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Abstract

Background: As pharmacological therapies have largely failed so far, stem cell therapy has recently come into the focus of
ALS research. Neuroprotective potential was shown for several types of stem and progenitor cells, mainly due to release of
trophic factors. In the present study, we assessed the effects of intracerebroventricular injection of glucagon-like peptide 1
(GLP-1) releasing mesenchymal stromal cells (MSC) in mutant SOD1 (G93A) transgenic mice.

Methodology/Principal Findings: To improve the neuroprotective effects of native MSC, they had been transfected with a
plasmid vector encoding a GLP-1 fusion gene prior to the injection, as GLP-1 was shown to exhibit neuroprotective
properties before. Cells were encapsulated and therefore protected against rejection. After intracerebroventricular injection
of these GLP-1 MSC capsules in presymptomatic SOD1 (G93A) mice, we assessed possible protective effects by survival
analysis, measurement of body weight, daily monitoring and evaluation of motor performance by rotarod and footprint
analyses. Motor neuron numbers in the spinal cord as well as the amount of astrocytosis, microglial activation, heat shock
response and neuronal nitric oxide synthase (nNOS) expression were analyzed by immunohistological methods. Treatment
with GLP-1 producing MSC capsules significantly prolonged survival by 13 days, delayed symptom onset by 15 days and
weight loss by 14 days and led to significant improvements in motor performance tests compared to vehicle treated
controls. Histological data are mainly in favour of anti-inflammatory effects of GLP-1 producing MSC capsules with reduced
detection of inflammatory markers and a significant heat shock protein increase.

Conclusion/Significance: Intracerebroventricular injection of GLP-1 MSC capsules shows neuroprotective potential in the
SOD1 (G93A) mouse model.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative

disorder which causes death of motor neurons in the cortex, brain

stem and spinal cord. Patients develop rapidly progressive paralysis

and muscle wasting and ultimately die due to respiratory

insufficiency within 3–5 years after diagnosis [1]. Aproximately

10% of ALS cases are familial (fALS). About 20% of these fALS

cases are linked to mutations in the gene coding for superoxide

dismutase 1 (SOD1) [2]. In a transgenic mouse model expressing a

mutant form of SOD1 carrying the Gly93 R Ala substitution,

progressive death of motor neurons occurs in the ventral horn

region of the lumbar spinal cord and the mice develop a

phenotype similar to ALS [3].

So far, only the glutamate antagonist riluzole has shown

marginal neuroprotective potential in the treatment of amyotro-

phic lateral sclerosis (ALS) [4]. Therefore, current efforts focus on

experimental therapies. Recent studies have demonstrated that

stem cell transplantation presents a novel therapeutic approach for

a variety of neurological diseases (for review see [5]). Current

attempts to establish cell therapy in ALS mainly focus on the

generation of a more protective environment for degenerating

motor neurons rather than on cell replacement. Genetic modifi-

cation of transplanted cells aiming to increase the production of

trophic factors is feasible and enhances the benefit of native cells

[6–8]. The use of a single drug targeting only one out of many

interacting pathomechanisms in ALS has proven to be of little or

no effect in a large number of previous studies. Therapeutic

approaches which combine several mechanisms of action appear

more promising.

In this context, glucagon-like peptide 1 (GLP-1) is an interesting

candidate for the treatment of neurodegenerative disorders. GLP-

1 is an intestinal peptide, stimulating glucose-dependent insulin

secretion after food intake and thereby leading to reduction of

blood glucose levels [9,10]. GLP-1 and its receptor can be found in

pancreatic b cells, intestinal cells but also in the brain [11,12].
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Besides its insulinotropic effects, GLP-1 exhibits anti-oxidant

capacities [13] and is neuroprotective against excitotoxicity in vitro

and in vivo [14,15]. While GLP-1 penetrates the blood brain

barrier, its short half life prevents systemic administration [16,17].

This led to the development of GLP-1 analogues with increased

half life such as exendin 4 or liraglutide [18–20] for subcutaneous

injection. Several studies showed therapeutic potential of these

GLP-1 agonists in animal models of neurodegenerative diseases

such as Alzheimer’s disease [21], Parkinson’s disease [22],

Huntington’s disease [23] and also after experimental traumatic

brain injury [24]. In a study in SOD1 (G93A) mice, exendin 4 did

not prolong survival or slow down disease progression of the mice,

but led to amelioration of motor neuron [25].

