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Escape From Treatment; the
Different Faces of Leukemic Stem
Cells and Therapy Resistance in
Acute Myeloid Leukemia
Noortje van Gils , Fedor Denkers and Linda Smit*

Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, Netherlands

Standard induction chemotherapy, consisting of an anthracycline and cytarabine, has
been the first-line therapy for many years to treat acute myeloid leukemia (AML). Although
this treatment induces complete remissions in the majority of patients, many face a relapse
(adaptive resistance) or have refractory disease (primary resistance). Moreover, older
patients are often unfit for cytotoxic-based treatment. AML relapse is due to the survival of
therapy-resistant leukemia cells (minimal residual disease, MRD). Leukemia cells with
stem cell features, named leukemic stem cells (LSCs), residing within MRD are thought to
be at the origin of relapse initiation. It is increasingly recognized that leukemia “persisters”
are caused by intra-leukemic heterogeneity and non-genetic factors leading to plasticity in
therapy response. The BCL2 inhibitor venetoclax, combined with hypomethylating agents
or low dose cytarabine, represents an important new therapy especially for older AML
patients. However, often there is also a small population of AML cells refractory to
venetoclax treatment. As AML MRD reflects the sum of therapy resistance mechanisms,
the different faces of treatment “persisters” and LSCs might be exploited to reach an
optimal therapy response and prevent the initiation of relapse. Here, we describe the
different epigenetic, transcriptional, and metabolic states of therapy sensitive and resistant
AML (stem) cell populations and LSCs, how these cell states are influenced by the
microenvironment and affect treatment outcome of AML. Moreover, we discuss potential
strategies to target dynamic treatment resistance and LSCs.

Keywords: therapy resistance, acute myeloid leukemia, leukemic stem cells, minimal residual disease, plasticity
INTRODUCTION

The major problem with cancer treatment is that many patients obtain impressive remissions after a
wide variety of treatments yet retain residual tumor cells after the initial therapy, which can develop
into recurrence or metastasis. Intratumor heterogeneity in relation to therapy response is the key
factor contributing to this treatment failure. For several decades, initial therapy for AML remained
unchanged and typically consisted of repetitive courses of intensive combination chemotherapy
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with anthracyclines and cytarabine, the so-called “7 + 3”
standard regimen, aiming at achieving complete remission
(CR, <5% of leukemic cells). In general, and dependent on
several risk factors, for patients under 60 years the 5-year
overall survival (OS) rate after this treatment is 40–50%, while
for patients older than 60 years the OS rate is only 15–20%. This
poor OS rate in the elderly is partly explained by a higher
proportion of patients with an unfavorable disease biology and
an inability to tolerate intensive chemotherapy (1). The poor
Frontiers in Oncology | www.frontiersin.org 2
treatment outcome of AML is in part of the patients due to
refractoriness to chemotherapy at diagnosis but in the major part
caused by relapse originating from a small subpopulation of
therapy-resistant leukemia cells (minimal residual disease,
MRD) (2, 3) (Figure 1). Relapses can occur after months or
even years. One of the causes of resistance to anthracyclines is the
altered function of the efflux pumps (4), while the efficacy of
cytarabine is significantly reduced by enzymatic degradation (5).
MRD is the sum of resistance mechanisms to initial therapy,
FIGURE 1 | The role of minimal residual disease, therapy resistance and LSCs in AML relapse development. In normal hematopoiesis (green box), quiescent
hematopoietic stem cells (HSCs) with self-renewal capacity give rise to multipotent progenitors (MPPs), which can differentiate towards lymphoid primed multipotent
progenitors (LMPPs), common myeloid progenitors (CMPs), common lymphoid progenitors (CLPs), granulocyte-macrophage progenitors (GMPs) and megakaryocyte
erythroid progenitors (MEP). These lineage-committed progenitors can produce terminally differentiated lymphoid, myeloid and erythroid blood cells. AML originates
from the transformation of normal HSCs, MPPs or more committed progenitors, developing in leukemic stem cells (LSCs) that subsequently can give rise to full-
blown leukemia. AML initiated from HSC and MPP highly express the transcription factor EVI-1. At AML diagnosis (blue box), a heterogeneous leukemia cell
population with a variety of sensitivities to therapy exists. Moreover, LSCs and normal hematopoietic (stem) cells, responsible for reconstituting the normal healthy
blood cells after therapy, co-reside in the patient’s bone marrow. While treatment with standard induction chemotherapy results in complete remission in the majority
of AML patients, a population of (chemo)therapy-resistant cells (TRCs) (minimal residual disease) constituting AML cells with leukemia-initiating potential survive the
treatment. LSCs with leukemia-initiating potential within MRD could initiate sooner or later a relapse. Instead of (chemo)therapeutic selection of pre-existing
subpopulations of LSCs, AML cells might adaptively obtain a leukemia re-initiating cell (LRC)-phenotype upon exposure to treatment.
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and MRD load is prognostic for OS and relapse-free survival of
AML patients (2, 3), indicating that therapeutic targeting of
MRD may delay or prevent a relapse, but may also improve the
chance of a more successful stem cell transplantation. Leukemia
cells with stem cell features (“leukemic stem cells”, LSCs)
residing within MRD are thought to be responsible for re-
initiation of the tumor (6, 7) (Figure 1). Changes in the
chromatin and epigenetic landscape, facilitating transcriptional
changes, are part of non-genetic therapy resistance, and the
presence of a LSC gene expression signature in AML predicts
the risk of developing a relapse (8, 9). Also, a LSC expression
signature mainly consisting of genes that are epigenetically
regulated showed an associat ion with response to
chemotherapy (10). Notably, during chemotherapy treatment
the frequency as well as the phenotype of LSCs changed,
indicating that the treatment itself affects the appearance of
relapse-initiating cells (11, 12) (Figure 1).

Venetoclax-based therapy could induce responses in
approximately 70% of untreated older AML patients (13, 14).
However, upfront resistance to venetoclax as well as relapse
following CR was appearing (14–17). Recently, it was shown that
monocytic AML is less sensitive to venetoclax than immature
AML due to the metabolic properties of the monocytic AML
cells (18).

The biggest challenge in the treatment of AML is relapse and
refractoriness caused by persistent AML cells that survive the
initial treatment. The term “drug tolerant persisters” is
frequently used to describe cancer cells with non-mutational
mechanisms of drug resistance. Persistent leukemia cells might
exist prior to drug treatment; however, they might also become
resistant upon exposure to a treatment (Figure 1). As shown
decades before with bacteria, persistent tumor cells can resume
their drug sensitivity upon drug removal (19). Leukemia
“persisters” are characterized by their quiescence state, different
energy consumption, adaptation to the bone marrow (BM)
microenvironment, changing identity, and phenotypic
plasticity. Mechanisms that cause their persistence include a
variety of epigenetic, transcriptional, and metabolic processes
that often co-exist (Figure 2). Clinical targeting of persistent
AML cells (MRD) will increase efficacy of treatment and finally
the survival of patients. For the development of successful
therapeutic strategies targeting AML MRD, it will be crucial to
understand the mechanisms that drive this persistence.
THE HETEROGENEITY AND PLASTICITY
OF LSCs AND MINIMAL RESIDUAL
DISEASE

AML has a hierarchical cellular organization, with a small
fraction of self-renewing LSCs at the apex of the hierarchy.
LSCs are defined as cells that can self-renew, which was
experimentally shown by the capacity of re-initiation of
leukemia when (serial) transplanted into immunodeficient
mice. Moreover, LSCs can differentiate into non-LSC blasts
Frontiers in Oncology | www.frontiersin.org 3
(20, 21). The identity of LSCs is influenced by clonal genetic
evolution, epigenetic alterations, their metabolic state, and their
microenvironment, finally resulting in intra- and interpatient
heterogeneity in their response to therapy (8, 22–24) (Figure 2).
In AML, LSCs have been described as a heterogeneous and
relatively rare cell population that could be isolated from the
leukemic bulk population by flow cytometry based on expression
of a set of specific cell surface markers, including CD34+CD38−
(20, 21). In general, CD34+CD38− AML cell populations display
a higher leukemia-initiating cell frequency than CD34+CD38+
AML cell populations (8, 22). Interestingly, in 80% of CD34-
positive AML cases, at least two distinct LSC populations were
identified, a CD34+CD38− fraction resembling normal
lymphoid primed multipotent progenitors (LMPP-like LSCs)
and a CD34+CD38+ fraction resembling granulocyte-
macrophage progenitors (GMP-like LSCs) which have been
derived from the LMPP-like LSC population. In almost 15% of
CD34-positive AML cases, there is a dominant population of
LSCs that resembles multipotent progenitors (MPP-like LSCs)
(25) (Figure 1). Understanding the biological properties of AML
LSCs, particularly their similarities and differences from normal
CD34+CD38− hematopoietic stem cells (HSCs) and their
heterogeneity and plasticity in individual patients is important
for the development of therapies that can specifically eradicate
these cells during the course of disease.

In the past, the identification of cell surface markers
differentially expressed between LSCs and HSCs has been
intensively studied, but thus far no unique marker universally
expressed on CD34+CD38− LSCs across AML patients but not
on normal HSCs has been discovered. This is mainly due to the
intra- and interpatient heterogeneity of AML. Many lymphoid
and myeloid antigens are aberrantly expressed in AML, which
give rise to complex leukemia-associated (immune)phenotypes
(LAIPs) that are highly heterogeneous and differ between the
individual AML patient (26). Expression of these LAIPs can also
change during the course of the disease (27). Despite this
heterogeneity, it was shown that specific cell surface markers
are increased on LSCs compared to HSCs or progenitors in part
of the AML patients, including CD123 (28), C-type lectin-like
molecule-1 (29), CD25 (30), CD32 (30), CD44 (31), IL1RAP
(32), and GPR56 (33) (Figure 2).

During the development of AML, genetic aberrancies induce
epigenetic changes, leading to increased epigenetic plasticity in
leukemic cells. While it was shown that genetic mutation-driven,
unique epigenetic profiles in leukemic cells could be developed
(34), LSCs demonstrated to share an epigenetic signature that is
mostly independent of genetic mutations (10). Accordingly,
transcriptional profiling of AML LSCs revealed a molecular
signature that is associated with leukemia “stemness” and
leukemia-initiating capacity and that is highly correlative
with AML prognosis (8, 9), indicating that the presence
of a transcriptional “stemness” profile affects response to
treatment. Moreover, reactivation of a self-renewal-associated
transcriptional signature was shown to be an important
characteristic of the transformation of normal progenitors into
LSCs (35). Together, these results implicated that there is high
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degree of plasticity in imposing “stemness” on leukemic cells,
and showed the importance of stem cell features for the response
to chemotherapy of AML cells.

