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Abstract
Four sea snakes (two Hydrophis major, one Hydrophis platurus, one Hydrophis elegans)
were found washed ashore on different beaches in the Sunshine Coast region and Fraser

Island in Queensland, Australia between 2007–2013. Each snake had multiple granulomas

and locally extensive regions of pallor evident in the hypaxial and intercostal musculature

along the body. Lesions in two individuals were also associated with vertebral and rib frac-

tures. Histological examination revealed granulomas scattered throughout skeletal muscle,

subcutaneous adipose tissue and fractured bone. These were composed of dense aggre-

gates of microsporidian spores surrounded by a mantle of macrophages. Sequences

(ssrRNA) were obtained from lesions in three sea snakes and all revealed 99% similarity

with Heterosporis anguillarum from the Japanese eel (Anguillarum japonica). However,
ultrastructural characteristics of the organism were not consistent with those of previous

descriptions. Electron microscopic examination of skeletal muscle revealed large cysts (not

xenomas) bound by walls of fibrillar material (Heterosporis-like sporophorocyst walls were

not detected). The cysts contained numerous mature microsporidian spores arranged in

small clusters, sometimes apparently within sporophorous vesicles. The microspores were

monomorphic, oval and measured 2.5–3.0 μm by 1.6–1.8 μm. They contained isofilar polar

filaments with 11 (infrequently 9–12) coils arranged in two ranks. This is the first published

report of a microsporidian infection in hydrophiid sea snakes. This discovery shows micro-

sporidia with molecular affinities to Heterosporis anguillarum but ultrastructural characters

most consistent with the genus Pleistophora (but no hitherto described species). Further

studies are required to determine whether the microsporidian presented here belongs to the

genus Heterosporis, or to a polymorphic species group as suggested by the recognition of a
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robust Pleistophora/Heterosporis clade by molecular studies. The gross and histological

pathology associated with these infections are described.

Introduction
Microsporidia are opportunistic intracellular spore-forming pathogens [1]. Although suggested
as sharing a common ancestor with fungi [2–4], microsporidia do not resemble fungi morpho-
logically, nor are they considered true fungi [5]. Recent taxonomic classification positions the
phylumMicrosporidia alongside the Aphelida and Cryptomycota within the superphylum
Opisthosporidia [6]. The phylumMicrosporidia contains more than 1,300 species belonging to
over 180 genera [4–7] infecting many hosts ranging from invertebrates to humans. Classifica-
tion into groups or clades is often largely based on habitat and host species [8]. Infections are
often systemic and tissue tropism is exhibited for many species [9], with the latter often being
used to assist with phylogenetic classification. Ecological niches are displayed among micro-
sporidian clades and infections are recognized in terrestrial, freshwater and marine hosts
although almost half the known genera of microsporidians infect aquatic hosts [8]. Known as a
cause of disease in invertebrates such as silkworms and bees, as well as fish, crustaceans and
eels [10–13], outbreaks of infection may result in significant economic losses. Of greatest
impact in aquaculture facilities, microsporidian infections result in significant muscle damage,
growth deformities, reduced productivity as well as unsightly flesh, most notably in farmed
fish, crustaceans and eels [12, 13]. Immunocompromised humans are also susceptible to infec-
tions of the gastrointestinal tract [14] and muscle [15] and infections in transplant recipients
[16] have been reported in the corneas of otherwise healthy individuals [1].

Traditionally, the classification of microsporidia was based on morphology alone, but this
has been challenged more recently with the application of molecular genetics [8, 17]. Compara-
tive analysis of small subunit ribosomal RNA (ssrRNA) sequence data challenges the existing
taxonomy [18]. In addition to a demonstrated tissue tropism, important morphological charac-
teristics of these organisms include: the size of mature spores; the arrangement and the number
of coils of the polar tube; nuclear arrangement; presence or absence of a sporophorous vesicle
(SPV) and sporophorocyst (SPC); monokaryotic or diplokaryotic status of merogonous and
sporogonous developmental stages; and the organisms capacity to induce xenoma formation.
Morphological plasticity among microsporidia is a recently recognized phenomena [17] and
can lead to conflicting results in speciation when phylogenetic and ultrastructural characteris-
tics are used. The use of ssrRNA-based phylogenetics has identified ‘clades’ within the phylum
Microsporidia [9] and it has even been proposed that the classes Terresporidia, Aquasporidia
and Marinosporidia be recognized based on host habitat colonization [8]. The use of ssrRNA-
based phylogenetics is currently proposed as the main discriminator for relatedness amongst
microsporidia [9], yet its use as a sole method for taxonomic classification is limiting and often
confined to sequence data from one region of the genome. Thus, the most robust method for
describing novel microsporidia is achieved with the integration of a range of features including
host type, ecology, pathology, ultrastructural morphology and phylogenetics [8, 9].