One major advantage of intracerebroventricular implantation

of a vehicle releasing GLP-1–as opposed to daily injections of

GLP-1 analogues is that it warrants continuous release of the

neurotrophic factor. Another method to assure continuous growth

factor delivery would be the use of osmotic minipumps which must

be replaced every few weeks. Encapsulated cells instead of mini

pumps allow the abandonment of catheters which reduces the risk

of complications and requires only one surgical procedure that was

shown several times to be feasible in humans before [26,27].

Encapsulated cell biodelivery has been suggested as a novel

approach in cellular therapy to deliver therapeutic substances like

GLP-1 in a sustainable fashion. Encapsulation in a biopolymer

material allows the use of non-autologous cells as it prevents any

host versus graft reaction [28].

In our study, we investigated an encapsulated mesenchymal

stromal cell (MSC) line, which has been modified to produce GLP-

1. Neuroprotective effects of these GLP-1 producing MSC

capsules have already been shown in experimental traumatic

brain injury and in a transgenic Alzheimer’s disease model

[21,24]. The rationale to use these genetically modified MSC was

to combine the genuine neuroprotective potential of adult stem

cells together with their ability to serve as a vehicle for continuous

release of a trophic factor. In a mouse model of Alzheimer’s’

disease, is has already been established that the neurotrophic

effects of native mesenchymal cells can be potentiated by increased

GLP-1 production [8].

We administered GLP-1 MSC capsules to transgenic SOD1

(G93A) mice via intracerebroventricular injection before disease

onset (day 40). By monitoring of survival, motor function, weight

and general condition and by additional histological analyses, we

could provide evidence for their neuroprotective potential in the

ALS mouse model.

Results

Survival Study
General condition. Disease onset was defined by daily

assessment of the general condition of the mice. Animals treated

with GLP-1 MSC showed a slighter deterioration compared to

vehicle controls (figure 1B). The shift in symptom onset was

15 days on average. Differences to controls were significant

between day 110 and 120 (Two-way ANOVA, p,0.01 and

p,0.001).

Survival. Survival times of animals treated with GLP-1 MSC

were significantly prolonged as compared to vehicle-treated mice

(figure 1A) (Gehan-Breslow-Wilcoxon test, p,0.05). On average,

GLP-1 MSC- treated animals lived 13 days longer than the

controls (130d vs. 117d).

Weight. Treatment with GLP-1 MSC led to a significant

delay of weight loss (figure 1C). While vehicle treated controls

started to lose weight already at week 14, GLP-1 MSC- treated

animals gained weight until week 15. Significant differences to

controls were measured for two weeks (week 16 & 17, two-way

ANOVA, p,0.05 & p,0.01).

Rotarod. Rotarod performance of vehicle treated controls

started to decrease at week 13, while performance of GLP-1 MSC-

treated animals was not altered before week 16 (figure 2A). For

two weeks the deterioration of motor performance was signifi-

cantly less in the GLP-1 MSC group (week 16 & 17, two-way

ANOVA, p,0.001).

Footprint analyses – step length. First decrease in step

length occurred at week 14 in vehicle treated controls; therefore 3

weeks earlier than in GLP-1 MSC- treated mice (figure 2B).

Differences between both groups were significant from week 16 to

week 18 (Two-way ANOVA, p,0.001).

Footprint analyses – runtime. While runtime along the

footprint track started to increase not before week 18 in the GLP-1

MSC- treated group, vehicle treated controls already showed an

increase at week 15 (figure 2C). From week 17 to week 18 these

differences became significant (Two-way ANOVA, p,0.01 &

p,0.001).

Histological Analyses
Brain sections of 6 vehicle and 6 GLP-1 MSC- treated mice

were studied by GFAP staining. We found a glial scar above the

right ventricle in five of 12 animals (figure 3). Capsules within the

ventricles or in surrounding tissue were not detectable as most

likely the capsules remained in the ventricles and were washed out

during perfusion of animals prior to paraffin embedding. Enlarged

ventricles were not observed.