Recently, several studies challenged the idea that LSCs are less
sensitive to chemotherapy than non-LSCs. These studies showed
Frontiers in Oncology | www.frontiersin.org 4
that LSCs are not selectively resistant to chemotherapy (12, 36,
37), and that the identity of the LSC is transient and dynamic
during the AML disease course (11, 12). Enhanced LSC
frequencies and phenotype diversity were observed at relapse
as compared to diagnosis, suggesting that current AML
FIGURE 2 | Continued
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FIGURE 2 | The different processes involved in therapy resistance in AML (stem) cells. Plasticity and therapy resistance: Within the hypoxic BM niche, persistent
AML (stem) cells might exist prior to drug treatment or might become resistant and obtain leukemia re-initiating potential upon exposure to a treatment, such as
chemotherapy or venetoclax. The transcriptional signature of AML LSCs is associated with “stemness” and leukemia-initiating capacity. LSCs aberrantly express
lymphoid and myeloid antigens, including CD123, CCL1, CD25, CD32, CD44, GPR56 and IL1RAP. These cell surface markers differ within and between individual
AML patients and can change during the course of the disease. Different processes are involved to induce therapy resistance: Epigenetically regulated therapy
resistance (yellow box): LSCs and therapy-resistant AML cells show modulated expression of components of the PRC2 complex (i.e. EZH1/2), upregulation of BET
proteins (i.e. Brd4), and altered methylation profile caused by enhanced HDM activity (i.e. LSD1, KDM2, KDM4, and KDM6) and HMT activity (i.e. DOT1L and G9a).
These differential epigenetic processes induce transcriptional deregulation of genes, like MEIS1, Myc and HOXA. Microenvironment and therapy resistance (green
box): In response to hypoxia, HIF-1a signaling promotes expression of VEGF, CXCR4, and SCF. CXCR4 on AML cells interact with CXCL12, increasing stromal
protective effects. VEGF expressing ECs protect VEGFR3-expressing AML cells from chemotherapy-induced apoptosis, due to increased BCL2/Bax ratios. LSCs
express VLA-4, VLA-5 and LFA-1 on their cell surface, which interact with the stromal ligands VCAM-1, ICAM-1 and fibronectin to support attachment to stromal
cells, promoting NF-kB signaling. SCF enhances anti-apoptotic and proliferative effects of fibronectin expressed on AML cells. Pro-inflammatory cytokines, including
TNFa, influence cell adhesion, promoting LSC survival and chemotherapy resistance through modulation of NF-kB signaling. Several members of the TGFb family
suppress proliferation of AML cells and enhance chemotherapy resistance. Metabolism and therapy resistance (orange box): AML LSCs often lack the ability to
enhance glycolysis and therefore switch from anaerobic glycolysis to mitochondria-mediated OXPHOS to generate ATP. Therapy-resistant AML cells show increased
mitochondrial mass and high OXPHOS. In addition to glucose, FFA can by metabolized to drive the TCA cycle and OXPHOS. Adipocytes, the major MSC present in
the BM, support survival of AML cells by stimulating FAO and OXPHOS through fatty acid transfer. Part of the LSC population expresses the fatty acid transporter
CD36 to control uptake of FFA. CPT1, regulated by PPAR, controls FAO translocation by conjugating FFA with carnitine for translocation into the mitochondrial
matrix. FABP4 is involved in the interaction of adipocytes with LSCs. Furthermore, LSCs are able to reduce ROS production generated by mitochondria in response
to hypoxia, by activation of autophagy. Inhibition of BCL2 by venetoclax efficiently reduces LSC survival by impairing homeostasis and inhibiting OXPHOS. Integrated
Stress Response induced resistance (blue box): In response to stress stimuli, such as ROS, the PERK-eIF2a ISR pathway is activated in LSCs. eIF2a is
phosphorylated by GCN2 or PERK, reducing global protein synthesis while allowing translation of specific genes, including ATF4. Increased activity of the ISR
pathway protects LSCs to enable restoration of homeostasis favoring survival. Signaling and therapy resistance (purple box): Upregulation of FOXM1 activates the
Wnt/b-catenin signaling pathway by direct binding to b-catenin, inhibiting its degradation, preserving LSC quiescence and promoting LSC self-renewal.
Overexpression of miR-126 repress multiple components of the PI3K/Akt pathway, resulting in the proliferation of LSCs, delayed G0 exit of LSCs and enhances
resistance to combination chemotherapy. AML, acute myeloid leukemia; ac, acetyl group; ATF4, activating transcription factor 4; ATP, adenosine tri-phosphate; BET,
bromodomain and extra-terminal motif; Brd4, bromodomain-containing 4; BM, bone marrow; CCL1, C-type lectin-like molecule 1; CPT1, carnitine O-
palmitoyltransferase 1; CXCR4, CXC chemokine receptor-type 4; CXCL12, CXC motif chemokine ligand 12; eIF2a, eukaryotic initiation factor 2a; EC, endothelial
cells; EED, embryonic ectoderm development; EZH1/2, zeste homolog 1 or 2; FAO, fatty acid oxidation; FABP4, fatty acid binding protein 4; FFA, free fatty acids;
GCN2, general control non-derepressible 2; HDM, histone demethylase; HIF-1a, hypoxia-inducing factor 1a; HMT, histone methyl transferase; HSC, hematopoietic
stem cell; ICAM-1, intracellular adhesion molecule 1; IL3, interleukin 3; ISR, integrated stress response; KDM, histone lysine demethylase; LFA-1, lymphocyte
function-associated antigen 1; LSD1, lysine-specific histone demethylase 1; LSCs, leukemic stem cells; me, methyl group; MSC, mesenchymal stromal cells; NF-kB,
nuclear factor kB; P, phosphorylation; PPAR, peroxisome proliferator-activated receptor; PERK, protein kinase RNA-like ER kinase; PI3K, phosphatidylinositol 3-
kinase; PRC2, polycomb complex 2; ROS, reactive oxygen species; SCF, stem cell factor; SUZ12, suppressor of zeste 12; TCA, tricarboxylic acid cycle; TGFb,
transforming growth factor b; tmTNFa, transmembrane tumor necrosis factor a; VCAM-1, vascular cell adhesion molecule 1; VEGF, vascular endothelial growth
factor; VEGFR, vascular endothelial growth factor receptor; VLA-4, very late antigen-4; VLA-5, very late antigen-5.
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therapeutic regimens promote dramatic changes in the LSC
compartment. Instead of chemotherapeutic selection of pre-
existing subpopulations of drug-resistant AML LSCs, AML
cells adaptively acquired a leukemia re-initiating cell (LRC)-
specific signature, implying that LRCs are developed in response
to chemotherapy (12). Interestingly, as these LRCs express a
LRC-specific gene signature, it might be very useful to measure
LRC markers after initial therapy for the early detection of
relapse initiation. Thus, LRCs were described to emerge after
chemotherapy treatment and differed from LSCs at diagnosis
(12) (Figure 1), indicating that it is most relevant to study the
relapse-initiating cells after the initial treatment.
THE QUIESCENT AND THERAPY
RESISTANT STATE OF LSCs

Cell-intrinsic, epigenetic, and transcriptional reprogramming
leading to reduced cell proliferation is associated with reduced
sensitivity to treatment and an increased tumor-initiating
potential (Figure 2). This reduced proliferative cell state might
exist before therapy but can also be acquired as a result of
treatment. For example, persistent cancer cells derived from
human glioblastoma patients entered a slow-proliferation state
Frontiers in Oncology | www.frontiersin.org 5
following treatment with the tyrosine kinase inhibitor dasatinib
(38). In patient-derived xenografts (PDX) of primary acute
lymphoblastic leukemia (ALL), a rare dormant subpopulation
of ALL cells resembling relapse-inducing cells were treatment
resistant and contained “stemness” properties (39). While most
of the clonogenic AML cells in AML patient samples were
actively cycling, a small number of AML progenitors were
quiescent. Furthermore, leukemia cells capable of engrafting in
NOD/SCID mice showed to be quiescent and in the G0 of the cell
cycle prior to transplantation. After serial transplantation a rare
quiescent long-term human SCID leukemia-initiating cell
population with extensive self-renewal capacity and extremely
low proliferation rate was identified, suggesting that only a small
proportion of the LSC pool has extensive self-renewal potential
and drives progression to AML (40).

CD34+CD38− LSCs in AML reside in the endosteal region of
mouse bone marrow, wherein they are primarily quiescent and
protected from cytarabine-induced apoptosis (7). These AML
LSCs could be activated to enter the cell cycle and become
sensitized to cytarabine by administration of exogenous
granulocyte colony-stimulating factor (41). Also, interleukin
(IL)-3, a critical cytokine involved in myeloid differentiation
and the ligand of CD123, could enhance the proliferation rate of
AML blasts. CD123 is involved in the potential of LSCs to engraft
in NOD/SCID mice, as blocking CD123 with the monoclonal
May 2021 | Volume 11 | Article 659253
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antibody 7G3, in the absence of exogenous human cytokines,
inhibited the engraftment and growth of AML CD34+CD38−
cells (28). Together, these results indicated that CD34+CD38−
LSCs are more quiescent than bulk AML cells, but can still
respond to hematopoietic growth factors thereby entering the
cell cycle.

MicroRNA (miR)-126 was identified as a critical regulator of
LSC quiescence (Table 1). Overexpression of miR-126 expanded
primitive CD34-positive cells, delayed the G0 exit of CD34
+CD38− LSCs, while the G0 status of CD34+CD38+ and
CD34-negative cell populations remained unaffected.
Moreover, miR-126 overexpression enhanced resistance to the
combination treatment of daunorubicin and cytarabine by
preserving LSCs in a quiescent state (42). Thus, miR-126 can
keep CD34+CD38− AML cells in a more primitive state by
increasing the proportion of quiescent CD34+CD38− cells,
thereby decreasing the overall proliferative output and
differentiation of AML blasts. miR-126 is highly expressed in
LSCs as compared to leukemic progenitors, and high miR-126
expression in AML is associated with poor OS and a higher
chance of relapse. Targeting miR-126 in LSCs reduced their
clonogenic capacity, in the absence of an inhibitory effect on
normal BM cells (43). Multiple components of the
phosphatidylinositol 3-kinase (PI3K)/Akt pathway are
repressed by miR-126 (42), consistent with previous mouse
studies demonstrating that the PI3K/Akt pathway plays a key
role in governing quiescence and regulating HSC and LSC self-
renewal (44, 45) (Table 1). Although most known self-renewal
regulators have comparable functions in HSCs and LSCs,
regulation of the cell cycle by miR-126 is opposite. Reduced
miR-126 levels resulted in HSC expansion, while the
maintenance of LSC was impaired (42). Accordingly,
expression of a constitutively active form of Akt in HSCs (45)
or loss of the negative regulator PTEN (44) resulted in HSC
exhaustion and LSC expansion, suggesting that targeting the
PI3K/Akt signaling pathway, like targeting miR-126, will
differentially affect quiescence and self-renewal in HSCs
and LSCs.

