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Abstract: With today’s environmental challenges, developing sustainable energy sources is crucial.
From this perspective, woody biomass has been, and continues to be, a significant research interest.
The goal of this research was to develop new technology for mapping willow tree yield grown in
a short-rotation forestry (SRF) system. The system gathered the physical characteristics of willow
trees on-the-go, while the trees were being harvested. Features assessed include the number of trees
harvested and their diameter. To complete this task, a machine-vision system featuring an RGB-D
stereovision camera was built. The system tagged these data with the corresponding geographical
coordinates using a Global Navigation Satellite System (GNSS) receiver. The proposed yield-mapping
system showed promising detection results considering the complex background and variable light
conditions encountered in the outdoors. Of the 40 randomly selected and manually observed trees in
a row, 36 were successfully detected, yielding a 90% detection rate. The correctly detected tree rate of
all trees within the scenes was actually 71.8% since the system tended to be sensitive to branches,
thus, falsely detecting them as trees. Manual validation of the diameter estimation function showed a
poor coefficient of determination and a root mean square error (RMSE) of 10.7 mm.
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1. Introduction

Biomass has garnered much interest as an alternative sustainable energy source through
combustion and transformation. Biomass comprises natural materials from living, or recently
dead, plants, trees, or animals which are recycled as fuel in industrial production. More specifically,
forest biomass consists of all parts of the tree, such as the trunk, bark, branches, needles, leaves,
and roots [1]. At the basic level, photosynthesis allows trees to convert light energy, carbon dioxide,
and water into biomass and oxygen. Since trees fix carbon while growing, the production of woody
biomass demonstrates a neutral carbon balance when cultivated in low-quality areas such as marginal
and abandoned fields. To maximize carbon fixation, research has focused on tree species that yield
high amounts of rapid biomass production. Suitable species for biomass production include Willow
(Salix spp.), Poplar (Populus spp.) and Eucalyptus (Eucalyptus spp.). Forest biomass can be processed
as biofuel in a solid, liquid, and gaseous phase, which can then be burnt to generate useful energy,
usually in the form of electrical energy [2].

As biomass production can positively impact sustainability in the energy industry, Precision
Agriculture (PA) has had a positive impact on sustainability in the agricultural industry. In the case of
crop production, this technology aims at implementing site-specific management (SSM) solutions for
agricultural inputs [3]. By doing so, farmers can optimize their operations, reducing the effect of these

Sensors 2020, 20, 2650; doi:10.3390/s20092650 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7279-3597
https://orcid.org/0000-0003-4546-0898
http://dx.doi.org/10.3390/s20092650
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/9/2650?type=check_update&version=2


Sensors 2020, 20, 2650 2 of 18

inputs on the environment. PA technologies rely heavily on the Global Navigation Satellite System
(GNSS), which can be used to locate agriculture vehicles in real-time in a field environment. One of
the earliest and most common applications of GNSS-based systems is yield monitoring and mapping.
Yield monitoring systems are designed to estimate crop yield and/or yield quality in real-time during
harvesting [4]. The system is then able to link yield estimates to geographical coordinates to produce a
yield map. The map is updated in real-time on a display that can be viewed by the operator. After
harvesting, it can be retrieved for further analysis to ascertain its effectiveness in terms of performance,
impact of management practices, locating low- and high-yielding zones, and so on.

Although yield maps are essential tools for today’s agriculture, not all crops can be monitored for
yield. Currently on the market, yield-monitoring systems are available for grain (e.g., corn, soybean,
wheat), cotton, and sugarcane. Consequently, farmers growing other field crops (e.g., specialty crops,
vegetables, fruits) must still rely on prior techniques to determine crop yield, where spatial resolution
is far inferior to yield monitoring systems.

Methods have been proposed to estimate the yield of specialty crops based on optical feature
detection [5–8]. The acquisition of image data using vision sensors, such as conventional cameras, can
be analyzed in real-time or post-harvest by computer-vision (CV) algorithms to generate yield maps.
The main advantage of optical feature detection is its flexibility since multiple types of feature can be
extracted from an image such as color, texture, and shape. Yield-monitoring systems can be built with
the capability of extracting distinctive features of a crop to use the output to produce a yield map.

A machine vision (MV)-based yield-monitoring system was developed for vegetable crops [6].
Vegetable segmentation was performed through the watershed algorithm and color data was used
for classification. The system was designed to detect crop flow at the individual level, classify them
according to shape and size, and count them. Testing was done with shallot onions, but the algorithm
was constructed in a way to make it transferable to charlotte onions, Chinese radish, carrots, and
lettuce. Results showed a coefficient of determination (R2) of 0.46 for the overall accuracy of the system.
A single RGB camera was used and occlusion, as well as variable light conditions, were the limiting
factors for this research.

An image segmentation framework for fruit detection and yield estimation in apple orchards had
been investigated [7]. A spherical video camera capable of capturing a full 360◦ panoramic view was
mounted on a remotely controlled testing platform. The framework included contextual information
concerning relevant metadata to evaluate state-of-the-art convolutional neural network (CNN) and
multiscale multilayered perceptions to perform pixel-wise fruit segmentation. Once the binary image
was obtained, watershed segmentation followed by a circle Hough transform algorithm to detect and
count the apples. Results showed that the combination of CNN pixel-wise classification and watershed
segmentation produced a higher coefficient of determination (R2) at 0.83 compared to post-harvest
fruit counts obtained from grading and counting machines.