Documentation of microsporidians in reptiles is limited and only a few publications are
available describing macrospore and microspore morphology and sequence data [19, 20]. Pub-
lished reports in reptiles include infections with Heterosporis anguillarum (host species: Tham-
nophis sirtalis) [20, 21], Pleistophora atretii (host species: Atretium schistosum gunther) [22],
Encephalitozoon lacertae (host species: Podarcis muralis andMabuya perrotetii) [19, 23], Glu-
gea danilewski (host species: Natrix natrix) [24], Pleistophora sp. (host species: Sphenodon
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punctatus) [25] and an unidentified microsporidian species (host species: Pogona vitticeps)
[26]. Infections are limited to skeletal muscle or the gastrointestinal tract but may also be sys-
temic. A brief report of microsporidia in three Australian reptile species exists in the Taronga
Zoo Wildlife Pathology Registry [27] from 1992. The host species included a central knob-
tailed gecko (Nephrurus amyae), water dragon (Intellagama lesueurii) and a yellow bellied sea
snake (Hydrophis platurus), but although Hartley and Reece (unpublished) provided a short
description of refractile, acid-fast staining organisms surrounded by an inflammatory reaction,
there was no further morphological description or suggested identification of the organisms.
These organisms induced widespread myonecrosis and within the ovary of the gecko, some
ova were “replaced by masses of microsporidia within macrophages” [27]. These reports were
later cited by Ladds (p269) [28] however no further information on pathogenicity, morphology
or identification was provided.

Marine snakes from the subfamily Hydrophiinae (true sea snakes) live an entirely marine
existence, as opposed to their counterparts the Laticaudinae (sea kraits) that spend various
amounts of time on land. More than 60 species of hydrophiids are recognized, with approxi-
mately 30 species permanently inhabiting Australian waters [29]. Considerable variation in dis-
tribution exists, as well as microhabitat use, feeding methods and prey species selection among
sympatric species. The large majority of hydrophiid sea snakes feed on marine eels and bony
fishes, however, a small number of species with a reduced venom apparatus feed exclusively on
fish eggs (Emydocephalus annulatus and Aipysurus eydouxii) [30, 31]. Sea snakes occupy differ-
ing habitat niches with some species existing in shallow coral reefs (e.g. Aipysurus sp.), some in
estuarine and soft sediment habitats (e.g. Hydrophis elegans andHydrophis major) and others
living an entirely pelagic existence (e.g. Hydrophis platurus). Few investigations into disease
and mortality in sea snakes have been done other than analyses relating to epibiota [32], the
effects of trawling on population decline [33], and a recent publication by Gillett et al. [34] on
sea snake assessment and veterinary examination.

This is the first published report of microsporidian infections in hydrophiid sea snakes and
describes morphological and molecular sequence data (ssrRNA) as well as the associated gross
and histological pathology.

Materials and Methods

Sample collection
Eighty three sea snakes (Hydrophiinae) collected following stranding between Fraser
Island (-24.709138, 153.257189), Queensland, Australia and the Gold Coast (-28.164607,
153.526735), Queensland, Australia were necropsied at Australia Zoo Wildlife Hospital
(AZWH) from 2007 to 2013. Snakes were either found deceased on the beach, died shortly
after collection, or were euthanased due to untreatable conditions found during veterinary
examination, as per Gillett et al. 2014 [34]. All work was conducted under the AZWH rehabili-
tation permit (as snakes were rescued wildlife) and ethics permit issued by the University of
Queensland ethics committee (SVS/442/10/AUSZOO/VET-MARTI/QDERM).

During gross necropsy, isolated granulomas were identified in the hypaxial and intercostal
musculature at varying locations along the body in 4/83 snakes. Three of these snakes were col-
lected from separate locations on the Sunshine Coast region, Queensland and the fourth was
collected from Fraser Island, Queensland. All affected snakes were collected in separate years,
and at differing times of the year (Table 1). All snakes were identified to species level, given a
body condition score (as per Gillett et al. 2014), weighed and a snout to vent length (SVL) was
recorded. In 4/4 snakes, small pieces of the affected tissue were collected in 10% neutral buff-
ered formalin and subsequently processed for histopathology. In 3/4 snakes (HM2, HM1 and
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HE1), additional samples of the affected tissue were frozen and stored at -80°C. The formalin
fixed samples were paraffin-embedded, sectioned (3 to 5 μm) and stained with haematoxylin
and eosin. Subsequently the formalin-fixed, paraffin-embedded tissue was utilised for trans-
mission electron microscopy.