Another promising therapeutic target to eliminate quiescent
AML LSCs is FOXM1 (Table 1). Foxm1 upregulation activated
the Wnt/b-catenin signaling pathway by direct binding to b-
catenin and stabilizing b-catenin through inhibition of its
degradation, thereby preserving LSC quiescence, and
promoting LSC self-renewal in MLL-rearranged AML.
Targeting FOXM1 inhibited the survival, quiescence, and self-
renewal of MLL-AF9-transformed LSCs (46).

The WT1 gene and HCK, a member of the Src family of
tyrosine kinases, were identified as being more highly expressed
in cell cycle-quiescent primary AML LSCs than in normal HSCs.
Moreover, comparison of cell surface markers expressed on LSCs
and normal HSCs revealed that CD32 and CD25 are promising
therapeutic targets to specifically eradicate LSCs. While CD32
and CD25 are not or less expressed on normal HSCs, these
markers are expressed in a large fraction of primary human AML
LSCs (52.5% of the AML cases express CD32, CD25, or both on
the LSCs), stably located on the LSC cell surface after
Frontiers in Oncology | www.frontiersin.org 6
chemotherapy treatment and present on cell cycle-quiescent
AML-initiating cells residing within the endosteal niche (30).

Although several studies suggested that LSCs withstand
chemotherapy regimens due to quiescence and dormancy (7,
41), this concept was recently challenged. In a AML PDX mouse
model, residual AML cells were neither enriched in immature
quiescent cells, nor in LSCs after treatment with cytarabine,
suggesting that cytarabine similarly depleted quiescent G0 AML
cells and proliferating cells (36). LSCs were shown to have a
variety of sensitivities to cytarabine, and treatment with
cytarabine reduced the frequency of leukemia-initiating cells by
inducing an exit from G0, increasing proliferation and
subsequent depleting part of the LSCs. Transcriptional
profiling of cytarabine residual AML cells that contained
leukemia-regenerative capacity showed that cytarabine
sensitive and -resistant LSCs have a distinct transcriptome
(12). Together, these results suggested that part of the LSC
pool is not inherently resistant to chemotherapy, and also
showed that quiescence or dormancy is not sufficient to protect
LSCs from chemotherapy-induced cell death. Moreover, these
results suggested that LSCs can acquire genetic and epigenetic
alterations and exhibit phenotypic plasticity to adjust to
environmental changes, highlighting the dynamic properties of
AML LSCs during the course of therapy.
EPIGENETICALLY-DRIVEN DRUG
RESISTANCE IN AML

Epigenetic changes contribute to resistance to chemotherapy and
targeted treatments (89–91) (Figure 2). Epigenetic mechanisms
driving sensitivity to therapy in the individual leukemia cell
could be established by genetic aberrations, by signaling from the
microenvironment but also by the leukemia cell of origin.
Currently, it is increasingly recognized that therapeutic
resistance in the absence of a genetic aberrancy is a major
cause of recurrence and metastasis in several cancers, including
AML (91–94). As epigenetic modifications, such as DNA
methylation and post-translational modifications on histone
tails, are reversible, these epigenetic marks provide great
opportunities to target non-genetic therapy resistance using
specific epigenetic inhibitors.

Since LSCs and leukemic blasts share a common set of genetic
mutations in most AML cases, functional properties that differ
between these two cell compartments are likely driven by
epigenetic differences. Indeed, multiple differentially methylated
regions were identified between LSC-containing and non-LSC-
containing cell populations. In LSCs, these regions were
predominantly hypomethylated and largely associated with
transcriptional upregulation. The DNA methylation signature
differentially present in LSCs compared to leukemic progenitors
consisted of 71 genes, which were enriched for HOX genes, and
which were associated with a poor prognosis independent
of other known risk factors (10). In addition to DNA
methylation, histone tail modifications, including acetylation,
methylation, and ubiquitination contribute to transcriptional
May 2021 | Volume 11 | Article 659253
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TABLE 1 | Therapeutic targets and drugs to overcome therapy resistance mechanisms in AML (stem) cells.

Clinical trial for AML References

(42, 43)

e I: rapamycin + decitabine in r/r AML
e I: rapamycin + chemotherapy in newly
sed AML, r/r AML and secondary AML
e II: rapamycin in r/r AML

(44, 45)

(46)

I/IIa in r/r AML (non-M3) and r/r MLL-
ged AML

(47–49)

I/II: ATRA + TCP in r/r AML (non-M3) (50, 51)
(52)

(53, 54)

(55)

I in r/r AML (56)

(57)

I in MLL-rearranged AML (58, 59)

(60, 61)

I in r/r AML (62)
I/II in r/r AML and secondary AML (63)

Ib and phase III: venetoclax +
ine in elderly AML
Ib: venetoclax + azacitidine or
ine in elderly AML
II: venetoclax in r/r AML
III: venetoclax + cytarabine in newly
sed AML ineligible for intensive
therapy

(13–17, 64,
65)

(66)

(Continued)
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AML (stem) cell
therapy resistance
mechanism

Target protein
or process

Drug Preclinical studies

Quiescence miR-126 N/A Reduction of clonogenic capacity of LSCs in the absence of an inhibitory effect on
normal BM cells.

N

PI3K/Akt; PTEN Rapamycin Depletion of leukemia-initiating cells and restoration of normal HSC function. -
-
d
-

FOXM1 Thiostrepton Reduction of self-renewal capacity of LSCs in MLL-rearranged AML, synergistic
effects with chemotherapy on induction of apoptosis in LSCs, and prolonged
survival in vivo.

N

Epigenetically driven
drug resistance

LSD1 Iadademstat
(ORY-1001)

LSD1 target gene specific increase of H3K4me2, induction of AML blast
differentiation and reduction of LSC self-renewal capacity, while sparing normal
CD34+ cells.

P
re

TCP Induction of differentiation of AML blasts and inhibition of AML cell growth. P
GSK-LSD1 Myeloid differentiation in MLL-rearranged AML cells, causing global gains in

chromatin accessibility, with an enrichment of PU.1 and C/EBPa at these open
sites.

N

EZH2 and/or
EZH1

DZNEP Reduced EZH2 and H3K27me3 levels, resulting in reduced CD34+CD38- LSC
numbers. In combination with panabinostat, synergistic induction of apoptosis in
AML cells, while sparing normal CD34-positive BM progenitor cells.

N

OR-S1 Reduction of LSC numbers, impaired AML progression and prolonged survival in
vivo. Priming AML cells for chemotherapy-induced cell death.

N

Valemetostat
(DS-3201)

Recruitment of quiescent AML LSCs into cell cycle. P

G9a CM-272 Activation of interferon response, inhibiting proliferation and promoting apoptosis.
Prolongation of OS in AML xenogeneic mouse models.

N

Pinometostat
(EPZ5676)

Tumor growth suppression, reduced colony-forming capacity, and terminal
differentiation in DNMT3A-mutated AML cells.

P

BET proteins JQ1 Anti-leukemic effects accompanied by terminal differentiation and elimination of
LSCs. Reduction of BCL2 and c-myc levels, inducing apoptosis in NPM1c+ with or
without FLT3-ITD or MLL-rearranged AML. In combination with panabinostat,
synergistic induction of apoptosis in AML, while sparing normal CD34-positive BM
progenitors.

N

Birabresib (OTX015) Inhibition of cell growth, cell cycle arrest and apoptosis in AML cells. P
Molibresib
(GSK525762)

Downregulation of BCL2, c-myc and IRF8, reduction in clonal growth and induction
of apoptosis in AML cells, and survival advantage in vivo.

P

Hypoxia and
metabolism

BCL2 Venetoclax Inhibition of OXPHOS and impairing energy homeostasis, upregulation of myeloid
differentiation genes, and downregulation of cell cycle and proliferation genes.

P
a
P
d
P
P
d
c

MCL-1 (−)BI97D6 Induction of mitochondrial apoptosis in AML, due to disrupted MCL-1/BIM and
BCL2/Bax interactions, while sparing normal hematopoietic stem/progenitor cells.

N
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TABLE 1 | Continued

Clinical trial for AML References

(67)

I/II: AZD5991 monotherapy or in
nation with venetoclax in r/r AML

(68)

I: AMG176 + azaciditine in r/r AML (69)
I: S64315 in r/r AML (non-M3)
I: VOB560 (BCL2 inhibitor) + S64315 in
L

(70)

(71)

(72, 73)

I/II: plerixafor + mitoxantrone, etoposide
tarabine in r/r AML
I/II: plerixafor + decitabine in newly
sed elderly
I/II: plerixafor + fludarabine, idarubicin,
ine and G-SCF in r/r AML

(74–76)

(77)

(78)

(79)

I: bevacizumab n r/r AML
II: bevacizumab + mitoxantrone +
ine in r/r AML
II: bevacizumab + daunorubicin +
ine in newly diagnosed elderly

(80)
(81, 82)

(83)
(36)
(84)
(85)

(84)

(86)

(87)

(88)

es; oxidative phosphorylation, OXPHOS, N/A, not applicable.
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AML (stem) cell
therapy resistance
mechanism

Target protein
or process

Drug Preclinical studies

VU661013 +
venetoclax

Destabilization of BIM/MCL1 and induction of apoptosis in AML. Synergistic
reduction in tumor burden after combination therapy.

N/A

AZD5991 Induction of apoptosis in AML by activation of Bak-dependent mitochondrial
apoptosis, and anti-tumor activity.

Phase
comb

AMG176 Rapid induction of apoptosis in AML, growth inhibition of human AML in vivo. Phase
MIK665
(S64315)

Induction of AML cell death, induction of antitumor responses after combination
treatment with a BCL2 inhibitor.

Phase
Phase
r/r AM

HIF-1a Echinomycin Inhibition of colony formation, induction of apoptosis of CD34+CD38- AML cells.
Elimination of leukemia initiating cells and reduction in human leukemic burden.