An automated apple yield monitor using a stereo rig was demonstrated [8]. The system was
mounted on an autonomous orchard vehicle fitted with a controlled artificial light source for nighttime
data acquisition. Images from both sides of each tree row were captured. The algorithm started by
hue and saturation segmentation, followed by the detection of local maxima in the grayscale intensity
profile (i.e., specular reflection) as the feature indicating apples. Once detected, the intensity profile
over four lines (i.e., going through the local maxima) of 21 pixels each was checked for roundness to
remove false positives. Apples were then registered and counted as crop yield estimation. Errors of
−3.2% and 1.2% in yield were reported for red and green apples, respectively.

A method for robust detection of trees using color images in a forest environment was published [9].
The proposed approach was characterised by a seed point generation algorithm followed by a multiple
segmentation algorithm. Output segments were refined by morphological operations before being
evaluated by a quality function based on the segment’s specific property (i.e., area of convex hull, area,
orientation, eccentricity, solidity, and height). For each seed point, the segment with the best quality
score was selected and all selected segments were fused in one frame which represented the final
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output of the tree detection algorithm. For that research, 30 images containing 197 trees were collected
in a forest environment. The tree detection rate was reported as 86.8% with a corresponding precision
of 81.4%.

The goal of this research was to develop a new yield mapping system for willow trees based on
MV technology. The system was designed and built in partnership with Ramea Phytotechnologies, Inc.
(Ramea), based in Saint-Roch-de-l’Achigan, Quebec. The system was designed to gather the physical
characteristics of willow trees and tag them to their geographical coordinates on-the-go, while the
trees are being harvested. Features assessed include the number of trees harvested and their diameter.
Furthermore, the system has potential as a fast and non-destructive yield estimation tool which could
be used to assess carbon dioxide (CO2) sequestration of willow trees grown in a short-rotation forestry
(SRF) system over time.

Since methods for growing willows in SRF vary greatly depending on countries and regions [2],
the developed willow tree yield mapping technology must be malleable enough to make this research
relevant to industry partners and to producers around the world. Optical sensors have the capacity of
sensing more than one feature such as color, intensity, geometry and texture [10]. Considering that the
number of stems and morphological characteristics of the willow trees were assessed, and not bulk
mass, the use of an optical, multi-sensing, platform was desirable. Moreover, for systems to be adopted
in the agricultural industry, they must be affordable, rugged, and easy to install and manage. Thus,
willow tree yield mapping based on MV was the preferred and selected method to accomplish the
goals of this project.

2. System Components

In terms of fruit detection and localization, several studies have been carried out to assess the
performance of different vision sensor technologies. In doing so, researchers reported on the main
issues involved in using camera sensors in an outdoor environment. Variations in light conditions,
as well as variations of color, shape, and size of the target, are common problems that researchers
face [10]. Moreover, complex plant canopy structures can create occlusion of targets, which makes
detection even more challenging [11]. For this research, cameras using monochrome imagers were
preferred to diminish the effect of variations in light conditions that are prominent in outdoor scenes.

To improve target segmentation in the complex background environment, a camera featuring 3D
vision was also favored to better extract the willow’s feature from the scenes. By using two imagers, it
is possible to extract depth information from a pair of images. This technology is called stereovision. It
aims to mimick the mammalian binocular vision system by collecting a stereo pair of images of a scene
from two cameras with a known geometrical relationship. Using a matching algorithm, the system
matches key-points of one stereo-pair image to the other. It then estimates the disparity between
matching key-points and uses this to compute depth according to the system’s intrinsic and extrinsic
parameters [12].

2.1. Sensors

To acquire raw data, the RealSense D435 RGB-D camera from Intel (Intel Corporation, Santa Clara,
California) and a Global Positioning System (GPS) receiver with Wide Area Augmentation System
(WAAS) differential correction capability model 19x-HVS from Garmin (Garmin Ltd., Olathe, Kansas)
were used. The RealSense D435 (Table 1) features infrared active stereovision technology to create
depth maps using an embedded infrared projector. Its large Field Of View (FOV) makes it ideal for an
outdoor setting with large targets at close range. The camera is fitted with one red green blue (RGB)
imager and one stereo depth module containing two monochrome imagers. Images from the stereo
depth module are processed by an embedded processor (Vision Processor D4) to generate depth maps.
The RealSense can output four data streams at once in real-time: RGB stream, two monochrome imager
streams, and the depth map stream. The on-board Vision Processor D4 makes this camera suitable for



Sensors 2020, 20, 2650 4 of 18

an embedded solution since it does not require the host computer to perform the heavy computation
required by the stereo-matching algorithm.

Table 1. RealSense D435 camera specifications.

Depth Technology Active IR Stereo

Depth Stream FOV
(Horizontal × Vertical × Diagonal) 87◦ ± 3◦ × 58◦ ± 1◦ × 95◦ ± 3◦

Depth Stream Resolution Up to 1280 × 720
Depth Stream Frame Rate Up to 90 fps

Minimum Depth Distance (Min-z) 0.1 m
Maximum Depth Range Approximately * 10 m

RGB Sensor FOV
(Horizontal × Vertical × Diagonal) 69.4◦ × 42.5◦ × 77◦ ± 3◦

Connector USB-C 3.1 Gen 1

* Varies depending on calibration, scene, and lighting condition.

For this research, a resolution of 1280 × 720 was used to obtain the best pixel-to-millimeter
conversion factor possible. The infrared projector was turned off, since it is designed to improve
performance in low texture scenes such as a dimly lit white wall [13,14].