Molecular characterisation and phylogeny
A 25 mg piece of fresh-frozen tissue from each of the three individuals (HM1, HM2 and HE1)
was processed for DNA extraction using a DNEasy Blood and Tissue kit (Qiagen, Chadstone,
Victoria), as per manufacturer directions. ssrRNA gene sequences were amplified by PCR
using the universal microsporidial primers 18f (50-CAC CAG GTT GAT TCT GCC-30) and
1492r (50-GGT TAC CTT GTT ACG ACT T-3`) for amplifying unknown rRNA genes in
novel microsporidia species [35]. PCR was performed in a 25 μL reaction volume, comprising
6 μL of DNA, 2.5 μL 10x PCR buffer (Qiagen, Chadstone, Victoria), 4 μL of dNTP at 1.25 mM
(Qiagen, Chadstone, Victoria), 2.5 μL each of 18f and 1492r primer at 10 mM, 1.25 units of
HotStarTaq (Qiagen, Chadstone, Victoria) and the remaining volume made of nuclease-free
water. A negative control sample containing nuclease free water in place of DNA was run in
parallel. Amplification was carried out in a Biorad C1000 thermal cycler. After initial denatur-
ation for 4 minutes at 94°C, 35 cycles were completed of the following: denaturation at 94°C
for 50 seconds, annealing at 56°C for 50 seconds and extension at 72°C for 80 seconds. A final
extension of 7 minutes at 72°C was completed before holding at 4°C. The resulting PCR ampli-
fication product was analysed by gel electrophoresis prior to sequencing. The PCR product was
then purified and sequenced by the Animal Genetics Laboratory (AGL) within the School of
Veterinary Science, The University of Queensland. Chromatographs were read and analysed
using the software program Finch TV v1.4.0 (Geospiza Inc., Seattle, WA) and contigs assem-
bled by combining corresponding forward and reverse sequences. Sea snake sequences were
aligned using the ClustalW accessory application within BioEdit c1.0.9.0 [36]. A BLAST search
was completed to determine similarity with other sequences in GenBank. All sequences with
greater than 92% sequence similarity and greater than 90% query cover were included in phylo-
genetic analysis. To assist with determining identity and phylogenetic placement, at least one
representative from each major microsporidian group (as per Vossbrinck, 2005) was also
included in phylogenetic analysis. Sequences selected represented species from freshwater, ter-
restrial and marine hosts and from the classes Aquasporidia, Marinosporidia and

Table 1. Case details for sea snakes affected by microsporidia.

ID Species Stranding
date

Stranding location Latitude Longitude Weight
(grams)

SVL
(cm)

Body
condition

Disease/Injury status

HP1 Hydrophis
platurus

5/01/2007 Currimundi Lake,
Sunshine Coast,
QLD

-26.7657 153.1369 270 NA NA Trauma—Spinal fracture
and osteomyelitis

HM1 Hydrophis
major

26/07/2011 Dundubara, Fraser
Island, QLD

-25.1575 153.1440 890 130 Good Trauma—Rib fractures
and osteomyelitis

HM2 Hydrophis
major

28/11/2012 Mooloolabah Beach,
Sunshine Coast,
QLD

-26.6827 153.1248 430 120 Poor Neoplasia–disseminated
adenocarcinoma

HE1 Hydrophis
elegans

2/08/2013 Marcoola Beach,
Sunshine Coast,
QLD

-26.5820 153.0979 450 133.7 Emaciated Neoplasia–disseminated
adenocarcinoma

HP1, Hydrophis platurus 1; HM1, Hydrophis major 1; HM2, Hydrophis major 2; HE1, Hydrophis elegans 1

doi:10.1371/journal.pone.0150724.t001
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Terresporidia. Non-microsporidian outgroups for phylogenetic analysis included a representa-
tive from the neighbouring Aphelidia, Cryptomycota, Chytridiomycota and Zygomycota phyla
[6]. Partial ssRNA sequences were used to generate phylogeny. All sequences were aligned
using Muscle [37] to a final alignment length of 1920 positions (the inclusion of non-micro-
sporidian outgroups resulted in increased dataset length—Data in S1 Dataset). The maximum
likelihood tree was constructed using PhyML [38] with 1000 bootstrap replications. Bootstrap
values were expressed as percentages and only values above 50 were shown in the final tree.
The TIM3 + G + I substitution model was specified based the results of a jModelTest 2.0 analy-
sis of the alignment. MrBayes 3.2.4 [39] was used to construct a Bayesian inference tree using 3
million generations, sample frequency of 100 and a burn-in value of 10%. As TIM3 is not sup-
ported by MrBayes, the GTR + G + I model was specified as the closest over-parameterised
model [40]. Convergence and burn-in values were assessed using Tracer [41]. Only posterior
probabilities above 50 were shown in the final tree. Sea snake microsporidia sequences were
submitted to GenBank with the accession numbers KT380106, KT380107 and KT380108.

