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Spatiotemporal evolution 
analysis of NO2 column density 
before and after COVID‑19 
pandemic in Henan province based 
on SI‑APSTE model
Yang Liu  1*, Jinhuan Zhao1, Kunlin Song3, Cheng Cheng1, Shenshen Li2* & Kun Cai1*

Air pollution is the result of comprehensive evolution of a dynamic and complex system composed of 
emission sources, topography, meteorology and other environmental factors. The establishment of 
spatiotemporal evolution model is of great significance for the study of air pollution mechanism, trend 
prediction, identification of pollution sources and pollution control. In this paper, the air pollution 
system is described based on cellular automata and restricted agents, and a Swarm Intelligence based 
Air Pollution SpatioTemporal Evolution (SI-APSTE) model is constructed. Then the spatiotemporal 
evolution analysis method of air pollution is studied. Taking Henan Province before and after 
COVID-19 pandemic as an example, the NO2 products of TROPOMI and OMI were analysed based on 
SI-APSTE model. The tropospheric NO2 Vertical Column Densities (VCDs) distribution characteristics 
of spatiotemporal variation of Henan province before COVID-19 pandemic were studied. Then the 
tropospheric NO2 VCDs of TROPOMI was used to study the pandemic period, month-on-month 
and year-on-year in 18 urban areas of Henan Province. The results show that SI-APSTE model can 
effectively analyse the spatiotemporal evolution of air pollution by using environmental big data and 
swarm intelligence, and also can establish a theoretical basis for pollution source identification and 
trend prediction.

With the society development, people pay more and more attention to the content change of various pollutants 
in the atmosphere, which greatly affects the change of global climate and atmospheric environment1. Air pollu-
tion is the result of comprehensive evolution2 of a complex and dynamic system3 composed of emission sources, 
topography, meteorology and other environmental factors. It is of great significance to build a spatiotemporal 
evolution model of air pollution to study the mechanism, prediction, pollution sources identification and treat-
ment of air pollution4.

According to medical research, nitrogen dioxide (NO2) can stimulate the lungs, cause structural changes in 
the lungs, and make people more difficult to resist respiratory diseases such as cold, flu, and pneumonia. In early 
2020, the Coronavirus Disease 2019 (COVID-19) pandemic disaster broke out all over the world. Some studies 
have found that prolonged exposure to high concentrations air pollution in patients with COVID-19 may increase 
mortality and vulnerability5. However, the global scientific community is still debating whether air pollution is 
related role to the mortality rates of COVID-19 and spread of the SARS-CoV-2 virus6. Although the pandemic 
has seriously affected the normal operation of the economy and life orders, it also provides unprecedented oppor-
tunities for Earth observation and atmosphere research. The sources of nitrogen oxides (NOx = NO + NO2) in the 
atmosphere mainly includes natural and anthropogenic sources, and anthropogenic sources are the main sources 
of NO2 in the atmosphere. The study on the tropospheric NO2 Vertical Column Densities (VCDs) in China and 
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some areas before and after the pandemic is of great significance for finding the internal mechanism of air pol-
lution, and also provides data support and theoretical basis for air pollution control and prevention measures.

At present, there are two mains monitoring methods of NO2 in the atmosphere: ground station measurement 
and satellite remote sensing observation. Among them, the concentrations data obtained from the ground station 
measurement have the characteristics of high accuracy and all-weather. However, China’s ground measurement 
stations were established in 2013. This traditional measurement method can only be carried out in a limited 
number of ground stations, and the distribution of stations is sparse. Satellite remote sensing observation has 
the advantages of wide coverage, providing macro change information, reflecting the large-scale of pollutants, 
etc., which can make up for the lack of observation spatial distribution of ground stations7.

In recent years, some scholars have used satellite remote sensing tropospheric VCDs inversion products to 
study the spatiotemporal evolution law of NO2 in atmospheric. Document8 studied long-term trends in tropo-
spheric NO2 VCDs percentiles over Northeast Asia retrieved from the OMI (Ozone Monitoring Instrument) 
from 2005 to 2018, and show a significant increase in the background concentrations of tropospheric NO2 due 
to intensive industrial activities in Northeast Asia. Document9 researched temporal and spatial characteristics 
of the tropospheric NO2 VCDs by inversion data of OMI satellite remote sensing in the Sichuan Basin from 
2005 to 2016. It is found that inter annual variation and spatial distribution trend of troposphere NO2 VCDs 
and nitrogen emission intensities are consistent. The spatial distributions of the NO2 VCDs were also affected 
by terrain, meteorological factors and its lifetime10,11. Based on the combination of tropospheric VCDs of NO2 
and SO2 derived from OMI satellite with the ground station observations, Document12 studied analysed the 
spatiotemporal distribution of NO2 and SO2 amount in Inner Mongolia urban agglomerations. It finds that the 
diurnal variation of NO2 and SO2 is highly related to the diurnal variation of both anthropogenic emission and 
boundary layer height. However, most NO2 VCDs of satellite data are inversion products based on Differential 
Optical Absorption Spectroscop (DOAS) algorithm. The NO2 concentration is affected by cloud, a-priori NO2 
profiles, aerosol layer, and other uncertain factors. There are systematic errors between single satellite sensor 
data and ground-based measurements data13.

In this paper, air pollution is described systematically based on Cellular Automata (CA) and Restricted Agent 
(RA), and constructs a Swarm Intelligence based Air Pollution SpatioTemporal Evolution (SI-APSTE) model. 
The troposphere NO2 VCDs products of TROPOMI and OMI were analysed based on the SI-APSTE model, 
and the NO2 variations in COVID-19 pandemic stage in Henan province were studied by TROPOMI products.