2.2. Sensors Position and Mount

Early in the research, the front end of the tractor was considered to be the best location for the camera.
The region of interest (ROI) for the willow trees was set between 3.05 m and 3.66 m measured from the
soil surface. To achieve this with the RealSense FOV, the camera was mounted at 1.78 m from the ground
surface and given a 28.5◦ tilt angle measured from the ground plane. The horizontal axis of the camera
FOV was parallel to the row and the perpendicular distance between the camera and the row was 1.22 m.

The camera and GNSS mount (Figure 1) were designed as a multi-purpose assembly. In addition
to providing mounting points for both sensors, it served as a guard against branches and sunlight.
Branches can be expected to be leaning outside of the row if they have been hit while harvesting the
adjacent row. Contact between a branch and the stereovision camera could result in loss of frame
quality and physical damage to hardware (i.e., camera and data transfer cable). As the camera is
tilted, direct sunlight can overexpose the optical sensors resulting in a significant decline of the frame’s
information. The mount was designed to protect the camera when the sun is shining directly above.
The sensor mount is also designed to allow easy fine-tuning of the camera position and angle within
the field. Extra mounting points were also integrated to secure the assembly to the tractor in the event
that future vibration became excessive.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 19 

 

Table 1. RealSense D435 camera specifications. 

Depth Technology Active IR Stereo 

Depth Stream FOV 

(Horizontal × Vertical × Diagonal) 
87° ± 3° × 58° ± 1° × 95° ± 3° 

Depth Stream Resolution Up to 1280 × 720 

Depth Stream Frame Rate Up to 90 fps 

Minimum Depth Distance (Min-z) 0.1 m 

Maximum Depth Range Approximately* 10 m  

RGB Sensor FOV 

(Horizontal × Vertical × Diagonal) 
69.4° × 42.5° × 77°±3° 

Connector USB-C 3.1 Gen 1 

*Varies depending on calibration, scene, and lighting condition. 

For this research, a resolution of 1280 × 720 was used to obtain the best pixel-to-millimeter 

conversion factor possible. The infrared projector was turned off, since it is designed to improve 

performance in low texture scenes such as a dimly lit white wall [13,14]. 

2.2. Sensors Position and Mount 

Early in the research, the front end of the tractor was considered to be the best location for the 

camera. The region of interest (ROI) for the willow trees was set between 3.05 m and 3.66 m 

measured from the soil surface. To achieve this with the RealSense FOV, the camera was mounted at 

1.78 m from the ground surface and given a 28.5° tilt angle measured from the ground plane. The 

horizontal axis of the camera FOV was parallel to the row and the perpendicular distance between 

the camera and the row was 1.22 m.  

The camera and GNSS mount (Figure 1) were designed as a multi-purpose assembly. In 

addition to providing mounting points for both sensors, it served as a guard against branches and 

sunlight. Branches can be expected to be leaning outside of the row if they have been hit while 

harvesting the adjacent row. Contact between a branch and the stereovision camera could result in 

loss of frame quality and physical damage to hardware (i.e., camera and data transfer cable). As the 

camera is tilted, direct sunlight can overexpose the optical sensors resulting in a significant decline 

of the frame’s information. The mount was designed to protect the camera when the sun is shining 

directly above. The sensor mount is also designed to allow easy fine-tuning of the camera position 

and angle within the field. Extra mounting points were also integrated to secure the assembly to the 

tractor in the event that future vibration became excessive.  

 

Figure 1. (a) Overall view of final camera position; (b) close view of final camera and Global 

Positioning System (GPS) mount. 

(a) 

  

(b) 

RealSense camera 

GPS receiver 

Guard 

Figure 1. (a) Overall view of final camera position; (b) close view of final camera and Global Positioning
System (GPS) mount.
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3. Willow Tree Algorithm

The multiple steps that had to be taken in order to count the number of willow trees and to
estimate their diameter for each frame are described below and summarized in Figure 2. From this
point, when the term “monochrome imager” is used, it implies the leftmost imager of the RealSense
D435 sensor (looking at the front view). Since the depth map is computed from this frame’s perspective
of a scene, they are naturally aligned from one another and additional computation is avoided. The
frame produced by the monochrome imager will be referred to as the “grayscale image”.
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Figure 2. Willow tree algorithm flowchart.

Python was chosen as the programming language for the algorithm and was heavily dependent
on NumPy and OpenCV libraries. As the RealSense camera is marketed to developers, a low-level
software development kit (SDK) was freely provided by Intel through GitHub (GitHub, Inc., San
Francisco, CA, USA) for the RealSense.

The Willow Tree algorithm runs using multiple parameters inputted in open-sourced and
user-defined functions. It is relevant to mention that no formal procedures took place to optimize
those values. For steps where parameters were involved, system performance and processing time
were important criteria with special attention for overfitting since the system was not validated on an
extensive data set.

As this system is the first of its kind to the knowledge of the researchers (i.e., MV-based yield
monitoring system for willow trees grown in SRF), it was of interest to see if classical CV operations
and algorithms such as masks, histograms, adaptive histogram equalization and contours properties
could achieve tree detection and diameter estimation with good results. More complex methods such
as machine learning and deep learning were not examined for the development of this algorithm since
potential problems with classical methods were not known for this application [15]. Furthermore,
for the system to be adopted, the algorithm must be able to run on an embedded system, with finite
computing power, and affordable for farmers while being designed for a harsh environment.
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3.1. Segmentation

To perform the segmentation, several steps were carried out using the depth map and the grayscale
image to yield a segmented binary frame. The first was the computation of a depth mask, followed
by the application of adaptive histogram equalization on the grayscale image. Then, both outputs
were used as inputs in a dynamic histogram thresholding function where seed points were determined
and input in the connected components algorithm flood-fill. The flood-fill algorithm output was the
product of the segmentation procedure.