N/A

TH-302 Hypoxia-dependent apoptosis in AML cells, by reducing HIF-1a expression,
decreasing proliferation, inducing a cell-cycle arrest, and enhancing double-stranded
DNA breaks. Prolongation of residual disease after chemotherapy treatment in vivo.

N/A

Bone marrow micro-
environment

CXCR4 Plerixafor (AMD3100) Mobilization of AML blasts from the BM niche into peripheral circulation, sensitization
of leukemic blasts to cytarabine and decreased tumor burden in vivo.

Phase
and c
Phase
diagn
Phase
cytara

ARV-825 CXCR4 and CD44 downregulation, impairment of CXCL12-directed migration,
increased oxidative stress, downregulation of gene signatures associated with
stemness, Wnt/b-catenin and Myc pathways, and decrease in number of LSCs.

N/A

TGFb 1D11 Enhanced cytarabine-inducted apoptosis of AML cells in hypoxic conditions.
Combination treatment with plerixafor and cytarabine decreased leukemia burden in
FLT3-mutated mice.

N/A

VEGF-C VGX-100 Reduction of clonogenic capacity and induction of differentiation of AML blasts, via
suppression of FOXO3A and inhibition of MAP/ERK proliferative signals.

N/A

Bevacizumab N/A Phase
Phase
cytara
Phase
cytara

Adipocytes FABP4 BMS309403 Inhibition of AML blast survival, while sparing nonmalignant CD34-positive cells. N/A
FAO Etomoxir Disruption of metabolic homeostasis in AML cells, induction of ROS production and

ATF4. Inhibition of CPT1a and subsequent sensitization of AML cells to cytarabine.
Induction of an energetic shift towards low OXPHOS and increase in anti-leukemia
effects of cytarabine.

N/A

Avocatin B Upregulation of ATF4 and synergistic induction of ROS production and apoptosis in
AML cells after combination treatment with cytarabine.

N/A

Stress response Autophagy VSP34 inhibitors Inhibition of autophagy and cell proliferation abolishes acquired FLT3 inhibitor
resistance.

N/A

PERK/eIF2a
pathway

Atovaquone Phosphorylation of eIF2a, enhancing ATF4 protein expression and ATF4-specific
target genes, inhibiting OXPHOS, and inducing growth arrest and apoptosis in AML
cells.

N/A

GSK2606414 + BIX-
01294

Synergistic induction of apoptosis in AML cells, while sparing normal HSCs. N/A

LSC, leukemic stem cell; HSC, hematopoietic stem cell; BM, bonemarrow; r/r AML, relapsed and refractory acute myeloid leukemia; OS, overall survival; ROS, reactive oxygen spec
i

y
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output. The methylation of histones is dynamically regulated,
and depending on the position and nature of the methylated
residues, can either promote or repress transcription. Histone
methyltransferases (HMTs) add methyl groups to specific
histone residues, while histone demethylases (HDMs) remove
methyl groups from specific residues on histone tails (95). In
general, the methylation on histone 3 (H3) lysine-4 (H3K4),
H3K36, and H3K79 activate gene expression, whereas
methylation on H3K9, H3K27, and H4K20 is associated with
transcriptional repression. LSCs in MLL-rearranged leukemia
were characterised by high levels of H3K4me3 and low
H3K79me2, resulting in aberrant expression of HOX genes
and Meis1 (96). The H3K4 lysine specific demethylase 1
(LSD1; KDM1A) is highly expressed in AML, and associated
with transcriptional repression (97). LSD1 can demethylate
mono- and di-methylated H3K4 and H3K9, but also has a
scaffolding activity that facilitates recruitment of histone
deacetylases to chromatin sites where transcription factors
such as GFI and GFIB are bound (98). Moreover, LSD1
sustains the differentiation block in certain molecular subtypes
of AML, particularly in MLL-translocated AML, and is required
for the self-renewal potential of LSCs (97, 99). Targeting LSD1 in
AML promoted differentiation (100), and compromised the self-
renewal capacity of LSCs in (pre)clinical models of AML
(Table 1). For example, iadademstat (ORY-1001), a covalent
and highly specific LSD1 inhibitor, induced a gene-specific
increase of H3K4me2, resulting in induction of AML blast
differentiation and reduction of LSC self-renewal capacity,
while sparing normal CD34-positive cells (47). In phase-I
clinical trials, treatment of relapsed/refractory (r/r) AML
patients with iadademstat resulted in the induction of
differentiation of the leukemic blast cells, and reduction of
blast percentages in peripheral blood and BM. In some
individual patients there was a relation between response and
induction of CRISP9 (48, 49), CD86, VCAN, S100A12 and LY96
(48). However, In a phase-I/II clinical trial using the LSD1
inhibitor tranylcypromine (TCP) in combination with all-trans
retinoic acid (ATRA) for r/r AML patients, there was an overall
response rate of only 20%. Molecular markers associated with
response were not identified and a global increase in H3K4me2
upon TCP was only observed in two patients (50). In non-
responders to TCP and ATRA combination therapy there was
enrichment for expression of genes involved in mTOR signaling
and for expression of higher basal histone deacetylase 2
(HDAC2) (51). Moreover, treatment of MLL-rearranged AML
with the LSD1 inhibitor GSK-LSD1 caused global gains in
chromatin accessibility, with a strong enrichment of PU.1 and
C/EBPa at these open sites. Depletion of PU.1 or C/EBPa
generated resistance to LSD1 inhibition (52).

Next to LSD1, expression of other HDMs, including the
H3K27 demethylase KDM6B, the H3K36 demethylase
KDM2B, and the H3K9/36me3 demethylase KDM4A
correlated to treatment response. KDM6B is increased in AML
as compared to normal BM, and positively correlated with poor
survival. Treatment with the KDM6 inhibitor GSK-J4 enhanced
the global levels of H3K27me3 and showed synergistic effects
Frontiers in Oncology | www.frontiersin.org 9
with cytarabine. GSK-J4 treatment decreased the expression of
cell-cycle related pathways and HOX genes in AML cells (101).
KDM2B interacts with active chromatin, is overexpressed in
LSCs, and can function as the DNA binding subunit of the
polycomb repressive complex 1 (PRC1). Knockdown of KDM2B
was shown to impair the self-renewal capacity of LSCs (102).
Inhibition of KDM4A by JIB-04 restored the levels of H3K36me3
but also induced sensitivity to chemotherapy (103). Together,
these studies indicate crucial roles for several HDMs in non-
genetic therapy resistance in AML, and show their potential as
therapeutic targets to deplete LSCs and/or MRD.

PRC2 is one of the two classes of polycomb-group (PcG)
protein complexes. PRC2 contains histone methyltransferase
activity and primarily trimethylates H3K27, leading to silencing
of target gene transcription, while PRC1 is able to condense
nucleosomes, inducing stable gene silencing. The PcG
proteins are required for long term epigenetic silencing and have
an important role in maintaining “stemness” (104). The enhancer
of zeste homolog 2 (EZH2) is a member of the PRC2 complex,
mediating transcriptional silencing through H3K27me2/3 (105).
In AML, quiescent LSCs express the highest levels of EZH1 and
EZH2 (55). In about 45% of relapsed AML, loss of EZH2 and
consequently a reduction in H3K27me3 occurs. This EZH2 loss
resulted in resistance toward multiple drugs, including tyrosine
kinase inhibitors (90), and is associated with a poor OS (106).
EZH2 loss may be mediated by the interaction between cyclin-
dependent kinase 1 and heat shock protein 90, that induces EZH2
proteasomal degradation, and drug resistance via deregulation of
HOX gene expression (90). Loss of EZH2 in AML can also be due
to a 7/7q chromosomal deletion, as EZH2 is located on
chromosome 7q36.1, or can be caused by splicing dysfunction as
a result of mutations in U2AF1 or SRSF2. Genetic aberrancies in
the U2AF1 and SRSF2 genes have been shown to decrease EZH2
mRNA levels in about 10-25% of AML patients (107, 108). AML
and myelodysplastic syndrome patients with a 7/del7q are largely
refractory to chemotherapy and have a particular poor prognosis
(109). Also presence of U2AF1 and SRSF2 mutations in AML is
associated with adverse outcome (110), which might be explained
by loss of EZH2-driven resistance to treatment (90). Interestingly,
low H3K27me3 levels in AML samples, potentially as a result of
low EZH2, is also a parameter for a poor prognosis (90, 106).
However, the role of EZH2 in therapy resistance in AML is
complex and may depend on the context. Indeed, a stage-specific
and opposite function for EZH2 at the early and late stages of the
disease was suggested; EZH2 acted as a tumor suppressor at the
stage of AML induction, while it exerted an oncogenic function
during leukemia maintenance (111). Moreover, the therapeutic
effect of EZH2 inhibition may be dependent on the treatment with
which it is combined. The EZH2 inhibitor 3-Deazaneplanocin A
(DZNEP) in combination with the HDAC inhibitor panabinostat
synergistically induced apoptosis in primary AML cells, while not
affecting the survival of normal CD34-positive BM progenitor cells
(53). DZNEP reduced EZH2 and H3K27me3 levels, resulting in a
reduction in the number of CD34+CD38- LSCs (54) (Table 1).
Quiescent LSCs are highly dependent on both EZH1 and EZH2,
and dual inhibition of EZH1 and EZH2 by OR-S1 primed AML
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cells for chemotherapy-induced cells death (Table 1). Moreover,
OR-S1 reduced the number of LSCs, impaired leukemia
progression and prolonged survival of AML PDX mice (55). In
a phase-I clinical trial, inhibition of EZH1/2 with valemetostat
drove quiescent AML LSC into the cell cycle (56). Based on these
results, it would be of interest to investigate if EZH1/2 inhibition
reduces MRD load and/or LSCs after chemotherapy- and/or
venetoclax treatment.