Transmission electron microscopy
Only formalin fixed tissues were available for transmission electron microscopy (tEM). Tissues
were re-fixed with 2.5% glutaraldehyde in 0.1 M cacodylate buffer. All processing was done
with the assistance of a Pelco Biowave microwave oven (Ted Pella, Redding, USA). The sam-
ples were then washed with 0.1 M cacodylate buffer, and post fixed with 1% osmium tetroxide
in 0.1 M cacodylate buffer. They were further washed with ultra-high quality water then dehy-
drated through a graded acetone series and infiltrated with Epon resin and polymerised at
60°C for 2 days. Ultramicrotomy was performed on a Leica Ultracut UC6 ultramicrotome and
sections of 50 nm thickness were mounted on copper grids and stained with 5% uranyl acetate
in 50% methanol, followed by Reynolds lead citrate. The sections were viewed in a JEOL 1010
transmission electron microscope operated at 80 kV and images were collected on an Olympus
Soft Imaging Veleta digital camera.

Results

Sea snake species
Two snakes were identified as Hydrophis major, one as Hydrophis platurus, and one as Hydro-
phis elegans. All snakes were deemed mature based on snout to vent length (SVL) and weight
[34], and all were recovered from different beach locations (Table 1).

Gross pathology
Two animals had evidence of trauma with a vertebral fracture observed in HP1 and multiple
costal fractures in HM1. The two remaining snakes (HM2 & HE1) had multiple, variably-
sized, off-white nodules scattered throughout the liver and spleno-pancreas which were histo-
logically identified as adenocarcinomas. Scattered throughout the hypaxial and intercostal
musculature were multifocal to coalescing aggregates of off-white to tan tissue (granulomas)
often manifesting as locally extensive regions of discoloration. These areas appeared to be con-
centrated around the spinal injury in HP1 and closely associated with costal fractures in HM1
(Fig 1A). In HM2 and HE1 the granulomas were not associated with any visible trauma and
were confined to the thoracolumbar region (Fig 1B & 1C). Locally extensive regions of pallor
were evident throughout the muscle adjacent the granulomas (Fig 1D).
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Histopathology
Disrupting the skeletal muscle and at times bone, as well as being scattered throughout the
adjacent subcutaneous adipose tissue (Fig 2A), were multiple, at times coalescing, dense aggre-
gates of microsporidian spores typically surrounded by a thin mantle of macrophages and fur-
ther enclosed by a delicate fibrous capsule (Fig 2B). The noted spores were round to ovoid and
measured 2.0–2.6 x 1.0–1.5 μm. These had thin refractile walls and on occasion a basophilic
crescent-shaped structure was apparent at one pole. The intervening tissue was variably oede-
matous and contained scattered heterophils and macrophages.

Transmission electron microscopy
Transmission electron micrographs showed occasional large cysts containing hundreds of
refractile microsporidian spores in the skeletal muscle, bound by a wall of fibrillar material
(FM) (Fig 3A). Most spores were scattered loosely throughout the cyst, but occasionally

Fig 1. Gross appearance of axial muscles in hydrophiid sea snakes bearing numerous microsporidian granulomas. a) Multiple granulomas (arrows)
containing microsporidian parasites associated with costal fractures inHydrophis major (HM1). b) Multiple granulomas (arrows) in the hypaxial muscles
adjacent to the spine inHydrophis elegans (HE1). c) Multiple granulomas (arrows) visible in the intercostal muscles ofHydrophis major (HM2). d) Locally
extensive regions of pallor (arrows) in the hypaxial and intercostal muscles of Hydrophis major (HM1).