3.1.1. Depth Mask

The computation of a binary mask using the depth map was a necessary prior step to the dynamic
histogram thresholding. The goal was to create a rough mask of the row being harvested to be input
in the histogram calculation. This ensured that most of the background pixels were not considered
in the histogram. A thresholding plane was first initialized to set the depth value for every pixel to
zero if it was greater than the threshold plane at a specific location. Since the camera was tilted at
28.5◦ from the soil surface, the threshold plane was tilted by the same amount to account for a greater
thresholding distance for the top pixel row compared to the bottom pixel row of the depth map. The
top was computed as 2.33 m and the bottom was set as a constant at 1.23 m, which corresponds to
the center of the row relative to the camera position. Using the vertical FOV of the monochrome
imager, the height of a pixel in meters was computed based on the perpendicular distance from the
camera to the threshold plane. Next, simple trigonometry was applied to find the length in meters of
the hypotenuse formed between the camera center (fix), the bottom pixel row (fix) and the currently
accessed row. This method was iteratively repeated until the top row was reached. This approach was
found to be more computationally efficient than rotating the depth map itself.

Before inputting the depth map in the thresholding function, a median filter was applied to
remove some of the noise with a 5 × 5 pixel square kernel. This type of filter works by replacing the
kernel’s center value by the median of all pixels under itself [16]. It was effective at removing the within
region noise while keeping the tree stems sharper than a standard Gaussian filter which was important
to promote accurate diameter estimation. The equation below shows the final thresholding operation.

Depth mask i, j =

{
1
0

if Depth mediani,j < Threshold planei,j
otherwise

(1)

3.1.2. Adaptive Histogram Equalization

Adaptive histogram equalization was used to increase the contrast in the grayscale image from
the monochrome imager. The goal was to increase the intensity of the tree stem pixels relative to the
background and non-tree foreground objects. The OpenCV implementation of the contrast-limited
adaptive histogram equalization (CLAHE) algorithm was used. This algorithm was first introduced by
Pizer, et al. [17] for post-processing of still medical images. It starts by dividing the input image into
regions. There are three classes of regions: the corner regions (one in each corner), the border regions
(adjacent to the image border), and the inner regions. Then, the CLAHE algorithm calculates the
histogram of each individual region independently. From the function input parameters, a clip limit is
calculated and applied to the histograms. Those histograms are then redistributed so as not to exceed
the clip limit. Lastly, the cumulative distribution functions of the resultant contrast-limited histograms
are determined and a linear combination of the four nearest regions are taken for grayscale mapping.
The major drawback of this first implementation was its expensive computation. However, Reza [18]
proposed another approach that made the CLAHE algorithm possible for real-time applications.
CLAHE, with a clip limit of 40 and 8 × 8 pixel subregions, was applied as a pre-processing step before
being input in the dynamic histogram thresholding function. The resulting frame is shown in Figure 3.
CLAHE was used over non-adaptive histogram equalization methods as it yielded a frame with a
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greater contrast between tree objects and the background; thus, making trees easier to segment using
the dynamic histogram thresholding methods explained in the next section.
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Figure 3. (a) Original grayscale image from the infrared imager; (b) grayscale image after applying the
contrast-limited adaptive histogram equalization (CLAHE) algorithm.

3.1.3. Dynamic Histogram Thresholding

A user-defined dynamic histogram thresholding function was implemented to find a list of pixel
intensities that were most likely representing a willow tree in the CLAHE equalized frame. While
developing the Willow Tree algorithm, it was noticed that when applying the depth mask to a histogram
function of the corresponding grayscale image, the histogram region representing the tree pixel count
spiked significantly compared to other regions.

The function was designed to take five arguments (i.e., image, mask, peak range, low limit, count
difference) and output a Python list of the intensity values (0 to 255 scale) that best represent the
tree objects. The first step was to compute the histogram of the complete input image with one bin
for every pixel intensity value and then to normalize the obtained histogram object from 0 to 255.
Those two operations use functions already available in the OpenCV library. Next, the location of the
maximum value was found, and the peak range parameter was applied where the central element was
the maximum value of the normalized histogram object (Equation (2)). Figure 4 graphically represents
the location of the parameters for the histogram of Figure 3b).

Intensity range boundaries = maximum pixel count± peak range
2 (2)
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In this case, the function was run with a peak range value of 50. A low and high clipping value
equal to the low limit parameter and the total number of bins were applied to restrict the intensity
range in one area of the histograms as well as handling run time errors in Python. The following
step was to check if the normalized pixel count values found in the intensity range respect the pixel
count difference relative to the maximum normalized pixel count found earlier. To perform this test,
the difference in Equation (3) was computed. If the difference was greater than zero, the intensity
value was added to the final list of pixel intensity values which best represent willow trees in the
current frame.

Di f f erencei = intensity rangei − (maximum pixel count− count di f f erence) (3)

Pixel intensity listi =
{
intensity rangei i f di f f erencei > 0 (4)

3.1.4. Seed Point Determination and Flood-Fill Algorithm

In this final step of the segmentation procedure, the intensity values found in the previous step are
used to find seed point coordinates to be used in the flood-fill algorithm. The output is a binary image
where the white pixels represent the segmented areas that are most likely to be willow trees using
depth and intensity information from the scene. The first step was to create a frame, called background
removed, from which the seed points could be found. The following equation describes this operation.