Apart from PRC2, other HMTs can regulate methylation on
histone tails, including DOT1L and G9a. G9a catalyzes mono-
and di-methylation of H3K9 and induces changes in redox
homeostasis (112). G9a was shown to accumulate under
hypoxic conditions (113), and as AML LSCs are known to
reside in hypoxic BM niches, therapeutic targeting of G9a may
efficiently eliminate AML LSCs (Table 1). Indeed, loss of G9a
impaired AML progression and reduced LSC frequency (114).
CM-272, a small molecule simultaneously inhibiting G9a and
demethyltransferase (DNMT)-1 activity, inhibited proliferation,
promoted apoptosis in AML cells, and prolonged the OS in AML
xenogeneic mouse models (57). The HMT DOT1L plays a key
role in initiation and maintenance of MLL-rearranged leukemia,
because of its role in H3K79 methylation and subsequent
upregulation of Meis1 and HOXA (115). Inhibition of DOT1L
by EPZ5676 suppressed tumor growth, reduced colony-forming
capacity, and induced terminal differentiation in DNMT3A-
mutant AML cells (58). In a phase-I study, treatment with
EPZ5676 resulted in a significant reduction in H3K79me2
levels, while CR was only achieved in two of the 51 r/r MLL-
rearranged AML patients (59), indicating that anti-DOT1L
monotherapy is not sufficient to achieve clinical benefit in r/r
AML patients.

Other epigenetic modifiers playing a critical role in the
maintenance of AML are bromodomain and extra-terminal
motif (BET) proteins, which sustain Myc expression to promote
aberrant self-renewal (116). BET family proteins, including
bromodomain-containing 4 (Brd4), facilitate gene transcription
by binding to acetylated lysines in histones and transcription
factors. Brd4 was identified as a promising therapeutic target for
AML (60, 61, 117) (Table 1), and targeting Brd4 using small
hairpin RNAs or small molecule inhibitors resulted in a strong
anti-leukemia effect, terminal myeloid differentiation and
elimination of LSCs (60). Despite these promising preclinical
results, monotherapy with BET inhibitors showed limited
efficacy and CR was only induced in a few AML patients (62,
63). Resistance to BET inhibitors emerges from LSCs in the
absence of new genetic mutations (93), and is acquired through
adaptive transcriptional plasticity and the conversion of AML cells
to a more immature LSC phenotype. Regulators of enhancer
formation were identified as key mediators of the resistant state
(92), but also chromatin remodelling, leading to activation of the
Wnt signalling pathway, was shown to be involved in BET
inhibitor resistance (93, 118). BET inhibitor resistant AML cells
use available factors, such as PU.1 and interferon regulatory factor
8 (IRF8), to nucleate the different enhancers, facilitating
remodelling of regulatory pathways that rapidly restore
expression of survival genes (92, 118). Reversion of the BET
inhibitor resistant phenotype was accomplished by targeting the
Frontiers in Oncology | www.frontiersin.org 10
mechanisms whereby AML cells use alternative enhancers. LSD1
inhibition is able to re-sensitize stable BET inhibitor resistant AML
cells, by facilitating enhancer switching mediated by PU.1 and
IRF8 (92). Although it has yet to be seen whether resistance to
other (epigenetic) drugs work via similar mechanisms, these
results suggest that rather than aiming at reversion of the
transcriptional state of resistant cancer cells, it may be more
effective to disable the process of enhancer remodeling.
AML THERAPY SENSITIVITY AND THE
CELL OF ORIGIN

Epigenetic states conferred by cell of origin shape the molecular
classification across a diverse array of tumor subtypes. The cell of
origin of leukemic transformation is also a determinant of therapy
sensitivity. Analysis of genetic abnormalities in paired AML
samples at diagnosis and relapse indicated that leukemia-
initiating cells within MRD can originate from rare LSCs, from a
dominant subclone with a HSC phenotype, or from subclones of
immunophenotypically committed leukemia cells that retained
“stemness” (94). Leukemia initiated from HSC demonstrated to
exhibit higher disease penetrance, aggressiveness, and resistance to
chemotherapy and have higher expression of the transcription
factor Mecom (EVI-1) than leukemia arising from more
differentiated progenitor cells (119–122) (Figure 1). High
expression of EVI-1 is a prognostic factor associated with inferior
OS among AML patients harbouring MLL gene rearrangements
(123). Moreover, HSC-derived leukemia exhibit decreased
apoptotic priming, attenuated p53 transcriptional output, and
resistance to LSD1 inhibitors. The expression of EVI-1 modulates
the abundance and activity of the p53 protein. Interestingly, EVI-
1high AML cells are sensitized to LSD1 inhibition by venetoclax
(122), suggesting that immature AML cases, which have their
origin in the HSC or MPP, can be sensitized for anti-LSD1-
induced apoptosis by therapeutic targeting of BCL2. The level of
response to the combination of venetoclax and azacitidine is also
related to the differentiation stage of the AML. More immature,
primitive AML, likely originating from a more immature cell, such
as the HSC or MPP, was more sensitive to venetoclax than
differentiated monocytic AML. Venetoclax-resistant monocytic
AML had a distinct transcriptomic profile, reduced expression of
BCL2, and showed to rely on MCL1 for oxidative phosphorylation
(OXPHOS) and survival. Consequently, there was outgrowth of
monocytic subpopulations of AML cells after venetoclax treatment
at relapse (18). Targeting these venetoclax-resistant monocytic
leukemia cells might be accomplished by therapies that are
highly efficient in eradicating more differentiated as compared to
immature AML.
HYPOXIA, METABOLISM, LSCs AND
THERAPY RESISTANCE

Hypoxia, a condition in which the normal tissue oxygen level is
reduced, has been identified as a major contribution to resistance
May 2021 | Volume 11 | Article 659253
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to many drugs and an enhanced tumorigenicity of cancer stem
cells (124). The transcriptional regulator hypoxia-inducible factor
1 alpha (HIF-1a) responds to hypoxia by binding to hypoxia-
response elements and by regulating expression of hypoxia-
response genes, finally resulting in activation of enzymes
involved in DNA repair, cell differentiation and apoptosis (125).
In hypoxic tumor cells, the accumulation of chemotherapeutic
drugs is reduced, and induction of drug resistance by increased
genomic instability, suppression of DNA repair and suppression of
a cell cycle arrest can occur (126).

HSCs reside in hypoxic niches in the BM, in where HIF-1a
signaling regulates the maintenance of their quiescent and
pluripotent state by promoting HIF-1a-driven gene expression,
including vascular endothelial growth factor (VEGF), CXC
chemokine receptor-type 4 (CXCR4) and stem cell factor (SCF)
(127). Since LSCs are well adapted to hypoxic conditions, there is a
protective effect of the niche on the persistence of these LSCs,
which results in their reduced sensitivity to therapy. Under
hypoxic conditions, reactive oxygen species (ROS) are generated
by mitochondria. In contrast to HSCs, LSCs are able to reduce
generation of ROS and induce the activation of ROS removing
pathways such as autophagy, resulting in enhanced survival of
LSCs compared to HSCs (128).

Through glycolysis, glucose is metabolized to pyruvate, and in
the presence of oxygen pyruvate can be further metabolized to
acetyl-CoA, that is oxidized in the tricarboxylic acid (TCA) cycle
to drive OXPHOS and the generation of ATP. Although AML
LSCs are mainly in a low oxidative and quiescent cell state, they
often lack the ability to enhance glycolysis and therefore switch
from anaerobic glycolysis to mitochondria-mediated OXPHOS
as their major pathway to generate energy, while HSCs rely
mainly on anaerobic glycolysis (64). Also, residual AML cells
after cytarabine treatment showed an increased mitochondrial
mass, and retained active polarized mitochondria, reflecting a
high OXPHOS status. Moreover, presence of a high OXPHOS
gene expression signature was predictive for a worse treatment
outcome in AML patients (36). The deacetylating mitochondrial
protein sirtuin-3 (SIRT3) protected AML cells from cytarabine-
induced apoptosis by inhibiting ROS production and by
enhancing OXPHOS. Increased SIRT3 activity in AML cells
resulted in resistance to chemotherapy (129). Together, these
results showed that enhanced mitochondrial OXPHOS plays a
major role in therapy resistance in AML.

Inhibition of BCL2 by venetoclax efficiently affected LSC
survival by inhibition of OXPHOS and impairing energy
homeostasis, resulting in upregulation of myeloid differentiation
genes, and downregulation of cell cycle and proliferation genes
(64) (Table 1). However, AML cells with high expression of the
anti-apoptotic protein MCL1 showed resistance to BCL2
inhibitors (18, 64). To further reduce AML MRD load after
venetoclax it may be an efficient strategy to use MCL1
inhibitors. Indeed, inhibition of MCL1 resulted in elimination of
venetoclax-resistant AML (stem and progenitor) cells (18, 66–68)
(Table 1). Several clinical trials are currently investigating the
combination of BCL2 and MCL1 inhibitors, including AZD5991,
AMG176 and MIK665 (68–70). In a clinical trial, treatment of
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elderly previously untreated AML patients with venetoclax in
combination with the hypomethylating agents azacitidine or
decitabine led to high overall response rates (13). This efficient
response was due to targeting LSCs by inhibiting their amino acid
uptake and catabolism, resulting in suppression of OXPHOS (65).
Due to a more complex metabolic profile, LSCs derived from
relapsed AML patients were less sensitive to this combination
(130), highlighting again the importance of understanding the
metabolic dynamics of LSCs during the course of disease.

In AML patients, the presence of mutations in IDH1 and
IDH2 dysregulated mitochondrial function due to accumulation
of 2-hydroxygluterate (2-HG). This resulted in increased ROS
levels and activation of HIF-1a (131). LSCs residing within
IDH1/2 mutated patients showed an increased dependency on
BCL2, and were more sensitive to venetoclax, due to inhibition of
cytochrome c oxidase by 2-HG (132). However, in a phase 2
clinical trial treating high-risk r/r AML patients with venetoclax,
only 33% of the IDH1/2 mutated AML patients showed a CR.
The effect of venetoclax treatment on the survival of LSCs was
not determined in this trial (15).

The synthesis of HIF-1a in the hypoxic BMmicroenvironment
induces upregulation of CXCR4 on the membrane of LSCs,
thereby enhancing their migration ability, their anchorage in the
BM niche and their resistance to therapy (7). Although targeting
hypoxia and HIFs has been considered as potential therapeutic
approaches for AML, several studies showed contrasting results
(Table 1). CD34+CD38− LSCs have the highest levels of HIF-1a,
and loss of HIF-1a led to the elimination of LSCs (71). In contrast
to this result, loss of HIF-1a accelerated conversion of pre-
leukemic cells to LSCs and shortened AML latency. Moreover,
deletion of HIF-1a gave rise to faster progression of
chemotherapy-treated MLL-AF9 AML cells (133).