doi:10.1371/journal.pone.0150724.g001
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clusters of up to 30 spores were embedded in dense homogenous ground substance (Fig 3B),
some clusters were apparently bound by a sporophorous vesicle (pansporoblast) membrane.
The majority of spores, however, were strewn irregularly throughout the cyst supported by
less-dense heterogenous ground substance interspersed with discontinuous aggregates of fibril-
lar or membranous material (Fig 3C). The spores poorly infiltrated with resin resulting in
shrinkage artifacts and holes were evident in many sections. It was difficult to determine if the
spores were monokaryotic or diplokaryotic, but where artifacts were not so severe, spores
appeared monokaryotic. Many spores contained a posterior vacuole, and an anterior irregu-
larly lamellated polaroplast was occasionally seen (Fig 3D). All spores present were mature in
appearance (with well-developed spore walls and polar tubes) and no immature or developing
merogonic or sporogonic stages were observed. Mature spores were monomorphic, oval in lon-
gitudinal section and measured 2.5–3.0 μm long by 1.6–1.8 μmwide. Spores appeared to have
an outer thin electron-dense exospore wall 0.04–0.05 μmwide with a roughened surface lack-
ing any distinct projections or protruding elements (Fig 3E & 3F). An inner thick electron-
lucent endospore wall was visible measuring 0.10–0.14 μm and this was often overlaying a
shrinkage artifact separating it from the spore cytoplasmic contents (Fig 3E). The spores con-
tained well developed polar filaments, which appeared isofilar and round-oval in cross-section
measuring 0.1–0.11 μm long by 0.08 μmwide (Fig 3F). Sections through the polar filaments
were located in two ranks lateral to the longitudinal axis suggesting an arrangement of 11 coils
(infrequently 9–12).

Molecular analysis
Three sequences were amplified from the DNA of spores present in cysts in skeletal muscles
from three sea snakes. Comparison of sequences from all three samples revealed 100% similar-
ity except that HM2 had a single degenerate base symbol ‘W’ substituted where HM1 and HE2
had an adenine base. A BLAST search found that sea snake isolates shared 99% sequence iden-
tity with Heterosporis anguillarum (AB623036.1 & AF387331.1 and U47052.1 [Listed in Gen-
Bank as Pleistophora anguillarum]) isolated from fresh water eels (Anguilla japonica) in Japan

Fig 2. Histopathology of sea snake microsporidia a) Dense aggregates of microsporidian spores scattered throughout skeletal muscle and subcutaneous
adipose tissue. Snake HM2. Scale bar 100 μm b) Spore aggregates were surrounded by a mantle of macrophages and enclosed within a delicate fibrous
capsule. Snake HM2. Scale bar 10 μm.

doi:10.1371/journal.pone.0150724.g002
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and Taiwan. Maximum likelihood and Bayesian inference analyses packages produced trees
with very similar topology (Fig 4 & Fig 5). Sea snake isolates formed a well-supported clade
with the three freshwater eel isolates. A sister clade was formed byHeterosporis spp. isolated
from freshwater fish from the USA. The Heterospora clades were included in a broader clade
that incorporated Pleistophora and Ovipleistophora species from brackish and freshwater hosts,
Dasyatispora levantinae from a stingray (Dasyatis pastinaca), Loma embiotocia and Glugea
anomala from marine and freshwater fish and Vavraia culicis from mosquitoes. A sister clade
with species infecting predominantly terrestrial hosts is represented, and includes Enterocyto-
zoon bieneusi infecting humans. Clades affecting predominantly freshwater hosts occupy a
more basal position in the tree.

Fig 3. Transmission electron micrographs of sea snake microsporidia a) Cyst containing hundreds of mature
microsporidian spores bound by a wall of fibrillar material (FM) in the skeletal musculature (SkM). b) Spores
embedded in dense ground substance and apparently surrounded by sporophorous vesicle membranes
were occasionally observed. c) Spores were usually embedded in heterogenous ground substance with
occasional fibrillar/membranous patches (arrow). d) An irregularly lamellated polaroplast (P) was
occasionally seen in sections of mature spores. e) The spore wall consisted of a thin electron-dense
exospore wall (EX) with a roughened surface lacking distinct surface projections or protrusions, an inner thick
electron-lucent endospore wall (EN) often overlying a shrinkage artifact (SA) separating it from the spore
cytoplasmic contents. f) Section through the periphery of a mature spore showing internal cross-sectional
detail of isofilar polar filaments arranged in two loose ranks (arrow).

doi:10.1371/journal.pone.0150724.g003
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Discussion
To our knowledge, this is the first report describing microsporidian infections in marine
snakes. This manuscript details the gross and microscopic pathology within the host, spore
morphology and the phylogenetic relationships with known microsporidian species.