Background removedi, j =

{
input imagei, j

0
if Depth maski,j , 0

otherwise
(5)

In this case, the input image is the same as with the previous step, which is the CLAHE equalized
grayscale image. Next, for every intensity value in the pixel intensity list, the background removed
image was scanned and the seed point image array is given a value of 1 at the location where a match
is found.

Seed pointsi, j =

{
1
0

if Backgroud removedi,j = Pixel intensity listk

otherwise
(6)

Using the argwhere() function in the NumPy library, a list of all (x,y) coordinates of the marked
pixels in the seed point array was created. Finally, the coordinates were iteratively used in the OpenCV
implementation of the flood-fill algorithm. Two other image arrays were given to the function; the
CLAHE equalized infrared image and an empty mask. The grayscale image was used to compute the
connected components of a seed point and for which they had their value set to 1 for the corresponding
pixel in the mask. For two pixels to be connected, they must agree with the following statement:

Maski, j =

{
1
0

i f inputx,y − lowdi f f ≤ inputi, j ≤ inputx,y + updi f f
otherwise

(7)

where, inputi, j is the pixel intensity of the currently observed pixel and inputx,y is the pixel intensity
of the input image at the seed point coordinate. The parameters lowdiff and updiff are the maximal
lower and higher brightness difference, respectively, between the currently observed pixel and its
corresponding seed point. In this case, it is a fixed range implementation since the condition always
refers to the original seed points [16]. For this research, a value of 10 and 30 for lowdiff and updiff,
respectively, were used.

More points were added to the mask as the function scan the list of seed point coordinates. The
running time was limited by adding an if statement to check if a value of 1 was already assigned in the
mask at the coordinate of the next seed point to be analyzed. This condition reduced the amount of
time flood-fill would be run. For example, Figure 5a contains 11,300 points, but only 748 were used to
produce the segmentation result in Figure 5b. After the iteration of all seed points, the mask array was
reported as the final segmented binary image of the current scene
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3.2. Tree Detection

In the detection procedure of the willow tree algorithm, a morphological closing operation was
applied to the segmented binary image before using the OpenCV contour function to find all close
contours that could represent willow trees. A user-defined function was designed to filter out unwanted
contours and retain only tree contours under the same assumption. Contours that were still present
after the filtering operation were considered by the algorithm as true detected willow trees.

The morphological closing operation was undertaken to reduce noise that might have emerged
in the flood-fill algorithm. It is commonly used after connected-components algorithms to remove
elements resulting purely from noise and to connect nearby regions [16]. The closing operation is
simply two morphological operations that are applied one after the other. The first is dilatation, where
the pixel at the center of the kernel is replaced by the local maximum of all pixels covered by the
kernel. For the binary image, the dilatation operation has the effect of “growing” each filled region.
The second operation is erosion. It is simply the inverse of dilation, where the pixel at the center of the
kernel is replaced by the local minimum of all pixels covered by the kernel. The effect of erosion on a
binary image is to “reduce” the size of each region [16]. For this research, the kernel size used was a
solid 2X15 kernel, applied with only one iteration. The kernel was set as an upward rectangle since it
was the shape the target objects were expected to be. A morphological close was applied using the
OpenCV implementation.

Once the noise had been removed, the binary image was input to the contour-finding function
provided in the OpenCV library (i.e., f ind contours() function). It outputs a list of contour objects
found in the binary frame. At the basic level, contour objects are a list of points that represent a curve
within the image [16]. Contour object makes it possible to retrieve features about filled regions such as
area, center, and bounding box. Those features were exploited to filter the raw contour list and find
parameters for the true tree contours.

Contour filtering used two criteria to remove non-tree contours. The first was the area to remove
small filled regions that were most likely unwanted foreground objects or background residuals. The
area of each contour was computed using a built-in function in OpenCV. A fixed threshold area of 600
was applied for this experiment. Next, it was assumed that if a contour is a tree, the contour must be
present on the bottom pixel row of the frame, so it does not “appear” somewhere in the frame. To test
this assumption, each contour was individually drawn in an empty image array. If all pixel values of
the bottom row were equal to zero, the observed contour did not meet the requirement and was then
removed from the contour list. Contours that were left in the list were considered as true detected
willow tree regions. The willow tree algorithm then moves on to assign an identification (ID) number
and to find the diameter of all detected trees within the frame. Figure 6b shows the final output.
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3.3. Diameter Estimation

Once the willow trees were detected, the algorithm proceeded by computing the diameter of
the trees. As a first step, the pixel width of all remaining contours at the bottom row of the image
array was found. Moreover, all trees were at a different distance from the camera, so the depth at this
location was also found. Lastly, those features were fed into a function to find the pixel to millimeter
ratio and the diameter in millimeters for all detected trees.

To find the pixel width and depth of a detected tree, its corresponding contour was drawn in an
empty image array. Then, the bottom pixel row of the drawn contour and the depth median frame
were extracted. A new array, including both aligned rows, was created. The array was then trimmed
on the column axis, where zeros were present in the contour row. The function traversed the row
starting from both ends until it reached a non-zero element. From there, two possible cases were
handled; in the first case, the contour row is solid (meaning no zeros within the trimmed array) and for
the second case some zeros are present.