Hypoxia-activating prodrugs (HAPs) are able to specifically
target cells in hypoxic niches, as the active form of the drug is
released under hypoxic conditions (134). The HAP TH-302
induced hypoxia-dependent apoptosis in AML cells, by
reducing HIF-1a expression, thereby decreasing proliferation,
inducing a cell-cycle arrest, and enhancing double-stranded
DNA breaks (72). Administration of TH-302 after
chemotherapy to mice with residual disease prolonged their
survival (73), suggesting that specifically targeting of HIF-1a in
the hypoxic niche may be a successful therapeutic strategy to
specifically eliminate chemotherapy resistant AML (stem) cells.
LSCs, THE BONE MARROW
MICROENVIRONMENT AND THERAPY
RESISTANCE

There is emerging evidence that AML LSCs can remodel the BM
niche into a leukemia-permissive microenvironment, thereby
suppressing normal hematopoiesis. The complex interplay
between LSCs and their microenvironment, including adhesion
molecules, chemokines and cytokines, contribute to LSC
survival, therapy resistance and disease relapse. Understanding
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these interactions is crucial for the development of effective drugs
to overcome niche-mediated AML drug resistance.

Leukemia cells express the b-1 integrin receptor family
members very late antigen-4 (VLA-4) and VLA-5, and the b-2
integrin LFA-1, which interact with the stromal ligands vascular
cell adhesion molecule 1 (VCAM-1), fibronectin and
intracellular adhesion molecule 1 (ICAM-1) to support
attachment to the niche, thereby activating prosurvival and
proliferative pathways in the leukemic blasts (135–137). Gene
expression profiling of BM mesenchymal stromal cells (MSC)
co-cultured with leukemia cells revealed upregulation of nuclear
factor (NF)-kB signaling, which reduced sensitivity to
chemotherapy in the leukemia cells. Mechanistically, activation
of the NF-kB signaling pathway was caused by the interaction of
VLA-4 on the leukemia cells with ICAM-1 on the MSC (138).

HIF-1a signaling regulates LSC maintenance, quiescence and
therapy sensitivity by promoting expression of VEGF, CXCR4,
CXCL12 and SCF on both the AML blasts and the stromal cells
(139). AML blasts and especially LSCs express CXCR4 on their
surface and migrate in response to CXCL12 (140). The protective
effects of the BM niche could be reduced by inhibition of the
CXCL12–CXCR4 interaction (Table 1). For example, the CXCR4
antagonist plerixafor released HSCs and AML blasts from the BM
niche, and the combination of plerixafor with cytarabine decreased
tumor burden in an AML mouse model (74). Also in r/r AML
patients, treatment with plerixafor enhanced the effect of
chemotherapy (75). However, in newly diagnosed older AML
patients, the clinical benefit of plerixafor was not shown, and
mobilization of AML LSCs and progenitor cells after treatment
was only observed in some patients (76). Targeting CXCR4 together
with other membrane molecules involved in the attachment of
AML (stem) cells to the BM niche may be an efficient strategy to
release AML LSCs and enhance their sensitivity to therapy.
Degradation of BET proteins with the BET proteolysis-targeting
chimera ARV-825 resulted in downregulation of both CXCR4 and
CD44 in AML cells, and as a result impairment of CXCL12-directed
migration, increased oxidative stress, and downregulation of gene
signatures associated with “stemness” and Wnt/b-catenin and Myc
pathways. Importantly, treatment with ARV-825 alone and in
combination with cytarabine decreased the number of LSCs (77).

Pro-inflammatory cytokines, such as tumor necrosis factor a
(TNFa), interferon (IFN)-a, IFN-b, IFN-g, IL-1 and IL-6, influence
the adhesion of AML cells with their BM microenvironment and
consequently AML survival and sensitivity to therapy, potentially
through modulation of NF-kB signaling. CD34+CD38- LSCs, but
not normal HSCs or non-LSC AML blasts, showed constitutive
NF-kB activity due to autocrine TNF-a secretion, resulting in their
expansion (141). Targeting transmembrane TNF-a increased
sensitivity to chemotherapy, inhibited AML cell growth, and
impaired AML engraftment in secondary serial transplantations
(142). In addition to TNF-a, most AML cells express the pro-
inflammatory cytokine IL-1, and especially IL-1b, enhancing the
production of other pro-leukemic chemokines and thereby
generating a pro-inflammatory niche. This pro-inflammatory
environment promotes LSC and AML blast survival, proliferation
and apoptosis-resistance (143, 144). Furthermore, the IL1R co-
receptor IL1RAP is highly expressed on LSCs but not on HSCs of
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most AML patient samples, and involved in LSC self-renewal (32).
Targeting IL1RAP could eliminate both leukemic bulk cells as well
as LSCs and progenitor-enriched cell fractions of primary AML
patient samples, while normal HSCs and progenitor cells were
spared (145).

Several members of the transforming growth factor b (TGFb)
family suppressed the growth of primary AML cells (144), and
blockade of TGFb was therefore thought to enhance
chemotherapy sensitivity of AML cells (Table 1). Indeed, in
co-culture with human MSC, treatment of primary AML
samples with a neutralizing TGFb1-antibody resulted in
enhanced proliferation of both CD34+CD38− and CD34+CD38+
AML cell populations, and improved sensitivity to cytarabine (146).
Blocking TGFb signaling using the neutralizing TGFb antibody
1D11 increased cytarabine-induced apoptosis of AML cells in
hypoxic conditions. The combination of 1D11 with plerixafor and
cytarabine decreased leukemia burden in a murine FLT3-mutated
AML mouse model (78).

VEGF expressing endothelial cells in the BM niche protect
VEGF receptor 3-expressing AML cells from chemotherapy-
induced apoptosis, due to increased BCL2/Bax ratios (147).
Moreover, treatment with a monoclonal VEGFC antibody
reduced the clonogenic capacity of CD34-positive AML blasts,
and induced their differentiation via the suppression of FOXO3A
and inhibition of MAP/ERK (79) (Table 1). However, targeting
VEGF signaling as novel therapeutic strategy has not been
proven effective, as treatment with bevacizumab in AML
patients showed controversial results in clinical trials. While
bevacizumab after chemotherapy showed a favorable CR rate
and duration in r/r AML patients that were resistant to the
classical cytotoxic agents (80), in two other clinical trials with
AML patients it showed not to be effective (81, 82).
ADIPOCYTES, AML LSCs AND THERAPY
RESISTANCE

In addition to glucose, proteins and fatty acids can also be
metabolized to acetyl-CoA to drive the TCA cycle and
OXPHOS in the production of ATP (148). As a result of stimuli
from the BM microenvironment, such as hypoxia and nutrient
availability, AML cells can modulate their metabolic state.
Adipocytes, the major stromal cells present in the BM, support
the survival and growth of AML cells by stimulating fatty acid
oxidation (FAO) and mitochondrial OXPHOS as a result of fatty
acid transfer (149). Moreover, adipocytes in the BM showed to
impair the efficacy of chemotherapeutic drugs, and relapse rates
after chemotherapy were much higher in mice that were obese
than in mice with a normal body weight (149, 150). LSCs can
induce lipolysis in adipocytes to induce FAO in AML (stem) cells
by abundant fatty acids, thereby evading chemotherapy-driven
elimination of the AML cells (Table 1). Only part of the LSC
population in the BM express the fatty acid transporter CD36
(151), and these CD36+ LSCs showed to be highly proliferative
and distinct from the pool of CD69 expressing LSCs that contain
self-renewal potential (152). Further research should investigate if
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targeting the fatty acids uptake by CD36 would be a successful
strategy to specifically eliminate AML LSCs. Furthermore, the
lipid chaperone fatty acid binding protein 4 (FABP4) is involved
in the interaction of adipocytes with leukemia cells, and its
expression correlated with the activation of the peroxisome
proliferator-activated receptor (PPAR) g (153). FABP4 was
increased in AML cells after culturing them with BM adipocytes
(154), and downregulation of FABP4 resulted in increased
survival of mice with Hoxa9/Meis1-driven murine leukemia (83).

BCL2 is directly reducing ROS generation (155), and BCL2
overexpression promoted the survival of low ROS-producing
quiescent LSCs (64). Targeting FAO increased the production of
ROS and caused apoptosis in AML cells (156). As targeting BCL2
by venetoclax eliminated low ROS-producing LSCs (64), targeting
both FAO and BCL2 might be a successful synergistic approach to
eliminate LSCs. FAO inhibition by etomoxir, an inhibitor of the
FAO key rate-limiting enzyme carnitine O-palmitoyltransferase 1
(CPT1), disrupted metabolic homeostasis, increased ROS
production, and subsequently induced expression of the
integrated stress response (ISR) mediator activating transcription
factor 4 (ATF4) in AML cells (84). Inhibition of CPT1 showed anti-
AML effects (84, 85). CPT1 controls FAO by conjugating fatty acids
with carnitine for translocation into the mitochondrial matrix.
Expression of CPT1A is regulated by PPARs and the PPARg
coactivator-1 (157), and inhibition of CPT1A by etomoxir not
only directly eliminated leukemia cells but also sensitized them to
cytarabine (85). Etomoxir induced an energetic shift towards low
OXPHOS and resulted in increased anti-leukemia effects of
cytarabine (36). Moreover, avocatin B, another inhibitor of FAO,
was synergistic with cytarabine in inducing apoptosis in AML cells
that were co-cultured with adipocytes by causing an increase in
ROS production (84).
STRESS RESPONSE, LSCs AND THERAPY
RESISTANCE