The pathological changes in the axial muscles reported here are consistent with those
induced by microsporidia infecting marine fish and marine invertebrates [42, 43]. Although
the direct impact of infection could not be assessed in these cases, the involvement of the axial
muscles could have been a significant impediment to locomotion in these animals given the
crucial role this musculature plays in instigating lateral undulatory movements [44]. Any com-
promise in the swimming ability of sea snakes could result in an increased risk of predation,
reduced feeding success and increased likelihood of anthropogenic injury (e.g. boat strike,
trawling) or stranding. Two of the four snakes in this study had evidence of traumatic injury
and three had suboptimal body condition (optimal condition described by Gillett et al. [34])
which could imply that the presence of microsporidial infection may negatively impact sea
snake hosts. It is unlikely that the infections were related to the neoplasms detected in snakes
HM2 and HE1 however, immunosuppression as a result of cachexia may have potentiated the
risk of infection [45]. The route of infection is unknown, and difficult to establish without a
definitive classification, but possibilities include ingestion of spores in infected prey or the colo-
nization of the open wounds noted in the traumatized snakes.

Fig 4. Maximum likelihood analysis of the relationships of sea snakemicrosporidia (HM1, HM2 and HE1) and representatives of eachmajor
microsporidian group based on the ssrRNA gene. Phylogenetic tree constructed using PhyML from 41 sequences using TIM3 + G + I substitution model.
Bootstrap values are listed as percentages generated from 1000 iterations. Bootstrap values were expressed as percentages and only values above 50 are
shown. GenBank accession numbers are listed after species and host species names. Host species are denoted in parentheses. Color denotes predominant
host habitat type (Red; terrestrial, Green; marine, Blue; freshwater, Orange; brackish). Scale bar indicates the number of nucleotide substitutions per site.

doi:10.1371/journal.pone.0150724.g004

Microsporidia in Australian Sea Snakes

PLOS ONE | DOI:10.1371/journal.pone.0150724 March 23, 2016 9 / 16



Genera of microsporidia reported to infect the muscle of marine hosts include: Ameson in
decapods [13], Pleistophora, Heterosporis, Kabatana,Myosporidium, Tetramicra, Glugea and
Microsporidium in fishes (host order: Anguilliformes, Perciformes) [8] and Dasyatispora in
stingrays [9], but no species are known to affect marine reptiles. Collectively, the ultrastructural
characteristics of the microsporidian parasites found in sea snakes did not conform to those of
any previously described species. Morphological characteristics of the microsporidians
detected in sea snakes have been compared in Table 2 against selected microsporidian species
in fishes, eels, snakes and lizards. The species chosen for comparison infect both freshwater
and marine hosts. Comparisons were made with non-xenoma-forming species of Pleistophora,
Dasyatispora, Ovipleistophora (all three genera forming sporophorous vesicles), Kabatana
(without sporophorous vesicles) andHeterosporis (forming sporophorocysts) as well as intra-
nuclear species of Nucleospora, and xenoma-forming species of Glugea, Loma,Myosporidium,
Tetramicra and Potaspora. Sea snake microsporidia did not form xenomas likeMyosporidium,
Tetramicra and Glugea; they did not form SPC’s like Heterosporis; but appeared to form SPV’s
like Pleistophora and Dasyatispora (but unlike Kabatana). Spore shape, size and polar filament
number and arrangement were unlike any previously described in these genera, but were most
similar to that of an Ameson sp. that infects the muscles of crabs, often associated with

Fig 5. Bayesian analysis of the relationships of sea snakemicrosporidia (HM1, HM2 and HE1) and representatives of eachmajor microsporidian
group based on the ssrRNA gene. PhyloBayes tree topology was constructed from 41 sequences using the GTR + G + I model. Bayesian posterior
probabilities are listed as percentages and only values above 50 are shown. GenBank accession numbers are listed after species and host species names.
Host species are denoted in parentheses. Color denotes predominant host habitat type (Red; terrestrial, Green; marine, Blue; freshwater, Orange; brackish).
Scale bar indicates the number of nucleotide substitutions per site.

doi:10.1371/journal.pone.0150724.g005
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Table 2. Morphological characteristics of sea snakemicrosporidia compared with selected microsporidia in marine and freshwater hosts.