Materials and method
Overview of the study area.  Central Plains Economic Region (CPER) is located in the centre of China. 
The large-scale central plains urban is the most densely populated agglomerations in China at present. It is 
also the hub and core area to undertake industrial transfer and resource output, which has an important both 
strategically and economically. However, with the development of industrialization and urbanization, the air 
pollution of CPER becomes more and more serious. To study the spatiotemporal evolution of NO2 pollution 
in Henan Province can provide support of data and theoretical for pollution control and policy-making in the 
CPER. Henan Province is located at 31°23′ ~ 36°22′N, 110°21′ ~ 116°39′E, with a total area of 167,000 square kilo-
meters. However, the population density is large, and the permanent population is about 94 million, accounting 
for 7.02% of the total permanent population of China. It belongs to subtropical and temperate monsoon climate 
with obvious seasonal changes. It is surrounded by mountains in the north, west and south, and plain in the 
central and eastern. The province consists of 17 prefecture level cities of Zhengzhou (ZZ), Kaifeng (KF), Luoyang 
(LY), Nanyang (NY), Luohe (LH), Xuchang (XC), Sanmenxia (SMX), Pingdingshan (PDS), Zhoukou (ZK), Zhu-
madian (ZMD), Xinxiang (XX), Hebi (HB), Jiaozuo (JZ), Puyang (PY), Anyang (AY), Shangqiu (SQ), Xinyang 
(XY) and Jiyuan (JY) and one county-level city directly under the provincial government. Figure 1 shows the 
terrain feature, administrative division, and land use/land cover of Henan Province.

(a) terrain feature and administrative divisions   (b) land use / land cover 

Figure 1.   Terrain feature, administrative divisions, and land use / land cover of Henan Province.
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Data description.  Satellite‑based data collection and data pre‑processing.  Aura satellite, which was suc-
cessfully launched on July 15, 2004, is a near polar satellite, which follows a sun-synchronous orbit with an equa-
tor crossing time near 13:45 local time. OMI measures the backscattered radiation from the sun using spectral 
bands ranging from the ultraviolet (UV) to infrared wavelengths. The OMI sensor on board mainly includes O3, 
NO2, SO2, HCHO and other gas products, among which the NO2 inversion uses DOAS algorithm14. The orbit 
scanning width of OMI sensor is 2600 km, and the spatial resolution of the sub-satellite point is 13 km × 24 km, 
which can cover the whole world once a day15. The comparison data used in this paper is the monthly mean 
density data of the tropospheric NO2 VCDs of OMI, which is from Tropospheric Emission Monitoring Internet 
Service (TEMIS) of the Royal Institute of Meteorology of the Netherlands (http://​www.​temis.​nl/​airpo​lluti​on/​
no2col/​no2re​gioom​imonth_​qa.​php). The time span is from September 2018 to August 2019, a total of one-year 
data. The spatial resolution is 0.125° × 0.125°, and the unit is mol/cm2 (NO2 molecules per square centimeter). 
Then, the average VCDs were calculated on a quarterly and annual basis.

Sentinel-5p is a satellite dedicated to global air pollution monitoring launched by the European Space Agency 
(ESA) on October 13, 2017. Its TROPOspheric Monitoring Instrument (TROPOMI) imaging range is 2600 km, 
which can cover all parts of the world every day, and the imaging resolution is 7 km × 3.5 km. It can effectively 
monitor NO2, O3, SO2, CO and CH4 of global gases16. The observation equipment of Sentinel series satellite 
combines the advantages of other sensors and advanced technology, and has better observation performance. 
Compare with the Earth Observation System (EOS) of National Aeronautics and Space Administration (NASA) 
series satellite, its performance is greatly improved. Compared with other remote sensing instruments such as the 
Moderate Resolution Imaging Spectro-radiometer (MODIS), the Ozone Mapping and Profiler Suite (OMPS)17, 
the Ozone Monitoring Instrument (OMI) and Environmental Trace Gases Monitoring Instrument (EMI)18, 
TROPOMI can directly monitor the air pollution in small areas, and it can directly monitor the atmospheric 
pollution in small areas16. All TROPOMI data used in this paper are from the official NO2 data product of Royal 
Netherlands (http://​www.​temis.​nl/​airpo​lluti​on/​no2col/​no2re​gio_​tropo​mi.​php).

In‑situ data collection and data pre‑processing.  Research on OMI NO2 data has been relatively mature19,20, in 
order to further verify the universality of TROPOMI NO2 data, this paper uses a monthly ground-based meas-
urements data from the national urban air quality real-time release platform of China Environmental Monitor-
ing Centre (http://​106.​37.​208.​233:​20035/) and tropospheric NO2 VCDs of TROPOMI in Henan Province were 
calculated. The date interval selected the data from the early stage of the pandemic from September 2018 to 
August 2019 and compared with the data of OMI sensor. Based on the comparison results and the advanced 
technology, the tropospheric NO2 VCDs in the previous month and the pandemic period (from December 21, 
2019 to February 20, 2020) were selected to carry out the distribution of NO2 concentrations in Henan province 
for further research and analysis. Then, monthly, quarterly and annual average maps of NO2 VCDs are obtained 
by averaging.

Air pollution system description based on cellular automata and restricted agent.  The genera-
tion of air pollution events is a dynamic evolution product of complex system composed of emission sources, 
topography, meteorology and other environments. In this paper, cellular automata (CA) and restricted agent 
(RA) are used to describe the dynamic variation process of air pollutant concentrations in a specific spatiotem-
poral research area. CA is a kind of grid dynamic model with local spatial interaction and temporal causal-
ity in discrete spatiotemporal state, which has the ability to simulate the dynamic spatiotemporal evolution 
process of complex system. CA has unique advantages in modelling pollution system with hydrodynamic 
characteristics21–25. We consider that each pixel of the pollutant concentration map is composed of a CA. The 
actual concentration contribution of each pixel (described by CA) comes from the fixed source described by RA 
and the mobile source described by Mobile Agent (MA) respectively. For the concentration change of pollutant 
gase (such as NO2, SO2, O3, CO and CH4) in a specific space–time, the CA(s, t) system is described as:

where s is the space of cellular CA, t is the time of cellular CA, L is the cell neighbourhood space, and L can 
adopt von Neuman type of 4-neighborhood26, Moore type of 8-neighborhood27 or Margolus neighbourhood28; 
d is the dimension of cellular CA; D is the finite and discrete set of pollution state of cellular, and the state of D 
is determined by the concentrations of pollutants; N refers to the set of all cellular in a neighbourhood; F refers 
to the local mapping or local rules, indicating the emission, migration, diffusion and degradation of pollutants 
in cellular CA.