Human HSCs are sensitive to environmental stress and prone to
programmed cell death. HSCs ensure their persistence by using the
ISR, also known as the unfolded protein response, in order to
survive low-levels of stress caused by metabolic processes during
normal homeostasis (158, 159). The ISR pathway balances the
activation of apoptosis due to stress signals with survival pathways
that protect the cell from dying (160). In response to stress stimuli,
the eukaryotic translation initiation factor 2a (eIF2a) is
phosphorylated by the stress-responsive eIF2a kinases general
control non-derepressible 2 (GCN2), heme-regulated inhibitor,
protein kinase R, and protein kinase RNA-like ER kinase (PERK).
Phosphorylated eIF2a reduces global protein synthesis while
allowing translation of specific genes, including ATF4, ATF5 and
C/EBP Homologous Protein (161). Components of the eIF2a
pathway, including GCN2 and ATF4, specifically contributed to
survival of therapy-resistant cells during hypoxia. Activation of the
ISR protects against ROS (162), and is therefore thought to be an
important contributor to the survival of AML LSCs residing in
hypoxic niches after therapy.
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In response to ER stress human HSCs maintain their
functionality preferentially through activation of the PERK-eIF2a
IRS pathway (158). This pro-survival pathway was also shown to
modulate the stress response of LSCs, thereby affecting their
sensitivity to therapy and their survival (Table 1). In primary
AML, CD34+CD38− LSCs contained lower eIF2a and elevated
ATF4 levels as compared to the more differentiated CD34+CD38+
AML cell populations (159), highlighting that there is an increased
activity of the ISR in LSCs, and implicating that ATF4 is a potential
therapeutic target to eliminate LSCs. Amutation in FLT3, the FLT3-
ITD, was shown to positively control ATF4 levels and enhanced
autophagy in FLT3-ITD-mutated AML patient cells. Inhibition of
ATF4 in FLT3-ITD-positive AML inhibited autophagy-dependent
AML cell proliferation and tumor burden (Table 1). Moreover,
inhibition of autophagy by VPS34 inhibitors abolished resistance to
FLT3 inhibitors in murine xenograft models (86). The antiparasitic
drug atovaquone enhanced the phosphorylation of eIF2a, increased
ATF4 protein levels and transcription of ATF4 target genes, and
inhibited mitochondrial OXPHOS, which resulted in growth arrest
and apoptosis of AML patient cells (87). Moreover, activation of the
PERK signaling pathway and subsequent activation of autophagy
induced resistance to G9a inhibition in AML LSCs. Combination
treatment of PERK and G9a inhibitors induced apoptosis in LSCs
(88). Together, these studies suggest that therapeutic targeting of the
PERK-eIF2a-ATF4 ISR pathway may be an efficient approach to
eradicate AML LSCs.
DISCUSSION AND CONCLUSION

One of the biggest challenges in treating AML is the development
of relapse after initial treatment. Even with high remission rates,
therapy resistance and relapse are often appearing and are the
major obstacles to a cure. AML “persisters” (MRD) after initial
therapy are caused by various mechanisms that co-exist,
including epigenetic, transcriptional, and metabolic processes.
Successful therapeutic strategies targeting AML MRD and LSCs
will increase efficacy of treatment and finally the survival of
patients. Increasing the knowledge on the mechanisms driving
this persistence, and also on the changes in identity of MRD and
LSCs during the course of the disease is crucial for the
development of successful therapeutic strategies to overcome
therapy resistance and to inhibit leukemia-initiating potential.
Similarities and differences between normal HSCs and AML
LSCs and studying LSC heterogeneity and intra- and interpatient
plasticity are key for therapy development specifically eradicating
LSCs at any time during the disease course. Persistent LSCs are
characterized by their quiescent state and might exist prior to
drug treatment; however, they might also become resistant upon
exposure to therapy. At relapse, there are substantially more
LSCs and phenotype diversities of LSCs than at diagnosis,
indicating that the current therapeutic treatments induce
dramatic changes in the LSC and relapse-initiating cell
compartment. This indicates that there is a high degree of
phenotypic plasticity to impose “stemness” on leukemia cells
and shows the importance of studying leukemia re-initiating cells
after the initial therapy. Future characterization of leukemia
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blasts and LSCs should therefore be performed after treatment to
identify specific leukemia-relapse initiating markers that could
be used not only to prognostically detect MRD, but also to early
detect relapse and to be used as therapeutic targets delaying or
even preventing relapse.

There is a complex interplay between AML (stem) cells, their
BM niche, and the outcome of treatment. This interplay is
significantly influenced by signaling events from the BM niche
affecting metabolism, epigenetic processes, stress responses and
transcriptomes of the AML cells, and all subsequently affecting
the level of leukemia (stem) cell death induced by therapy.
Therefore, targeting the BM microenvironment by novel
therapeutic strategies will also be crucial to overcome AML
drug resistance. For example, targeting the energy consumption
of LSCs in combination with inhibition of BCL2 can potentially
eradicate residual chemotherapy-resistant LSC populations. Both
FAO and BCL2 directly reduce ROS generation, promoting the
survival of low ROS-producing quiescent LSCs. The combination
of venetoclax and a FAO inhibitor might be a successful approach
to eliminate LSCs with adapted energy homeostasis.
Furthermore, the differentiation stage of the AML cells plays an
important role in the response to therapy. AML cases originating
Frontiers in Oncology | www.frontiersin.org 14
from HSCs or MPPs, thus immature AML cases with high EVI-1
expression, may be successfully treated with venetoclax, while
more differentiated AML cases may be successfully treated with
alternative therapies that are more efficient in the eradication of
differentiated AML cells.

In conclusion, characterization of AML (stem) cells at the
single cell level during the course of the disease and especially at
MRD will provide valuable insights into the mechanisms of AML
persistence and relapse-initiation and is key for development of
successful treatment strategies that reduce or prevent relapse.
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C, et al. First-in-Human Phase I Study of Iadademstat (Ory-1001): A First-
in-Class Lysine-Specific Histone Demethylase 1a Inhibitor, in Relapsed or
Refractory Acute Myeloid Leukemia. J Clin Oncol (2020) 38:4260–73.
doi: 10.1200/JCO.19.03250

49. Somervaille T, Salamero O, Montesinos P, Willekens C, Perez Simon JA,
Pigneux A, et al. Safety, Phamacokinetics (Pk), Pharmacodynamics (PD) and
Preliminary Activity in Acute Leukemia of Ory-1001, a First-in-Class
Inhibitor of Lysine-Specific Histone Demethylase 1a (Lsd1/Kdm1a): Initial
Results From a First-in-Human Phase 1 Study. Blood (2016) 128:4060–0.
doi: 10.1182/blood.v128.22.4060.4060

50. Wass M, Göllner S, Besenbeck B, Schlenk RF, Mundmann P, Göthert JR,
et al. A Proof of Concept Phase I/II Pilot Trial of LSD1 Inhibition by
Tranylcypromine Combined With ATRA in Refractory/Relapsed AML
Patients Not Eligible for Intensive Therapy. Leukemia (2020) 35:701–11.
doi: 10.1038/s41375-020-0892-z

51. Tayari MM, Gomes Dos Santos H, Kwon D, Bradley T, Thomassen A, Chen
CJ, et al. Clinical Responsiveness to All-trans Retinoic Acid is Potentiated by
LSD1 Inhibition and Associated With a Quiescent Transcriptome in
Myeloid Malignancies. Clin Cancer Res (2021) 27:1893–903. doi: 10.1158/
1078-0432.ccr-20-4054

52. Cusan M, Cai SF, Mohammad HP, Krivtsov A, Chramiec A, Loizou E, et al.
LSD1 Inhibition Exerts its Antileukemic Effect by Recommissioning PU.1-
and C/Ebpa-Dependent Enhancers in AML. Blood (2018) 131:1730–42.
doi: 10.1182/blood-2017-09-807024

53. Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H, Jillella A, et al.
Combined Epigenetic Therapy With the Histone Methyltransferase EZH2
Inhibitor 3-Deazaneplanocin A and the Histone Deacetylase Inhibitor
Panobinostat Against Human AML Cells. Blood (2009) 114:2733–43.
doi: 10.1182/blood-2009-03-213496

54. Zhou J, Bi C, Cheong LL, Mahara S, Liu SC, Tay KG, et al. The Histone
Methyltransferase Inhibitor, DZNep, Up-Regulates TXNIP, Increases ROS
Production, and Targets Leukemia Cells in AML. Blood (2011) 118:2830–9.
doi: 10.1182/blood-2010-07-294827
May 2021 | Volume 11 | Article 659253

https://doi.org/10.1038/nm0797-730
https://doi.org/10.1172/JCI41495
https://doi.org/10.1182/blood-2007-10-118331
https://doi.org/10.1016/j.stem.2014.02.006
https://doi.org/10.1016/j.ccr.2010.12.012
https://doi.org/10.1016/j.ccr.2010.12.012
https://doi.org/10.1038/bcj.2013.27
https://doi.org/10.1111/ijlh.12193
https://doi.org/10.1016/j.stem.2009.04.018
https://doi.org/10.1182/blood-2007-03-083048
https://doi.org/10.1126/scitranslmed.3000349
https://doi.org/10.1038/nm1483
https://doi.org/10.1182/blood-2012-01-404699
https://doi.org/10.1182/blood-2015-11-683649
https://doi.org/10.1182/blood-2015-11-683649
https://doi.org/10.1016/j.ccr.2012.06.032
https://doi.org/10.1016/j.ccr.2012.06.032
https://doi.org/10.1038/nature04980
https://doi.org/10.1158/2159-8290.CD-16-0441
https://doi.org/10.5966/sctm.2013-0166
https://doi.org/10.1016/j.stem.2016.11.003
https://doi.org/10.1016/j.ccell.2016.11.002
https://doi.org/10.1016/j.ccell.2016.11.002
https://doi.org/10.1038/ni1080
https://doi.org/10.1038/nbt.1607
https://doi.org/10.1038/nbt.1607
https://doi.org/10.1016/j.stem.2012.09.001
https://doi.org/10.1016/j.stem.2012.09.001
https://doi.org/10.1158/0008-5472.CAN-13-1733
https://doi.org/10.1158/0008-5472.CAN-13-1733
https://doi.org/10.1038/nature04703
https://doi.org/10.1182/blood-2009-06-229443
https://doi.org/10.1182/blood-2009-06-229443
https://doi.org/10.1038/s41467-020-14590-9
https://doi.org/10.1016/j.ccell.2018.02.002
https://doi.org/10.1016/j.ccell.2018.02.002
https://doi.org/10.1200/JCO.19.03250
https://doi.org/10.1182/blood.v128.22.4060.4060
https://doi.org/10.1038/s41375-020-0892-z
https://doi.org/10.1158/1078-0432.ccr-20-4054
https://doi.org/10.1158/1078-0432.ccr-20-4054
https://doi.org/10.1182/blood-2017-09-807024
https://doi.org/10.1182/blood-2009-03-213496
https://doi.org/10.1182/blood-2010-07-294827
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


van Gils et al. Therapy Resistance in AML
55. Fujita S, Honma D, Adachi N, Araki K, Takamatsu E, Katsumoto T, et al. Dual
Inhibition of EZH1/2 Breaks the Quiescence of Leukemia Stem Cells in Acute
Myeloid Leukemia. Leukemia (2018) 32:855–64. doi: 10.1038/leu.2017.300

56. Chang KH, Alaniz Z, Nishida Y, Dos Santos CE, Slosberg E, Daver N, et al.
Inhibition of EZH1 and EZH2 Restores Chemosensitivity of Leukemia Stem
Cells in Acute Myeloid Leukemia by Recruitment of Quiescent Aml Stem/
Progenitor Cells. Blood (2020) 136:27–8. doi: 10.1182/blood-2020-142071