Microsporidian species Host species Affected
Tissue

Xenoma SPC SPV Macro-spores Micro-spores

Size (mm) Polar tube
coils

Size (mm) Polar tube coils

Heterosporis-like
microsporidian. (current
publication)

Hydrophis major, H.
platurus, H. elegans

Muscle Absent Absent Present nr - 2.5–3.0 x
1.6–1.8

9–12 (2 ranks)

Plistophora atretii [22] Altretium schistosum Muscle Absent Absent Present nr - 4.8–5.4 x
1.8–2.5

nr

Heterosporis anguillarum
[20]

Thamnophis sirtalis Muscle Absent nr nr 5.3–6.8 x
2.0–4.0

29–42 (3–5
ranks)

2.7–3.5 x
1.8–2.4

8–11 (1 rank)

Heterosporis anguillarum
[11, 12, 46–48] (syn.
Plistophora anguillarum)

Anguilla japonica Muscle Absent Present Present 6.7–9.0 x
3.3–5.3

33–46 (1–3
ranks)

2.8–5.0 x
2.0–2.9

nr

Heterosporis
sunderlandae [49]

Perca flavescens, Esox
lucius, Sander vitreus

Muscle Absent Present Present 4.8–6.3 x
3.2–3.6

18–21 (1
rank)

nr -

Heterosporis saurida [50] Saurida undosquamis Muscle Absent Present Present 5.0–6.0 x
3.0–3.8

20–21 3.0–3.8 x
1.5–2.5

5–6 (1 rank)

Ovipleistophora
mirandellae [11, 51–53]
(syn. Pleistophora
mirandellae, P. longifilis,
P. elegans, P. oolytica)

Alburnus alburnus, Rutilus
rutilus, Leuciscus
cephalus, Gobio gobio,
Gymnocephalus cernuus,
*

Ovary, testes Absent Absent Present 7.3–12.0 x
3.5–6.4

nr 3.0–7.5 x
1.5–4.0

nr

Pleistophora
hyphessobryconis [11,
53–56]

Paracheirodon inessi,
Hemigrammus
erythrozonus, Phoxinus
phoxinus, Carassius
auratus, Danio rerio, *

Muscle Absent Absent Present 6.5–7.0 x
4.0

34 4.0–6.0 x
2.0–3.3

34 (3 ranks)

Pleistophora typicalis
[11, 53, 57, 58]

Myoxocephalus (Coyyus)
scorpius, Cottus bubalis,
Blennius pholis,
Gasterosteus pungitius

Muscle Absent Absent Present 6.3–8.3 x
3.0–3.3

33–39 (3
ranks)

3.0–5.6 x
1.5–3.0

10–22 (1–3 ranks)

Dasyatispora levantinae
[59]

Dasyatis pastinaca Muscle Absent Absent Present nr - 3.8–4.3 x
2.6–2.8

9–12 (2 ranks)

Nucleospora salmonis
[11, 60, 61] (syn.
Enterocytozoon
salmonis)

Oncorhynchus
tshawytscha, O. mykiss

Hemoblast
nuclei

Absent Absent Absent nr - 2.0 x 1.0 8–12

Kabatana newberryi [62] Eucyclogobius newberryi Muscle Absent Absent Absent nr - 2.8 x 1.9 9–10 (1–2 ranks)

Kabatana rondoni [63] Gymnorhamphichthys
rondoni

Muscle Absent Absent Absent nr - 4.25 x 2.37 8–10 (2 ranks)

Glugea anomola [11, 53] Gasterosteus aculeatus,
Pungitius puingitius, P.
platygaster, Gobius
minutus

Connective
tissue

Present Absent Present nr - 3.0–6.0 x
1.5–2.7

Isofilar. (1 rank)

Glugea vincentiae [64] Vincentia conspersa Subcutaneous
tissue

Present Absent Present 7.5–12.0 x
2.0–4.0

12–14 (1–3
ranks)

4.5–6.0 x
2.0–2.7

12–14 (1–3 ranks)

Loma embiotocia [11,
65]

Cymatogaster aggregata Gills Present Absent Present nr - 4.0–5.0 x
2.0–3.0

14–18

Myosporidium
merluccius [66]

Merluccius capensis/
paradoxus

Muscle Present Absent Present nr - 2.5–3.3 x
1.8–2.1

Anisofilar, 11–12
(1–2 ranks)

Tetramicra brevifilum
[11, 67]

Scophtalmus maximus,
Lophius budegassa

Connective
tissue &
muscle

Present Absent Absent nr - 3.7–4.8 x
2.0–2.7

3–4

Potaspora aequidens
[68]

Aequidens plagiozonatus Muscle Present Absent Absent nr - 3.4 x 1.9 8–9

nr, not recorded

*, Other species recorded but not published here.

doi:10.1371/journal.pone.0150724.t002
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significant muscle necrosis [13, 69]. However, Ameson spp. characteristically have an exospore
wall with thin hair-like appendages and diplokaryotic mature spores which were not present in
the sea snake microsporidia. Pleistophora spp. have been found in ‘cysts’ in the muscles of fish
[55, 70] and species such as Pleistophora hyphessobryconis show broad host specificity and
affect a range of freshwater fish species [55]. The microspores formed by several piscine Pleisto-
phora spp. were roughly comparable in size to those detected in this study (though most being
20–50% larger), but they usually contained many more coils of their polar tubes (17–34 cf. 10–
12 detected in this study) (11). The unique combination of ultrastructural characters displayed
by the microsporidian in sea snakes may suggest tentative placement, on morphological
grounds, in the genus Pleistophora.