In the field of distributed system of artificial intelligence, agent is an abstract entity which has independent 
thinking and can interact with environment independently29. The restricted agent RA (s, t) is used to describe 
the dynamic emission objects of the pollution source, and RA is described by triples:

where s is the current location of the RA, t is the time of the RA, C is the current perceived environment, R is the 
emission of pollutants (such as NOx

30, SO2, CO31, NH3, O3, VOC, etc.), and the mapping Z meets Z: C (s, t) → R. 
There are restrictions on RA spatiotemporal information and message delivery. There is no information transfer 
in RA. The emission pollutants of RA directly control the pollution state of cellular CA in the same location. For 
a fixed pollution source, the location s of the agent RA is fixed; for a mobile pollution source, the agent RA can 
be described by the MA, and the spatiotemporal location (s, t) of MA is simulated by one-dimensional cellular 
according to its moving path.

(1)CA(s, t) = (L, d,D,N , F), s.t. F :Dt+1
i = F

(

Dt
i ,D

t
N

)

,

(2)RA(s, t) = (C,R,Z), s.t. Z : C(s, t) → R ,

http://www.temis.nl/airpollution/no2col/no2regioomimonth_qa.php
http://www.temis.nl/airpollution/no2col/no2regioomimonth_qa.php
http://www.temis.nl/airpollution/no2col/no2regio_tropomi.php
http://106.37.208.233:20035/
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Swarm intelligence based air pollution spatiotemporal evolution model.  The Air Pollution Sys-
tem (APS) described by CA and RA can be used to build a Swarm Intelligence based Air Pollution SpatioTem-
poral Evolution (SI-APSTE) model (Fig. 2). The CA model can be established by using historical environmental 
data, which can further realize the pollution inversion, prediction and simulation of the APS. Swarm intelligence 
(SI) is a bionic computing method in the field of artificial intelligence32. Through interaction and cooperation 
among micro low-level intelligence individuals, SI shows collective intelligence behaviour at the macro high-
level. The spatiotemporal evolution of air pollution is similar to the generation, migration, aggregation and 
dissipation of particle swarm. Combining with the SI algorithm such as Ant Colony Optimization (ACO) and 
Particle Swarm Optimization (PSO)33,34, the RA objects that emission pollution can be reversely inferred accord-
ing to the CA pollution state, so as to achieve the purpose of pollution sources identification. The pollutant 
concentrations DPS(s, t) of cellular CA(s, t) meet the following requirements:

Here, Dem(s, t) is the emission pollutant concentration of the agent RA in the cellular CA(s, t), Dtr(s, t) concentra-
tion is the pollutant migration of the cellular CA(s, t), and Dac(s, t) is the pollutant accumulated concentration 
of the cellular CA(s, t).

In essence, both satellite remote sensing and ground station measurement are a kind of spatiotemporal sam-
pling of on-site pollution data. According to the principle of information theory, only when the measurement 
time interval and spatial resolution meet the sampling theorem can the real pollution situation be reflected. So we 
use Nyquist–Shannon sampling theorem35,36 to describe the authenticity of pollution information in SI-APSTE 
model. According to So SI-APSTE can be generated by using CA dynamic complex system and environmental 
historical data based on spatiotemporal sampling. Generally, the measured pollution data of the ground station 
belongs to oversampling in time, but due to the sparsity of its distribution, it is generally undersampling in space. 
On the contrary, for the satellite remote sensing inversion of pollutant data, due to the limitation of satellite 
transit revisit period, it is often undersampling in time, but generally has a relatively high resolution in space. By 
using the methods of information fusion, downsampling interpolation and subsampled, the multi-source data of 
multiple satellite observations37 and ground-based data can be fused to generate a high-precision and effective 
spatiotemporal evolution model of air pollution.

Generally, there are two sources of air pollutant emission concentration Dem(s, t) of cellular CA(s, t): fixed 
emissions source RA pollutant ffix (s, t) and mobile emissions source MA pollutant fmov (s, t):

Here, ffix (s, t) is correlated with local economic environment Neco(s, t)38, fmov (s, t) is correlated with local traffic 
environment Ntfc(s, t)39. Dtr(s, t) of air pollutants concentration migration and diffusion in cellular CA(s, t) meets 
the following requirements:

(3)Dps(s, t) = Dem(s, t) + Dtr(s, t) + Dac(s, t),

(4)Dem(s, t) = ffix(s, t)+ fmov(s, t), s.t. ffix(s, t) ∝ Neco(s, t), fmov(s, t) ∝ Ntfc(s, t) ,

(5)

Dtr(s, t) =
�

ftrI (s, t)+fdiI (s, t)
�

−
�

ftrO(s, t)+fdiO(s, t)
�

, s.t.



















fdiO(s, t) ∈ Dps(s, t0)Gauss(s, t)

fdiI (s, t) ∈ Dps(s, t0)(1−Gauss(s, t))

ftrI (s, t) ∝ Dps(si , tj)N(Wmete(s,m),Gterr(s))

ftrO(s, t) ∝ Dps(si , tj)N(Wmete(s,m),Gterr(s))

,

Figure 2.   The pollutants emission, migration, diffusion and degradation between CA, MA and RA in 
SI-APSTE model.
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Among them, ftrI(s, t) is the quantity of entering cellular pollutants by migration, ftrO(s, t) is the quantity of exit 
cellular pollutants by migration, and the pollutants migration of CA(s, t) is related to the local meteorological 
Wmete

40 and terrain Gterr
41; fdiI(s, t) is the amount of entering cellular CA(s, t) pollutant by diffusion, and fdiO(s, t) 

is the amount of exit cellular CA(s, t) pollutant by diffusion, and the spatial–temporal diffusion of cellular CA(s, 
t) pollutant meets the Gaussian distribution characteristics42.