57. José-Enériz ES, Agirre X, Rabal O, Vilas-Zornoza A, Sanchez-Arias JA,
Miranda E, et al. Discovery of First-in-Class Reversible Dual Small Molecule
Inhibitors Against G9a and DNMTs in Hematological Malignancies. Nat
Commun (2017) 8:1–10. doi: 10.1038/ncomms15424

58. Rau RE, Rodriguez BA, Luo M, Jeong M, Rosen A, Rogers JH, et al. DOT1L as a
Therapeutic Target for the Treatment of DNMT3A-mutant Acute Myeloid
Leukemia. Blood (2016) 128:971–81. doi: 10.1182/blood-2015-11-684225

59. Stein EM, Garcia-Manero G, Rizzieri DA, Tibes R, Berdeja JG, Savona MR,
et al. The DOT1L Inhibitor Pinometostat Reduces H3K79 Methylation and
has Modest Clinical Activity in Adult Acute Leukemia. Blood (2018)
131:2662–9. doi: 10.1182/blood-2017-12-818948

60. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. Rnai
Screen Identifies Brd4 as a Therapeutic Target in Acute Myeloid Leukaemia.
Nature (2011) 478:524–8. doi: 10.1038/nature10334

61. Fiskus W, Sharma S, Qi J, Valenta JA, Schaub LJ, Shah B, et al. Highly Active
Combination of BRD4 Antagonist and Histone Deacetylase Inhibitor
Against Human Acute Myelogenous Leukemia Cells. Mol Cancer Ther
(2014) 13:1142–54. doi: 10.1158/1535-7163.MCT-13-0770

62. Berthon C, Raffoux E, Thomas X, Vey N, Gomez-Roca C, Yee K, et al.
Bromodomain Inhibitor OTX015 in Patients With Acute Leukaemia: A
Dose-Escalation, Phase 1 Study. Lancet Haematol (2016) 3:e186–95.
doi: 10.1016/S2352-3026(15)00247-1

63. Dawson M, Stein EM, Huntly BJ, Karadimitris A, Kamdar M, Fernandez de
Larrea C, et al. A Phase I Study of GSK525762, a Selective Bromodomain
(BRD) and Extra Terminal Protein (Bet) Inhibitor: Results From Part 1 of
Phase I/Ii Open Label Single Agent Study in Patients With Acute Myeloid
Leukemia (Aml) . Blood (2017) 130 :1377–7 . do i : 10 .1182/
BLOOD.V130.SUPPL_1.1377.1377

64. Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M,
et al. Bcl-2 Inhibition Targets Oxidative Phosphorylation and Selectively
Eradicates Quiescent Human Leukemia Stem Cells. Cell Stem Cell (2013)
12:329–41. doi: 10.1016/j.stem.2012.12.013

65. Pollyea DA, Stevens BM, Jones CL, Winters A, Pei S, Minhajuddin M, et al.
Venetoclax With Azacitidine Disrupts Energy Metabolism and Targets
Leukemia Stem Cells in Patients With Acute Myeloid Leukemia. Nat Med
(2018) 24:1859–66. doi: 10.1038/s41591-018-0233-1

66. Pan R, Ruvolo VR, Wei J, Konopleva M, Reed JC, Pellecchia M, et al.
Inhibition of Mcl-1 With the pan-Bcl-2 Family Inhibitor (-)BI97D6
Overcomes ABT-737 Resistance in Acute Myeloid Leukemia. Blood (2015)
126:363–72. doi: 10.1182/blood-2014-10-604975

67. Ramsey HE, Fischer MA, Lee T, Gorska AE, Arrate MP, Fuller L, et al. A
Novel MCL1 Inhibitor Combined With Venetoclax Rescues Venetoclax-
Resistant Acute Myelogenous Leukemia. Cancer Discovery (2018) 8:1566–
81. doi: 10.1158/2159-8290.CD-18-0140

68. Tron AE, Belmonte MA, Adam A, Aquila BM, Boise LH, Chiarparin E, et al.
Discovery of Mcl-1-specific Inhibitor AZD5991 and Preclinical Activity in
Multiple Myeloma and Acute Myeloid Leukemia. Nat Commun (2018) 9:1–
14. doi: 10.1038/s41467-018-07551-w

69. Caenepeel S, Brown SP, Belmontes B, Moody G, Keegan KS, Chui D, et al.
AMG 176, a Selective MCL1 Inhibitor, is Effective in Hematologic Cancer
Models Alone and in Combination With Established Therapies. Cancer
Discovery (2018) 8:1582–97. doi: 10.1158/2159-8290.CD-18-0387

70. Halilovic E, Chanrion M, Mistry P, Wartmann M, Qiu S, Sanghavi S, et al.
Abstract 4477: MIK665/S64315, a Novel Mcl-1 Inhibitor, in Combination
With Bcl-2 Inhibitors Exhibits Strong Synergistic Antitumor Activity in a
Range of Hematologic Malignancies. In: Cancer Research. American
Association for Cancer Research (AACR) (2019) 79:4477–7. doi: 10.1158/
1538-7445.am2019-4477

71. Wang Y, Liu Y, Malek SN, Zheng P, Liu Y. Targeting HIF1a Eliminates
Cancer Stem Cells in Hematological Malignancies. Cell Stem Cell (2011)
8:399–411. doi: 10.1016/j.stem.2011.02.006
Frontiers in Oncology | www.frontiersin.org 16
72. Portwood S, Lal D, Hsu YC, Vargas R, Johnson MK, Wetzler M, et al.
Activity of the Hypoxia-Activated Prodrug, TH-302, in Preclinical Human
Acute Myeloid Leukemia Models. Clin Cancer Res (2013) 19:6506–19.
doi: 10.1158/1078-0432.CCR-13-0674

73. Benito J, Ramirez MS, Millward NZ, Velez J, Harutyunyan KG, Lu H, et al.
Hypoxia-Activated Prodrug Th-302 Targets Hypoxic Bone Marrow Niches
in Preclinical Leukemia Models. Clin Cancer Res (2016) 22:1687–98.
doi: 10.1158/1078-0432.CCR-14-3378

74. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK, et al.
Chemosensitization of Acute Myeloid Leukemia (AML) Following
Mobilization by the CXCR4 Antagonist AMD3100. Blood (2009)
113:6206–14. doi: 10.1182/blood-2008-06-162123

75. Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM,
et al. A Phase 1/2 Study of Chemosensitization With the CXCR4 Antagonist
Plerixafor in Relapsed or Refractory Acute Myeloid Leukemia. Blood (2012)
119:3917–24. doi: 10.1182/blood-2011-10-383406

76. Roboz GJ, Ritchie EK, Dault Y, Lam L, Marshall DC, Cruz NM, et al. Phase I
Trial of Plerixafor Combined With Decitabine in Newly Diagnosed Older
Patients With Acute Myeloid Leukemia.Haematologica (2018) 103:1308–16.
doi: 10.3324/haematol.2017.183418

77. Piya S, Mu H, Bhattacharya S, Lorenzi PL, Eric Davis R, McQueen T, et al.
BETP Degradation Simultaneously Targets Acute Myelogenous Leukemic
Stem Cells and the Microenvironment. J Clin Invest (2019) 129:1878–94.
doi: 10.1172/JCI120654

78. Tabe Y, Shi YX, Zeng Z, Jin L, Shikami M, Hatanaka Y, et al. Tgf-b-
Neutralizing Antibody 1d11 Enhances Cytarabine-Induced Apoptosis in
AML Cells in the Bone Marrow Microenvironment. PloS One (2013)
8:62785. doi: 10.1371/journal.pone.0062785

79. Kampen KR, Scherpen FJG, Mahmud H, Ter Elst A, Mulder AB, Guryev V,
et al. VEGFC Antibody Therapy Drives Differentiation of AML. Cancer Res
(2018) 78:5940–8. doi: 10.1158/0008-5472.CAN-18-0250

80. Karp JE, Gojo I, Pili R, Gocke CD, Greer J, Guo C, et al. Targeting Vascular
Endothelial Growth Factor for Relapsed and Refractory Adult Acute
Myelogenous Leukemias : Therapy With Sequentia l 1-b -D-
arabinofuranosylcytosine, Mitoxantrone, and Bevacizumab. Clin Cancer
Res (2004) 10:3577–85. doi: 10.1158/1078-0432.CCR-03-0627

81. Zahiragic L, Schliemann C, Bieker R, Thoennissen NH, Burow K,
Kramer C, et al. Bevacizumab Reduces VEGF Expression in Patients
With Relapsed and Refractory Acute Myeloid Leukemia Without Clinical
Antileukemic Activity [6]. Leukemia (2007) 21:1310–2. doi: 10.1038/sj.leu.
2404632

82. Ossenkoppele GJ, Stussi G, Maertens J, Van Montfort K, Biemond BJ,
Breems D, et al. Addition of Bevacizumab to Chemotherapy in Acute
Myeloid Leukemia At Older Age: A Randomized Phase 2 Trial of the
Dutch-Belgian Cooperative Trial Group for Hemato-Oncology (HOVON)
and the Swiss Group for Clinical Cancer Research (Sakk). Blood (2012)
120:4706–11. doi: 10.1182/blood-2012-04-420596

83. Shafat MS, Oellerich T, Mohr S, Robinson SD, Edwards DR, Marlein CR,
et al. Leukemic Blasts Program Bone Marrow Adipocytes to Generate a
Protumoral Microenvironment. Blood (2017) 129:1320–32. doi: 10.1182/
blood-2016-08-734798

84. Tabe Y, Saitoh K, Yang H, Sekihara K, Yamatani K, Ruvolo V, et al.
Inhibition of FAO in AML Co-Cultured With BM Adipocytes:
Mechanisms of Survival and Chemosensitization to Cytarabine. Sci Rep
(2018) 8:16837. doi: 10.1038/s41598-018-35198-6

85. Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B,
et al. Pharmacologic Inhibition of Fatty Acid Oxidation Sensitizes Human
Leukemia Cells to Apoptosis Induction. J Clin Invest (2010) 120:142–56.
doi: 10.1172/JCI38942

86. Heydt Q, Larrue C, Saland E, Bertoli S, Sarry JE, Besson A, et al. Oncogenic
FLT3-ITD Supports Autophagy Via ATF4 in Acute Myeloid Leukemia.
Oncogene (2018) 37:787–97. doi: 10.1038/onc.2017.376

87. Stevens AM, Xiang M, Heppler LN, Tosǐć I, Jiang K, Munoz JO, et al.
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