Finding the pixel width and depth for the first case was straightforward. Once the zero columns
were trimmed, the length of the array was saved as the pixel width and the depth was computed as the
median of all depth values at the coordinates corresponding to the non-trimmed pixels. For the second
case, the array was split in two at the location of the first zero encounters while traversing the contour
row. Then, both sections were trimmed and traversed again for zeros. If no further zeros were found,
the function recoded the pixel width and depth for every section. The section showing a greater pixel
width was assumed to belong to the true tree. The consequence of handling all contours as in the first
case would be to significantly overestimate the tree's diameter.

As depth values did not always exist at the non-trimmed pixel coordinates, the zeros within the
depth row were removed, so they did not affect the median result. In the particular case where all
depth values were not available at the non-trimmed pixel coordinate, the median of the depth for all
other contours in a specific frame was assigned. This was to be expected since depth values were not
always available for all pixels due to low confidence within the RealSense stereo-matching algorithm.

To compute the estimate of the tree's diameter, a function takes the argument found in the previous
step (i.e., pixel width, depth) along with the depth scale and the FOV of the monochrome imager, which
are a fixed constant acquired through the camera’s SDK. The depth scale was first used to convert the
depth value of an observed tree from the camera scale to millimeters. Then, the half-width of the frame
in millimeters for the converted distance was found. Using this value, the pixel-to-millimeter ratio was
found for the observed tree. The final step was to multiply the pixel width with the obtained conversion
factor. The steps described above to find any treei diameter are shown by the following equation,

Distancei (mm) = Depth valuei ∗Depth scale ∗ 1000 (8)

Hal f f rame widthi (mm) = tan
(

FOVx
2 ∗

π
180

)
∗Distancei (9)
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Ratioi

(
mm

pixelx

)
=

Hal f f rame widthi
Frame sizex/2 (10)

Diameteri (mm) = Pixel widthi ∗Ratioi (11)

where Depth scale is the camera’s extrinsic parameter to convert the depth from the camera’s 3D
coordinate system to meters; Distance is the distance between the tree and the camera in millimeters;
FOVx is the camera’s FOV over the x-axis; Half frame width is the equivalent length of 640 pixels on the
x-axis (i.e., half the normal resolution of 1280 pixels) in millimeters for a particular scene at Distancei;
Frame sizex is the normal resolution on the x-axis in pixels (i.e., 1280 pixels); Ratioi is the pixel to
millimeter conversion factor for treei over the x-axis; and Diameter is the output diameter value for treei
in millimeters.

3.4. Field Trials

All field trials were conducted in Ramea fields located in Saint-Roch-de-l’Achigan. Preliminary
field trials were run in the first half of August 2019. The goal was to test the camera position as
discussed and test for any hardware issues on site. In the final field trials, five classes of trees were
defined, and eight trees were randomly selected per class. A total of 40 trees were observed from
the same row on the same day. The classes were defined with the Ramea team. They represent their
internal classification system for the manufacturing of green fences and noise barriers. Table 2 shows
the morphological characteristics of all classes.

Table 2. Willow tree classification classes.

Class Number Diameter Straightness Marker

1 28.57 mm < d < 34.92 mm Curvature < 3.05 m White
2 28.57 mm < d < 34.92 mm Curvature > 3.05 m Green
3 34.92 mm < d Curvature < 3.05 m Blue
4 34.92 mm < d 3.05 m < Curvature < 3.66 m Yellow
5 34.92 mm < d Curvature > 3.66 m Red

Two ranges for diameter were looked at: greater than 28.57 mm but smaller than 34.92 mm and
strictly greater than 34.92 mm. Trees having a diameter less than 28.57 mm were not targeted for
diameter characterization by Ramea, since they would be converted to mulch instead of being kept
as rods for manufacturing green fences and noise barriers. It is essential to mention that diameter
measurement for classification was taken at 152.4 mm from the ground surface. Diameter measurements
for data validation were taken at 1.88 m from the soil surface, which was the real-world height of pixels
located on the bottom row of the analyzed frame using a caliper with sub-millimeter accuracy. The
stem diameter was measured on the plane parallel to the row line and perpendicular to the ground
plane. Straightness was a subjective measure of how straight the stem was relative to itself for the 3.05
m to 3.66 m height section measured 152 mm from the ground surface. Table 2 describes where an
excessive curvature is located relative to the height range of interest, if any.

Each randomly chosen tree was identified using colored electrical tape as a marker. The electrical
tape was applied at 1.5 m above the soil surface. A caliper was used to measure the stem diameter at
1.78 m and 0.15 m from the ground surface. As stems are not perfectly round in nature, the diameter
was measured on a plane parallel to the tree row, which was coplanar to the plane used by the camera
to estimate diameter. To ensure repeatability, a custom-built measuring stick was prepared to indicate
the height where every measurement should be taken. This tool reduced the chance for errors as
well as making data collection faster. The tool was used to adjust the tilt of the RealSense camera as
well. Once it was placed straight up at the center of the row, the camera was tilted upward until the
corresponding mark (3.81 m) on the stick could be seen in the monochrome imager output frame.