The accumulated amount of air pollutants in cellular CA(s, t), Dac(s, t), meets the following requirements:

Here, the amount of degradation fdeg(t) is the amount of pollutant migration, and the amount of degradation 
fdeg(t) is related to the local atmospheric humidity Whumi

43, temperature Wtemp, and vegetation Wvege
44. Dps(s, t0) 

is air pollutant concentration of cellular CA(s, t).

Analysis of the air pollution spatiotemporal evolution.  According to the SI-APSTE model, the air 
pollutants of the cellular CA(s, t) meet the following reduction:

Temporal and spatial variance analysis of cellular pollution.  The air pollutant concentration Dps(s, t) of cellular 
CA(s, t) at different time meets the following reduction:

Theoretically, the time interval and spatial distance of pollution data measurement should be as small as 
possible. However, for satellite remote sensing, there is a limit of revisit period, which cannot be infinitely small 
(for satellites, the revisit period is usually days, and for ground stations, the measurement interval is usually in 
hours); for ground measurement, there is also a limit of station construction, which cannot be built anywhere. If 
there is no special case, when the time interval is small, the emission of fixed emission sources generally changes 
little. It can be considered that the change of pollution emission of fixed emission sources tends to 0, that is:

Temporal and spatial accumulation analysis of cellular pollution.  The air pollutant concentration Dps(s, t) accu-
mulation of cellular CA(s, t) at different time meets the following formula:

In the long run, for the time cellular CA(s, t) meet the conservation of mass, because the diffusion of pollut-
ants does not affect the change of the total amount of pollutants, the pollutants of the migration enter and exit 
will tend to balance:

Multivariate analysis and correlation analysis of air pollution components.  If the spatial–temporal differences 
of cellular are ignored, air pollution indices such as PM2.5 and PM10 can be described by the multiple pollut-
ants in the multiple cellular system45. If the preparing the data follows the normal distribution, multiple linear 
regression and Pearson correlation analysis are used; On the contrary, non-parametric regression (such as kernel 
regression, multivariate adaptive regression splines) and Sperman correlation analysis are used. Ideally, multiple 
linear regression analysis is carried out for the air pollution composite index Dpm

ps  and each pollution component:

(6)Dac(s, t) = Dps(s, t0)− fdeg (t), s.t. fdeg (t) ∝ N
(

Wtemp(m),Whumi(m),Wvege(m)
)

,

(7)

Dps(s, t) = Dem(s, t) + Dtr(s, t) + Dac(s, t)

= Dem(s, t)+ftrI (s, t)− ftrO(s, t) + Dps(s, t0)fdiI (s, t)− Dps(s, t0)fdiO(s, t)− fdeg (t)

= Dem(s, t)+ftrI (s, t) + Dps(s, t0)fdiI (s, t)− ftrO(s, t)− Dps(s, t0)fdiO(s, t)− fdeg (t)

=
(

ffix(s, t)+ fmov(s, t)
)

+
(

ftrI (s, t)− ftrO(s, t)
)

+ Dps(s, t0)
(

fdiI (s, t)− fdiO(s, t)
)

− fdeg (t)

(8)
∂Dps(s, t)

∂t
≈

∂Dem(s, t)

∂t
=
∂ffix(s, t)

∂t
+
∂fmov(s, t)

∂t

(9)
∂Dps(s, t)

∂t
≈

∂fmov(s, t)

∂t
, s.t.

∂ffix(s, t)

∂t
→ 0

(10)
∑

Dps(s, t)=
∑

Dem(s, t)+
∑

Dtr(s, t)+
∑

Dac(s, t)

(11)
∑

Dps(s, t) ≈
∑

Dem(s, t)+
∑

Dac(s, t) =
∑

Dem(s, t)−
∑

fdeg , s.t.
∑

Dtr(s, t) → 0

(12)

D
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ps =β0+

N
∑

k=1

(

βk × f (Dk
ps)

)

, s.t. k ∈ {NO2, SO2,NH3,O3,VOC, · · ·},
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√

√

√
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√

√

√
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n
∑
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(
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Here, Dk
ps is the concentration of the k-th air pollutant. βk is the regression coefficient. N is the number of type 

pollutant component. n is the monitoring sample number of pollutant component. R is the multiple correlation 
coefficients. R reflects the linear dependence measurement or complex nonlinear dependence measurement 
between the total pollution index and each pollution component. When only one pollutant is considered, that 
is. N = 1 and Dk

ps = f (Dk
ps) , the above Formula (12) is becoming a linear regression equation of one variable:

Here r is a simple correlation coefficient, which can be used to test the effectiveness of satellite remote sensing 
inversion data with ground-based measured data, as well as the inversion accuracy of different satellite remote 
sensing data, which is a commonly used analysis method of ideal state minimalism. In fact, due to the influence of 
atmospheric physics, atmospheric chemistry, ecological environment and other factors, the pollution components 
often depend on each other and influence each other, showing a nonlinear relationship. For example, there is a 
complex nonlinear relationship between the pollutant concentration of ground level based on the in-situ ground 
station and the vertical column density of pollutant based on satellite inversion.

MoM and YoY rate analysis of cellular pollution.  Processing and analysis the pollution monitoring data in dif-
ferent time and space can effectively reveal the differences and contradictions, and mining the changing trend 
of environmental big data. The month-on-month (MoM) rates used to compare pollution for one month with 
those in previous months. The calculation method of the MoM rate DRMoM(s, t) of CA(s, t) pollution is as follows:

Here, DCps(s, t) is the pollution concentration in the current period t(a certain statistical period), DLps(s, t) is the 
pollution concentration in the previous period d(the previous statistical period), and statistical period t can be 
day, week, month, quarter or year. In order to eliminate the impact of seasonal changes, a year-on-year (YoY) 
calculation compares a pollution concentration statistic for one period to the same period the previous year. The 
YoY rate of cellular CA(s, t) pollution DRYoY(s, t) is calculated as follows:

Here, DCps(s, t) is the pollution concentration in the current period t, DYps(s, t) is the pollution concentration in 
the last year the same period y.