Phylogenetic analysis of the ssrRNA of the microsporidian found in the tissues of three of
the hydrophiid sea snakes investigated here revealed high (99%) sequence similarity to Hetero-
sporis anguillarum isolated from freshwater Japanese eels (A. japonica). If used as the sole
method of identification, this may justify the placement of the sea snake microsporidian within
the genus Heterosporis, perhaps even as the species H. anguillarum, or at least one within the
Pleistophora/Heterosporis clade. However, despite molecular affinities with theHeterosporis
genus, there were distinct differences in cyst and spore morphology between the current organ-
ism and members of this clade that cannot be overlooked. Furthermore, sufficient morphologi-
cal characteristics were appreciable to indicate that this parasite did not completely conform to
any current microsporidian species description. In eels (Anguilla japonica),H. anguillarum has
been reported to form macrospores measuring 6.7–9.0 x 3.3–5.3 μm with 33–46 polar tube
coils and microspores 2.8–5.0 x 2.0–2.9 μmwith 33–46 polar tube coils (when recorded) [48].
In garter snakes (Thamnophis sirtalis),H. anguillarum was reported to form macrospores mea-
suring 5.3–6.8 x 2.0–4.0 μmwith 29–42 coils and microspores measuring 2.7–3.5 x 1.8–2.4 μm
with 8–11 coils (20). While the microspores found in the sea snakes closely resembled those
found in garter snakes, there was no evidence for the presence of macrospores, but more
importantly, a sporophorocyst encompassing all developmental stages was not present. The
results of the morphotypic and molecular characterization studies are therefore not congruent.
The absence of pre-spore developmental stages and problems with tissue infiltration precluded
a more comprehensive morphological assessment required for accurate species identification.
Further studies are required to determine whether the microsporidian presented here belongs
to the genus Heterosporis or to a polymorphic species group as suggested by the recognition of
a robust Pleistophora/Heterosporis clade by molecular studies (i.e. possibly representing a cryp-
tic or novel species).

It is becoming increasingly apparent that considerable morphotypic variation occurs not
only between, but also within the microsporidians, highlighted by the differential formation of
dimorphic spores; the development of monokaryotic or diplokaryotic meronts, sporonts or
combinations thereof; the variable persistence of SPV and SPC membranes; the types and
arrangements of polar filaments; and the formation of different types of cysts/xenomas. It is
plausible that parasite plasticity (recognized amongst microsporidia) and dimorphism amongst
class Marinosporidia [17] could explain the possibility of multi-trophic transmission or life-
cycle variation of the same taxon occurring within different hosts. Of relevance here is that the
manifestations of this morphologic plasticity is generally limited to alterations in karyostatus
(monokaryotic vs. diplokaryotic) and cytoplasmic placement [17] rather than variations in
exospore arrangement or the number and ranking of polar filaments and, as such, this is
unlikely to justify the ultrastructural and molecular paradoxes apparent in this case. In addi-
tion, the significance and reliability of the ssrRNA sequence analysis indicating a strong simi-
larity toHeterosporis anguillarum needs to be considered. The demonstrated sequence
similarity may simply reflect a high degree of genetic conservatism across the microsporidians
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for at least certain portions of their genome, especially in house-keeping genes with conserved
and variable regions. It suggests that examination of other gene sequences may be required to
accurately differentiate taxa within this group.

This manuscript outlines in detail the histological, ultrastructural and molecular character-
istics of anHeterosporis-like microsporidian infecting three Australian sea snake species.
Despite in depth analysis of available material, ultrastructural assessment of other development
stages would be required to more definitively characterize this organism. This study highlights
issues with taxonomic classification of microsporidians based solely on either spore morphol-
ogy or genomic analysis and demonstrates that sometimes tEM and DNA do not reconcile.
Ensuing studies should include detailed assessment of both genotypic as well as morphologic
characteristics when attempting to classify microsporidian isolates. This will in turn help to not
only expand our understanding of the group, but also reconcile discrepancies within the cur-
rent taxonomy.
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