Data was then recorded by driving the tractor in front of the row as if harvesting were taking
place. In order not to compromise the tree segmentation procedure, the colored electrical tape was
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placed below the RealSense camera FOV. To capture the markers, another camera, model KeyMission,
featuring a wide FOV color sensor from Nikon (Nikon Corporation, Tokyo, Japan), was used. The
latest model was able to capture the color markers in addition to the ROI of the RealSense. However,
this technique required manual work to match the marked trees with the correct tree ID to perform data
validation. As the Willow Tree algorithm was not ready for live testing during the harvesting season,
all four streams of the RealSense were saved as one .bag file along with one text file containing raw
GPS strings and one .mp4 file from the KeyMission for later analysis. Final field trials were conducted
in late September 2019. The tractor was a Massey Ferguson (AGCO, Duluth, Georgia) model 6485
equipped with a track system form SoucyTrack (SoucyTrack, Quebec, Canada). The operator aligned
the tractor center line with the center of the next parallel willow tree row allowing the camera to be
at roughly 1.22 m from the center of the row as designed. The data acquisition was carried out at a
speed of 2.3 km/h with the engine crank-shaft speed set at 2200 rotation per minutes (RPM). Those
parameters are typical for the harvesting operation at Ramea. Figure 7 shows the complete hardware
installed during the final field trials carried out on a sunny afternoon with little cloud cover.
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3.5. Data Analysis

To assess the performance of the tree-detection procedure, 10 labeled images out of the 37 images
containing the 40 observed trees were randomly selected and manually validated. Additionally,
stratified sampling of frames with respect to the number of detected trees was undertaken. Two
categories were created, frames containing 7 or less detected trees and frames containing 10 or more
detected trees. For each category, 3 frames were randomly selected, so a total of 6 frames were selected
as stratified samples. Thus, the complete set of images for which manual validation has been performed
was 16 out of 37 images from the same pass in the field (i.e., 10 random samples and 6 stratified
samples). This was done to better capture the distribution of the number of detected trees across frames
for statistical analysis. Three variables were examined in each frame: number of correctly detected
trees, number of falsely detected trees, and number of undetected trees. Since it can be ambiguous to
distinguish trees and branches visually, clear criteria had been specified to count a tree as a tree and
not a branch (and vice-versa). Criteria are defined in Table 3.
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Table 3. Tree detection validation criteria.

Criteria Number Criteria

1 Trees must be visible in the grayscale’s bottom pixel row as one complete
solid stem.

2 The stem must not be clustered in the same contour to be considered as
correctly detected trees.

3 Stems must be at least 10 pixels wide at the haft height of the frame.

The performance of the diameter estimation procedure was assessed using the 40 observed trees
in Ramea fields. They corresponded to eight randomly selected trees per class for the five classes
observed in the same row and on the same day. Since two ranges of diameters are examined within
all classes (i.e., 28.57 mm < d < 34.92 mm, 34.92 mm < d), classes with the same range were grouped
together. Thus, results from Class 1 and Class 2 are shown together as well as Class 3, Class 4, and
Class 5. Root mean square error (RMSE) was computed according to class group as well as for all data
points together. A linear regression with intercept fix at the origin between the observed and estimated
diameter was undertaken without regard to class. Moreover, the two highest residuals (i.e., above
and below regression lines) were removed from the dataset for further analysis. Hence, they were not
included in the linear regression.

4. Results and Discussion

4.1. Hardware Reliability

During the field trials, no issues related to hardware occurred. Mechanical and electrical
connections were sturdy, and the sensor mount did not show excessive vibration. No loss of power,
connection fault with sensors or loss of data took place. Considering the relatively high machine
vibration due to the installed track system, the system hardware proved to be rugged and reliable.

4.2. Tree Detection Results

Manual validation results of the tree detection procedure are shown in Figure 8. From the 16
images, a total of 135 trees were detected where 71.8% were correctly detected and 28.2% were falsely
detected. Furthermore, 19 trees were not detected, which represents 16.4% of the total detected count.
However, from the falsely detected group, 89.7% were branch objects and the remaining were clusters
of trees for which the algorithm filled in the same contour. To support those results, it was also
found that 90% of the 40 observed trees were correctly detected. This means that the algorithm was
more sensitive than expected to branch objects. From the manually validated images, no non-tree or
non-branch objects had been detected, which indicated that the segmentation procedure was able to
properly remove the background and none-tree like objects in the foreground. On the horizontal axis
of Figure 8, ID 4 to ID 37 are the 10 randomly sampled frames out the original 40 frames dataset. To the
right of ID 37, ID 26 to ID 0 represents the 6 stratified sampled frames.

Undetected trees were mostly due to fragmented filled regions, which in fact, represented a
single tree. Since the contour filtering function deletes regions smaller than a certain threshold before
confirming its presence on the bottom pixel row, if only a small region was observed, the entire contour
was deleted. Thus, all other contours representing the same tree were deleted as well and the tree
was not detected. The Willow Tree algorithm has no features to regroup fragmented contours of the
same object.

Looking at the distribution of the undetected trees within the sample of 40 observed trees, one tree
per class was undetected, excluding Class 5, which equates to a 90% detection rate. Table 4 summarizes
those findings.
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Table 4. Results of tree detection of the 40 observed trees.