Results and discussion
SI-APSTE model would analyse the dynamic variations of pollutants in different regions and the monitoring 
effect of different atmospheric inversion products. It can also realize the pollution source identification and 
further carry out the prediction of pollution trend research. Considering that NO2 emission is the main fac-
tor affecting VCDs, we ignore the seasonal, lifetime and the impact of meteorology factors of NO2. Taking the 
monitoring of NO2 before and after the COVID-19 pandemic in Henan Province as an example, this paper 
analysis the inversion products of TROPOMI and OMI NO2, and studies the temporal and spatial evolution of 
NO2 based on SI-APSTE model.

In order to compare the monitoring of NO2 between TROPOMI and OMI sensors, the spatiotemporal distri-
bution and variation of tropospheric NO2 VCDs of 18 cities in Henan Province from September 2018 to August 
2019 (one year), as well as the annual spatial distribution is analysed. According to the results of the study, 
TROPOMI products with more advanced performance and higher spatial resolution were used to analyse the 
variation of NO2 VCDs during the pandemic in Henan Province.

The NO2 VCDs spatiotemporal evolution analysis of monthly variation in early stage of 
COVID‑19 pandemic in Henan province.  According to the Formula (13) of SI-APSTE model, the cor-
relation of tropospheric NO2 VCDs between them is analysed. Among the 83 monitoring stations published 
on the platform from September 2018 to August 2019, 8 monitoring stations have no data, and the data of 3 
monitoring stations are partially missing. Finally, 884 effective NO2 concentrations data and tropospheric NO2 
VCDs of TROPOMI are selected for correlation analysis. As shown in Fig. 3, there is a significant positive cor-
relation between the monthly average ground NO2 concentrations and the monthly average TROPOMI NO2 
VCDs, with a correlation coefficient R of 0.83, T-test probability P-value = 0 and F-Test statistic F value = 5.89. It 
shows that the Sentinel-5P remote sensing satellite has a good monitoring ability for the NO2 emission on the 
ground in Henan Province. It can be very sensitive to monitor the emission level of industrial sources and urban 
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traffic sources near the ground. It can provide strong support for the fine control of regional air pollution and the 
accurate early warning and prediction of air quality.

In order to analyse the monthly spatial variation of NO2 VCDs in Henan Province, the monthly variation 
trend of NO2 concentration was studied in the early stage of the COVID-19 pandemic. The monthly variation 
NO2 concentration was obtained by the way of daily average accumulation (excluding 0 values) from Septem-
ber 2018 to August 2019 in Henan Province. As shown in Fig. 4, the NO2 VCDs trend of both TROPOMI and 
OMI is roughly the same, but the NO2 VCDs fluctuation of TROPOMI is more detailed than OMI. On the 
whole, the NO2 VCDs of OMI is higher than that of TROPOMI, especially in December; the difference reaches 
the maximum value of 8.62 × 1015 mol/cm2 in a year. The high values of both NO2 concentration occurred in 
December 2018, in which the maximum NO2 VCDs values of TROPOMI and OMI were 12.74 × 1015 mol/cm2 
and 21.36 × 1015 mol/cm2 respectively. The low values occurred in July and August 2019, in which the minimum 
NO2 VCDs values of TROPOMI reached 2.52 × 1015 mol/cm2 in August, and the minimum NO2 VCDs values 
of OMI reached 3.61 × 1015 mol/cm2 in July. On the whole, the NO2 VCD retrieved from OMI is higher than 
TROPOMI. Explanations for this difference may result from the restrictions in the different inversion algorithms 
and satellite sensors (such as spatial resolution, spectral coverage, wavelength calibration et al.)46,47.

Figure 5 shows the monthly average spatial distribution map of TROPOMI NO2 VCDs from September 
2018 to August 2019 (the white area is no value). Because VCDs of OMI and TROPOMI have basically the same 
monthly average variation range, and the above analysis shows that TROPOMI data can describe the regional 
pollution situation more carefully than OMI data, and TROPOMI sensor is also more advanced than OMI sensor, 
so there are no longer analyses the monthly average distribution of OMI NO2 VCDs, focusing on the monthly 
average distribution of NO2 VCDs of TROPOMI.

From the NO2 VCDs of TROPOMI in Figs. 4 and 5, it can be seen that the NO2 concentration variation can 
be divided into two stages as a whole: the rising stage is from September to December 2018, and the declining 
stage is from January to August 2019. The high concentration range increased from September to October 2018. 
In November, the range of high concentration was further expanded, the concentration increased in some areas 
(Zhengzhou, Xinxiang, Anyang and Hebi), and the average concentration of NO2 in the whole month decreased 
compared with that in October. In December 2018 and January 2019, the high concentration area of NO2 is more 
widely distributed than other months, mainly concentrated in the more developed areas in the central and east-
ern, and north in Henan Province. In February 2019, the troposphere NO2 VCDs ranges decreased significantly, 

Figure 3.   Correlation analysis of TROPOMI NO2 VCDs and real-time NO2 concentration at ground 
monitoring stations.

Figure 4.   Monthly average trend of NO2 VCDs of the COVID-19 early period from September 2018 to August 
2019 in Henan province.
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mostly concentrated in the northern part of Henan Province adjacent to Shanxi and Hebei. In March 2019, com-
pared with February, the concentration range was expanded and the monthly average concentration increased.

According to the official statistics of Henan Provincial Bureau of Statistics (http://​data.​stats.​gov.​cn/​ks.​htm?​
cn=​E0101), in March 2019, the industrial added value of Henan Province increased by 9%, much higher than 
other months, which may be part of the reason for the sudden increase of NO2 concentration in March. The 
high concentration range of NO2 in April is smaller than that in March, and the high concentration values are 
mostly found in Anyang, Hebi, Jiaozuo, Xinxiang and Zhengzhou. From May to August, the high value areas in 
most areas of Henan Province were further reduced, and the high value areas were mostly concentrated in the 
northern part of Zhengzhou city. On the whole, the variation of tropospheric NO2 VCDs is dominated by human 
emission, which is closely related to human activities, and mostly concentrated in the economically developed 
and densely populated areas of Henan Province.

