PubMed]

136. Liao, Y.; Zhang, Y.N.; Liu, X.L.; Lu, Y.Y.; Zhang, L.L.; Xi, T.; Shu, S.N.; Fang, F. Maternal Murine Cytomegalovirus Infection
during Pregnancy Up-regulates the Gene Expression of Toll-like Receptor 2 and 4 in Placenta. Curr. Med. Sci. 2018, 38, 632–639.
[CrossRef] [PubMed]

137. Georgiades, P.; Ferguson-Smith, A.C.; Burton, G.J. Comparative developmental anatomy of the murine and human definitive
placentae. Placenta 2002, 23, 3–19. [CrossRef]

138. Rossant, J.; Cross, J.C. Placental development: Lessons from mouse mutants. Nat. Rev. Genet. 2001, 2, 538–548. [CrossRef]
139. Smith, M.G. Propagation of Salivary Gland Virus of the mouse in Tissue Cultures. Proc. Soc. Exp. Biol. Med. 1954, 86, 433–440.

[CrossRef]
140. La Torre, R.; Nigro, G.; Mazzocco, M.; Best, A.M.; Adler, S.P. Placental enlargement in women with primary maternal cy-

tomegalovirus infection is associated with fetal and neonatal disease. Clin. Infect. Dis. 2006, 43, 994–1000. [CrossRef]
141. Tsutsui, Y. Effects of cytomegalovirus infection on embryogenesis and brain development. Congenit. Anom. 2009, 49, 47–55.

[CrossRef]

http://dx.doi.org/10.1093/infdis/jir121
http://www.ncbi.nlm.nih.gov/pubmed/21592980
http://dx.doi.org/10.1016/j.ajog.2016.06.003
http://www.ncbi.nlm.nih.gov/pubmed/27287685
http://dx.doi.org/10.1016/j.jcv.2011.07.005
http://dx.doi.org/10.1007/s00431-006-0172-6
http://dx.doi.org/10.1080/14767050802609767
http://dx.doi.org/10.2217/fvl.10.8
http://dx.doi.org/10.1093/infdis/120.4.445
http://www.ncbi.nlm.nih.gov/pubmed/4309994
http://dx.doi.org/10.1002/path.1711250102
http://www.ncbi.nlm.nih.gov/pubmed/214532
http://dx.doi.org/10.1093/infdis/155.4.661
http://www.ncbi.nlm.nih.gov/pubmed/3029242
http://dx.doi.org/10.1093/infdis/163.2.276
http://dx.doi.org/10.1111/j.1440-1827.1995.tb03428.x
http://dx.doi.org/10.1007/BF01384337
http://dx.doi.org/10.1002/1096-9926(200008)62:2&lt;79::AID-TERA3&gt;3.0.CO;2-S
http://dx.doi.org/10.1186/1743-422X-4-26
http://dx.doi.org/10.1128/JVI.01214-08
http://dx.doi.org/10.1038/cmi.2014.51
http://dx.doi.org/10.1172/jci.insight.128878
http://www.ncbi.nlm.nih.gov/pubmed/31484824
http://dx.doi.org/10.1038/labinvest.2008.39
http://www.ncbi.nlm.nih.gov/pubmed/18475257
http://dx.doi.org/10.1152/ajpheart.01027.2008
http://www.ncbi.nlm.nih.gov/pubmed/19181963
http://dx.doi.org/10.1016/j.jcv.2015.06.083
http://www.ncbi.nlm.nih.gov/pubmed/26209396
http://dx.doi.org/10.1007/s11596-018-1924-z
http://www.ncbi.nlm.nih.gov/pubmed/30128872
http://dx.doi.org/10.1053/plac.2001.0738
http://dx.doi.org/10.1038/35080570
http://dx.doi.org/10.3181/00379727-86-21123
http://dx.doi.org/10.1086/507634
http://dx.doi.org/10.1111/j.1741-4520.2009.00222.x


Int. J. Mol. Sci. 2021, 22, 214 19 of 19

142. Tsutsui, Y.; Kosugi, I.; Kawasaki, H.; Arai, Y.; Han, G.P.; Li, L.; Kaneta, M. Roles of neural stem progenitor cells in cytomegalovirus
infection of the brain in mouse models. Pathol. Int. 2008, 58, 257–267. [CrossRef] [PubMed]
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