Number of Trees
Tree Class

1 2 3 4 5

Observed 8 8 8 8 8
Correctly detected 7 7 7 7 8

Undetected 1 1 1 1 0

To examine detection precision, a linear regression between the true number of trees and the
estimated number of trees was undertaken with the same 10 randomly sampled and the 6 stratified
sampled frames (Figure 9). As can be seen, the algorithm tends to overestimate the count of true
trees in frames. Knowing that the system has a high amount of falsely detected trees due to branches,
this behavior was to be expected. ID 12 had the highest residual from the fitted regression line and so,
it was not included in the statistical analysis but still shown as an outlier in Figure 9. The resultant
linear regression features an R2 of 0.40 and a RMSE of 1.37 trees.Sensors 2020, 20, x FOR PEER REVIEW 15 of 19 
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High falsely detected tree rates were mainly due to branches being detected as trees. The willow
tree algorithm was sensitive to branches that were the closest to the camera since they could be picked
up by depth maps; hence, their pixel intensity value was included in the determination of seed point
coordinates to be input in the flood-fill algorithm. In the detection procedure, some of the filled regions
representing branches were not filtered out since they were large enough and present on the bottom
of the pixel row. Thus, improvement in contour filtering is needed to handle such cases without
diminishing the number of correctly detected trees. One solution would be the implementation of
a machine-learning technique to improve tree classification. Contour features could be fed into a
classifier, such as support vector machine (SVM), which would be able to distinguish between contours
representing trees and branches. SVM classifier has demonstrated a high accuracy rate compared to
other machine-learning algorithms for fruit detection in outdoor scenes [10]. However, to create a
robust machine-learning model, training data would need to be acquired at a different time of the day
(e.g., morning, afternoon), in different weather conditions (e.g., sunny, cloudy), and at a different time
of the year (i.e., spring, summer, fall). This, of courses, requires more time and resources but have the
potential to improve results.

4.3. Diameter Estimation Results

Due to detection performance, it was possible to analyze 36 of 40 data points. The slope of the
regression was found to be 0.78, which indicated that the function tends to underestimate tree diameter.
The RMSE for the full dataset was found to be 10.7 mm, which represents 37.5% and 30.7% of the low
and high diameter range boundaries, respectively. RMSE for group Classes 1–2 and Classes 3–4–5 was
10.6 mm and 10.8 mm, respectively. The overall coefficient of determination R2 was found to be poor
at 0.099 as shown in Figure 10.Sensors 2020, 20, x FOR PEER REVIEW 16 of 19 
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Figure 10. Measured tree diameter compared to estimated tree diameter.

Tree ID 277 and Tree ID 52 were the furthest outliers from the fitted regression line for the lowest
and highest diameter estimation, respectively. Analyzing the situation at these points, provided insight
into the system behavior. For Tree ID 277, the system output was 12.8 mm in diameter, where the
measured diameter was 43.2 mm. After the diagnosis, a possible cause was found to be the poor quality
of CLAHE equalized grayscale images. CLAHE equalized frames are used as input in the dynamic
histograms thresholding function to compute the histograms and find seed point coordinates. In this
case, some parts of the trees within the CLAHE frame were darker. Since the flood parameters in the
flood-fill algorithm are taken as constant, the function was not able to connect the darker components
to the final segmented binary image. Other contours of the same scene appeared skeletal as well.
Figure 11 displays the CLAHE frame and the filtered contours frame.
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Figure 11. (a) CLAHE equalized frame; (b) segmentation procedure output with labeled detected trees.

For Tree ID 52, the system output a diameter of 43.4 mm whereas the measured diameter was only
24.9 mm. Again, a diagnostic of the processed frames was conducted. In contrast to the previous case,
here, the CLAHE equalized was too bright in the background, leading to the non-tree object being
connected to a pixel pertaining to true tree objects as the clear distinction in pixel intensity was more
subtle. This effect caused the filled region to be larger and hence, overestimated the diameter.

Even if the use of color images was avoided to increase the robustness of the algorithm in varying
light conditions, the effect was not completely prevented with grayscale images. Since the RealSense
was tilted upward to improve depth map quality, it was also prone to over saturation when beams
of light found their way through the tree canopy and into the camera’s optical sensors. To address
this problem, the low and high difference parameters used by the flood-fill algorithm could adapt
dynamically to current frames. It is possible that intensity location of the peak count value in the
dynamic histogram thresholding function could be used as an indicator.

4.4. Row Transect

Because data were acquired for a single willow tree row, spatial interpolation of willow tree count
would not have been appropriate. Instead, a transect graph (Figure 12) was produced to show the
variability of yield (i.e., number of trees) along the row. Since the operator must stop harvesting to
unload before moving on to the next load, data collection must stop once for every cycle. To produce a
yield map for an entire field, all data from single loads need to be merged and analyzed together. A
spatial interpolation using the inverse distance weighting method could then be used.
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5. Conclusions

A willow tree yield-mapping technology was developed based on the number and diameter of
tree stems harvested. An RGB-D camera using stereovision technology was implemented to collect
grayscale images and compute the depth maps of willow tree row scenes grown in a SRF system, prior
to harvesting. The system also has potential as a fast and non-destructive yield estimation tool which
could be used to assess carbon dioxide (CO2) sequestration of willow trees grown in SRF over time.
Data from a GNSS receiver were integrated to tag image data to their corresponding geographical
coordinates. A CV algorithm was developed to detect willow trees in images and estimate their
diameter. To achieve this, the algorithm relied on equalized grayscale images using the CLAHE
algorithm and depth maps information. The RGB stream of the camera was not used. The system was
designed and built in partnership with Ramea Phytotechnologies, Inc.

The system was able to correctly detect 71.8% of tree stems and estimate their diameter with an
RMSE of 10.7 mm. To achieve this, the willow tree algorithm relied on equalized grayscale images
using the CLAHE algorithm and depth map information. Detection errors were primarily due to the
detection of branches as tree objects which represented 89.7% of the number of falsely detected trees.
Diameter estimation errors were mostly due to the low contrast between pixels pertaining to tree
objects and backgrounds despite the implementation of the CLAHE algorithm. To increase system
performance, the contour filtering procedure needs to be strengthened and the system must be able
to better handle cases of oversaturation in scenes. This system is the first of its kind and provides a
promising first step for further development of a more robust and commercially viable product.
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