Figure 5.   Monthly average distribution of TROPOMI NO2 VCDs (× 1015 mol/cm2) of the COVID-19 early 
period from September 2018 to August 2019 in Henan Province.

http://data.stats.gov.cn/ks.htm?cn=E0101
http://data.stats.gov.cn/ks.htm?cn=E0101
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The NO2 VCDs spatiotemporal evolution analysis of seasonal variation in early stage of 
COVID‑19 pandemic in Henan province.  In order to analyse the seasonal variation characteristics 
of tropospheric NO2 VCDs in Henan Province, according to the seasonal meteorological division method of 
Henan Province, this paper divides September, October and November 2018 into autumn, December 2018 and 
January and February 2019 into winter, March, April and May 2019 into spring, June, July and August 2019 into 
summer. The seasonal average value of the tropospheric NO2 VCDs from September 2018 to August 2019 was 
obtained by the way of monthly average cumulative average (excluding 0 values).

Figure 6 shows the trend chart of NO2 VCDs of OMI and TROPOMI in four seasons. On the whole, they 
have the same change range in four seasons. The concentration levels are: Winter 2018 > autumn 2018 > spring 
2019 > summer 2019. However, the overall NO2 VCDs of OMI is higher than TROPOMI, which is the most 
obvious difference in winter 2018. It is generally believed that the NO2 concentration is consistent with season 
varies for different sensors. However, the difference between the observed waveband and the inversion algorithm 
will cause concentration result change. It can be seen from Fig. 6 that the tropospheric NO2 VCDs is on the high 
concentration in autumn and winter of 2018. On the one hand, under the influence of low atmospheric tempera-
ture and low wind conditions in winter, the chemical reaction of NO2 with other components is slow, industrial 
emissions and automobile exhaust are not easy to diffuse and flow, and the coal-fired emissions generated by 
heating aggravate the winter in Henan Province; on the other hand, it is also related to the emissions of a large 
number of gaseous and particulate pollutants into the air during autumn crop harvest. In the spring and sum-
mer of 2019, the concentration is relatively low. Although there is burning straw in summer, Henan Province is 
located in the Central Plains, which belongs to humid and semi-humid, temperate and subtropical of monsoon 
climate. In summer, it is hot, rainy and windy with strong atmospheric diffusion ability. Strong solar radiation 
and sufficient rain make the NO2 gas in the atmosphere dissipate easily, resulting NO2 tropospheric VOCs in 
summer reaching the lowest value in a year.

In order to better analyse the seasonal spatial variation of the tropospheric NO2 VCDs in Henan Province, the 
seasonal mean distribution of TROPOMI NO2 from August 2018 to September 2019 is also given in this paper 
to reflect the seasonal spatial variation (Fig. 7). Because the seasonal variation trend and the tropospheric NO2 
VCDs range of OMI and TROPOMI are basically the same, and the observation ability of TROPOMI sensor is 
much higher than that of OMI sensor, so the seasonal spatial variation of tropospheric NO2 VCDs of TROPOMI 
is selected as the research data. As shown in Fig. 7, the high concentration range of NO2 in autumn and winter 
of 2018 in Henan Province is larger than that in spring and summer of 2019. In autumn 2018, the high NO2 
concentration range is large, and NO2 is concentrated in the central and eastern, and north of Henan. In winter 
of 2018, NO2 concentration in most areas is at high level, increasing from south to north and from west to east. 
In the spring of 2019, the NO2 VCDs is high in the northern part of Henan Province. In the summer of 2019, 
most areas of NO2 are at a low concentration, and the NO2 VCDs in the economically developed areas in the 
north of Zhengzhou and around Anyang is high concentration. This seasonal difference in tropospheric NO2 
VCDs is mainly related to atmospheric pressure, precipitation, temperature and other meteorological factors as 
well as anthropogenic emissions.

Specifically, the possible reasons for the seasonal variation of troposphere NO2 VCDs are:

(1)	 In autumn and winter, the low temperature, the dry air and the control of continental high in most areas 
of China jointly led to the continuous accumulation of NO2 pollutants. The reason is that the air mobility 
in the near ground layer is weak in autumn and winter, and pollutants are easy to accumulate, which is not 
conducive to diffusion48–50.

(2)	 In spring and summer, with the increase of solar radiation, temperature and rainy, the NO2 concentration 
will be diluted. Under the condition of constant anthropogenic emission source, the chemical reaction 
consume troposphere NO2 VCDs, resulting in the decrease of NO2 concentration.

Figure 6.   Seasonal variation trend of NO2 VCDs of the COVID-19 early period from August 2018 to 
September 2019 in Henan province.
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The NO2 VCDs spatiotemporal evolution analysis of annual average in early stage of COVID‑19 
pandemic in Henan province.  In order to analyse the spatial variation of troposphere NO2 VCDs in 
Henan Province, the annual mean value of troposphere NO2 VCDs from September 2018 to August 2019 was 
obtained by accumulating the monthly mean NO2 VCDs of OMI and TROPOMI (excluding 0 values). It can be 
seen from Fig. 8 that the high and low concentration distribution areas of NO2 in Henan Province are roughly 
the same, but the NO2 VCDs of TROPOMI is lower and more detailed than OMI. As a whole, the concentration 
range of NO2 is from south to north and from west to east with increasing trend. The reasons for this trend may 
be:

It is related to the distribution of economic conditions.  Most of the economically developed areas in the province 
are concentrated in the northern and eastern areas with Zhengzhou as the centre. These areas are mainly light 

Figure 7.   Seasonal mean distribution of TROPOMI NO2 VCDs (× 1015 mol/cm2) of the COVID-19 early 
period from August 2018 to September 2019 in Henan Province.

Figure 8.   Annual mean distribution of tropospheric NO2 VCDs (× 1015 mol/cm2) of the COVID-19 early 
period from September 2018 to August 2019 in Henan Province.
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industry and large-scale power plants. They are the economic development centre of the province, with a large 
population density, which together lead to the increase of NO2 concentration in these areas.

It has a lot to do with the terrain.  The annual distribution map of NO2 VCDs of OMI and TROPOMI (Fig. 8) 
shows that the high value areas of the whole province are distributed in the north of Zhengzhou, the northwest 
of Xinxiang, the northwest of Kaifeng, Jiaozuo, Jiyuan, Hebi and the north of Anyang and other economically 
developed plain areas. The distribution map of NO2 VCDs of TROPOMI shows that the NO2 concentration in 
one area in the north of Zhengzhou is on the high side, which is in Erqi District, Jinshui District, Zhongyuan 
District and Guancheng Hui District with relatively developed economy. This area is an important transporta-
tion hub in China, including trains, subways, automobiles and other important means of transportation in the 
country; while the low value areas are all distributed in the mountainous areas of southwest Henan, which is 
closely related to the high vegetation coverage and less population living in the mountainous areas.

Figure 9 shows the annual mean changes of tropospheric NO2 VCDs in 18 urban areas of Henan Province 
from August 2018 to September 2019. As shown in Fig. 9, the high and low NO2 VCDs of TROPOMI and OMI 
are roughly the same. The high NO2 concentration cities are mainly in Xinxiang, Anyang, Jiaozuo, Zhengzhou, 
Hebi and other developed and densely populated northern and eastern areas of Henan Province. Among them, 
NO2 VCDs of TROPOMI shows that the NO2 concentration in Hebi City is the highest, reaching 9.77 × 1015 
mol/cm2. This is because Hebi is a thermal power base in Henan Province, which is a city, built on coal, and 
there are many enterprises with large power consumption such as cement and metallurgy. However, NO2 VCDs 
of OMI showed that the highest NO2 concentration in Jiaozuo was 13.78 × 1015 mol/cm2; the low concentration 
is mainly in Sanmenxia, Nanyang City, Xinyang, Luoyang, Zhumadian and other mountainous and hilly areas, 
mainly these areas are located in the underdeveloped mountainous areas, with small population density, less 
NO2 pollution sources from vehicles and factories, and small NO2 pollution in neighbouring Shaanxi Province 
and Hubei Province, which results in low NO2 concentration.

The TROPOMI NO2 VCDs spatiotemporal evolution analysis of YoY rate before and after 
COVID‑19 pandemic in Henan province.  Since large number of social and economic activities have 
been suspended on lockdown to prevent and control the COVID-19 pandemic outbreak, which also provides a 
good opportunity for the scientific research of air pollution. Because TROPOMI sensor has higher observation 
accuracy and resolution than OMI sensor, the following only uses TROPOMI data to analyse the spatiotemporal 
evolution of NO2 pollution in Henan Province. Specifically, the temporal and spatial variation of NO2 VODs in 
18 urban areas of Henan Province during the previous year of pandemic period (from January 21, 2019 to Febru-
ary 20, 2019), the previous month of pandemic period (from December 21, 2019 to January 20, 2020), and the 
COVID-19 pandemic period (from January 21, 2020 to February 20, 2020) were analysed.

In order to avoid the impact of the resume to work of the pandemic on the NO2 concentration, we select 
the daily products of NO2 VCDs of TROPOMI from January 21, 2020 (2 days before the lockdown of Wuhan 
City) to February 20, 2020 (COVID-19 pandemic period) for one month, and analyse the spatial distribution 
of NO2 during the pandemic in Henan Province. The COVID-19 pandemic can be seen as a great influence on 
NO2 emissions in Henan province from Fig. 10c. Except for Anyang, Xinxiang, Jiaozuo and Jiyuan in the north 
of Henan Province, the NO2 VCDs in other areas was generally lower than 5 × 1015mlec/cm2. Among them, the 
NO2 emission in the high concentration area mainly comes from the electric power, transportation and other 
industries, as well as the emission of bulk coal combustion and the transportation of advection layer caused 
by heating in winter51. According to the statistics of the average value of each urban area (Table 1), there are 
only Jiaozuo, Anyang, Hebi, Jiyuan, Xinxiang and Zhengzhou in Henan Province, with NO2 VCDs more than 

Figure 9.   Annual average variation of tropospheric NO2 VCDs (× 1015 mol/cm2) in 18 cities of the COVID-19 
early period from September 2018 to August 2019 in Henan Province.
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3 × 1015 mol/cm2. The NO2 VCDs are low in other urban areas. The lowest of NO2 VCDs are Sanmenxia, and it 
is 1.41 × 1015 mol/cm2. 

Figure 10a shows the NO2 VCDs distribution of Henan Province in previous year of pandemic period (from 
January 21, 2019 to February 20, 2019). It can be find from Fig. 10a that the NO2 VCDs is generally high in the 
same period of 2019, and the distribution range is also wider. Especially, the NO2 VCDs is close to or more than 
10 × 1015 mol/cm2 in Hebi, Anyang, Puyang, Xinxiang, Jiaozuo, Zhengzhou and other densely populated plain 
areas in the northeast of Henan Province. However, the NO2 VCDs in these areas decreased significantly during 
the pandemic period, which shows that the impact of the pandemic on the NO2 VCDs in high concentration 
areas are more obvious.

The YoY rate of NO2 VCDs in different areas are calculated and analysed by Formulas (12) and (15) of SI-
APSTE model. Results as shown in Table 1, the YoY rate (decline rate) of each urban area is very large, with 
a decline rate of more than 46%. Both Puyang and Hebi decreased by more than 70%, with a decrease rate of 
75.48% and 71.99%, respectively. The main reasons for these obvious reductions are as follows: on the one hand, 
the concentration in these areas is high at ordinary times, and the reduction space is large; on the other hand, 
it may be caused by the strict control measures during the pandemic period, the shutdown of factories and the 
lack of people’s travel.

Figure 10.   Spatial distribution of tropospheric NO2 VCDs of TROPOMI (× 1015 mol/cm2) in Henan Province: 
(a) Previous year of pandemic period (from January 21, 2019 to February 20, 2019); (b) Previous month of 
pandemic period (from December 21, 2019 to January 20, 2020); (c) COVID-19 pandemic period (from 
January 21, 2020 to February 20, 2020).

Table 1.   The NO2 VCDs of COVID-19 pandemic period in 18 urban areas of Henan Province. The bold 
numbers represent the maximum and minimum values of the values in each column.

City

Average NO2 VCDs (× 1015 
mol/cm2)
previous year of pandemic 
period (21-01-2019 to 20-02-
2019)

Average NO2 VCDs (× 1015 
mol/cm2)
previous month of pandemic 
period (21-12-2019 to 20-01-
2020)

Average NO2 VCDs (× 1015 
mol/cm2)
during pandemic period (21-
01-2020 to 20-02-2020)

YoY rate(%) 
between (21-01-2019 to 
20-02-2019) and (21-01-2020 
to 20-02-2020)

MoM rate(%) 
between (21-12-2019 to 
20-01-2020) and (21-01-
2020 to 20-02-2020)

Anyang 11.57 12.23 3.79 − 67.22 − 69.01

Hebi 12.43 13.48 3.48 − 71.99 − 74.17

Jiyuan 7.56 8.70 3.34 − 55.81 − 61.59

Jiaozuo 10.21 14.15 3.88 − 62.02 − 72.61

Kaifeng 7.91 8.77 2.56 − 67.60 − 70.80

Luoyang 3.27 5.10 1.69 − 48.37 − 66.91

Luohe 5.33 6.92 2.16 − 59.45 − 68.81

Nayang 3.00 5.36 1.43 − 52.48 − 73.38

Pingdingshan 4.27 7.36 2.21 − 48.23 − 69.99

Puyang 11.56 9.67 2.83 − 75.48 − 70.68

Sanmenxia 2.61 4.09 1.41 − 46.10 − 65.60

Shangqiu 6.94 7.83 2.18 − 68.53 − 72.09

Xinxiang 10.90 12.46 3.34 − 69.37 − 73.20

Xinyang 4.61 3.99 1.82 − 60.51 − 54.33

Xuchang 6.67 8.24 2.43 − 63.60 − 70.54

Zhengzhou 8.34 10.00 3.02 − 63.83 − 69.81

Zhoukou 5.00 7.71 2.21 − 55.80 − 71.34

Zhumadian 3.92 6.07 1.87 − 52.35 − 69.22
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The TROPOMI NO2 VCDs spatiotemporal evolution analysis of MoM rate before and after 
COVID‑19 pandemic in Henan province.  Figure 10b shows the spatial distribution of NO2 in the previ-
ous month of pandemic period (from December 21, 2019 to January 20, 2020). The NO2 VCDs spatial distri-
bution of previous month of pandemic period (Fig. 10b) is similar to that previous year of pandemic period 
(from January 21, 2019 to February 20, 2019) (Fig. 10a). However, the NO2 concentration of previous month 
of pandemic period is wider and higher. The NO2 VCDs in the northeast of the province is more than 10 × 1015 
mol/cm2. Compare with the NO2 spatial distribution of previous month of pandemic period (Fig.  10b) and 
COVID-19 pandemic period (from January 21, 2020 to February 20, 2020) (Fig. 10c), the scope of NO2 in the 
whole province has decreased to a large extent. The scope has become smaller and the concentration has become 
lower. It can be seen that the decrease of NO2 in Henan Province during the pandemic period is very large, which 
may be the reason for people’s home isolation, factory shutdown and so on. The specific influencing factors are 
greater need to be further studied.

The MoM rate of NO2 VCDs in different areas are calculated and analysed by Formulas (12) and (14) of SI-
APSTE model. Results as shown in Table 1, the MoM rate (decline rate) of the whole province is more than 54%. 
Henan Province has always been one of the provinces with powerful governance in the whole country during the 
pandemic period. The measures for pandemic control are strictly controlled, and the pandemic control time is 
relatively early, so the effect is very significant. In the whole province, 9 urban areas, including Hebi, Nanyang, 
Xinxiang, Jiaozuo, Shangqiu, Zhoukou, Kaifeng, Puyang and Xuchang, account for more than 70% of the MoM 
rate. Among them, Hebi saw the largest decline, reaching 74.17%. From the month before the pandemic to the 
pandemic period, the decrease of NO2 VCDs was so significant; this indicated that human activities were very 
important factors affecting NO2 concentration.

Conclusion
This paper describes the complex dynamic system of air pollution based on cellular automata and restricted 
agents, the SI-APSTE model is proposed based on swarm intelligence and spatiotemporal sampling theorem, 
and further deduces the spatiotemporal evolution analysis method of air pollution. In order to verify the effec-
tiveness of the SI-APSTE model, taking the NO2 pollution before and after the COVID-19 pandemic in Henan 
Province as an example, based on the SI-APSTE model, the NO2 VODs products of TROPOMI and OMI were 
compared and analysed, and the temporal and spatial distribution characteristics of the tropospheric NO2 VCDs 
from August 2018 to September 2019 in Henan Province were studied. Using TROPOMI data, the spatiotemporal 
variation of NO2 VODs in 18 urban areas of Henan Province were studied in the COVID-19 pandemic periods, 
the previous year of pandemic periods and the previous month of pandemic periods.

This research shows that the SI-APSTE model can effectively implement the spatiotemporal evolution analysis 
for NO2. The model can also be used to study the temporal and spatial evolution of other trace air pollutants such 
as other nitrogen oxides, sulfur oxides, carbon oxides, hydrocarbons and ozone. Making full use of the charac-
teristics of environmental big data and SI algorithm, the SI-APSTE model would deeply reveal the mechanism 
of air pollution, and also establish a theoretical basis for pollution sources identification and trend prediction 
of air pollution.
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