Motor neuron numbers were not significantly altered between

vehicle- and GLP-1 MSC- treated groups as shown by cresyl violet

staining (figure 4A). Treatment with GLP-1 MSC led to a

reduction of astrocytosis as detected by GFAP (glial fibrillary acidic

protein) staining in lumbar spinal cord sections compared to

vehicle treated controls even though quantitative analysis was not

statistically significant (figure 4B). Similarly, microgliosis as

measured by Iba1 (ionized calcium binding adaptor molecule 1)

immunostaining was reduced in GLP-1 MSC- treated animals

(figure 4C). Staining for anti-HSP70 (heat shock protein 70)

revealed a significantly increased heat shock response in GLP-1

MSC- treated mice compared to controls (unpaired t-test, p,0.05)

(figure 4D). nNOS (neuronal nitric oxide synthase) immunolabel-

ling was slightly decreased in the GLP-1 MSC- treated animals

(figure 4E).

Even though counting of motor neuron cell bodies in cresyl

violet stained spinal cord sections did not result in apparent

differences between GLP-1 MSC and vehicle-treated animals,

staining for mictrotubule-associated protein 2 (MAP2) as a

neuronal marker shower more intense labelling, namely of

neuronal processes in spinal cord sections of GLP-1 MSC- treated

animals (figure 5).

Discussion

Cellular therapy is currently being investigated as a novel

therapeutic option for the treatment of ALS, mainly with the aim

to provide a neuroprotective environment and trophic support for

degenerating motor neurons. Mesenchymal stem cells (MSC)

present good candidates for this approach as they are easily

available, highly proliferative and barely immunogenic [29]. A

previous study assessed the effect of intraspinal injection of MSC in

an ALS rodent model: the authors showed moderate improve-

ments in motor function and survival which were attributed to

anti-inflammatory and neurotrophic effects of MSC [30]. One

Intracerebroventricular Injection of GLP-1 MSC
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reason for the limited efficacy of intraspinal injection of cells in

ALS could be that motor neuron degeneration is widespread along

the spinal cord, brain and brainstem [1]. As cells do barely migrate

following injection into brain or spinal cord parenchyma, local

administration may therefore not be sufficient to delay disease

progression over a long period. Other studies have evaluated the

benefit of intravenous administration of mesenchymal cells in ALS

mouse models and could show that cells migrated some distance

away from blood vessels to the gray and white matter of brain and

spinal cord [31,32]. But intravenous administration holds the risk

of cell loss during circulation due to settling of infused cells in

many peripheral tissues, such as lung, liver or spleen [32,33], and

moreover requires high numbers of cells.

As opposed to local intraspinal or intravenous administration,

intracerebroventricular injection has the advantage that neuro-

protective factors released by the cells can directly reach the whole

spinal cord and brain via the cerebrospinal fluid (CSF), reducing

the risk of adverse effects and the number of cells required. This is

a major advantage for future translation into clinical trials. It is not

necessary to make the cells enter the spinal cord directly because

trophic factors can be distributed via the CSF. This assumption is

confirmed by a study of Zhang et al. who showed limited

migration of intrathecally administered human MSC in the spinal

cord parenchyma of ALS mice but nevertheless significant

neuroprotection [34].

There is evidence that MSC cause direct trophic effects without

further differentiation into new phenotypes, probably due to

release of trophic factors such as VEGF and BDNF [35,36]. To

further enhance the effects of native stem cells, they can be

genetically engineered to produce neuroprotective proteins. This

approach was tested before in studies using genetically modified

GDNF-releasing MSC in a rat model of ALS: The protective

effects of native MSC on motor neuron survival, preservation of

motor endplates and survival and motor function of animals were

improved by GDNF producing MSC [7]. Encapsulation is a

promising approach to reduce the risks and complications

associated with cellular therapies in the central nervous system:

In a first phase I clinical trial in ALS to assess safety and

tolerability of encapsulated genetically engineered baby hamster

kidney (BHK) cells releasing human ciliary neurotrophic factor

(CNTF), therapeutic levels of the secreted peptide could be

detected for several weeks without limiting side effects [37]. A

phase I/II clinical trial confirmed the safety and tolerability of

intrathecal implants of these cell capsules, with signs of only a very

mild humoral immune response [38]. Studies in experimental

animal models using the same cell capsules as in the present study

showed complete prevention of any immune response by

microencapsulation of cells prior to transplantation [21,24]. Use

of encapsulated cells may further be considered as a safety measure

against tissue damage which occurred in a study assessing

intraspinal transplantation of non-encapsulated cells in a model

Figure 1. Effects of GLP-1 treatment on survival times, general condition and weight measurements. Presymptomatic GLP-1 treatment
(GLP-1 MSC) prolonged survival (A) and improved general condition (B) compared to vehicle controls (vehicle). GLP-1 treated animals gained weight
for a longer period than vehicle controls (C). Data are mean 6 SEM of 8 (5R/3=) (control) and 10 (6R/4=) (GLP-1) treated animals. (A) Kaplan-Meyer
Curve, followed by Gehan-Breslow-Wilcoxon test. (B & C) two-way ANOVA, followed by Bonferroni post-test. (**) p,0.01; (***) p,0.001.
doi:10.1371/journal.pone.0036857.g001

Figure 2. Effects of GLP-1 treatment on rotarod performance and footprint analyses. Presymptomatic GLP-1 treatment (GLP-1 MSC)
improved rotarod performance (A), step length (B) and runtime (C) compared to vehicle controls (vehicle). Data are mean 6 SEM of 8 (5R/3=)
(control) and 10 (6R/4=) (GLP-1) treated animals. Two-way ANOVA, followed by Bonferroni post-test. (*) p,0.05; (**) p,0.01; (***) p,0.001.
doi:10.1371/journal.pone.0036857.g002
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of focal spinal cord demyelination: MSC migrated into the tissue

and caused collagen depositions and subsequent local tissue

damage [39]. Our post mortem analysis of brain sections after

intracerebroventricular injection of encapsulated MSC showed

only minor glial scars along the injection channel in part of the

animals but no further abnormalities such as enlargement of the

ventricles. This indicates safety and tolerability of the implantation

technique. In the present study, the intestinal peptide GLP-1 was

used to increase the therapeutic capacity of MSC, based on several

studies showing neuroprotective effects of a stimulation of GLP-1

receptors which are present in the mammalian brain

[14,21,24,40]. While analogues of GLP-1, like exendin 4 or

liraglutide, showed neuroprotective potential in models of

Alzheimer’s [20] and Parkinson’s disease [19,41], the effect in

ALS mice so far has been insufficient. Exendin 4 treatment via

subcutaneous pumps protected motor neurons and reduced GFAP

and caspase 3 amount in spinal cord tissue of SOD1 mice, but

disease progression and survival of the animals were not affected

[25].

We decided to use GLP-1 releasing MSC to combine the

protective effects of adult stem cells and continuous growth factor

delivery into the CSF. The commercial availability of well

characterized GMP manufactured GLP-1 producing MSC allows

fast translation to clinical trials in case of a positive outcome in

preclinical studies. Previous studies with GLP-1 releasing Cell-

BeadsH, have confirmed steady GLP-1 production at a rate of

2.85–3.68 fmol/capsule/h after intracerebroventricular injection.

Further it was shown that GLP-1 reaches the affected regions by

circulation within the CSF after intracerebroventricular injection

in cats [40] and rats [24] by measurement of the CSF

concentrations of GLP-1. These studies have also proven steady

GLP-1-release of CellBeadsH after explantation and a cell viability

of at least 95%, independent from the time interval between cell

implantation and analysis [24]. Based on these results, we

conclude that the beneficial effects of intracerebroventricular

injection of GLP-1 producing MSC capsules in SOD1 (G93A)

mice resulted at least in parts from increased GLP-1 concentra-

tions in the CSF. Treatment with GLP-1 releasing MSC

significantly increased lifespan and improved motor function of

SOD1 (G93A) mice. Even though motor neuron loss as assessed

by cresyl violet staining and counting of motor neuron cell bodies

was not significantly different between vehicle- and GLP-1 MSC-

treated groups, we found a stronger signal of MAP2 staining after

GLP-1 treatment. One of the earliest events in mutant SOD1 mice

is impaired axonal transport [42,43]. Increased staining for could

indicate preservation of neuronal processes, resulting in increased

functional capacity of remaining motor neurons due to preserved

integrity of microtubules and axonal transport. Further experi-

ments should include analysis of neuromuscular end plates to

clarify whether GLP-1 MSC have an effect on terminal motor

axons. Besides a direct effect on motor neurons, positive effects on

the disease course may be explained by an anti-inflammatory

mechanism of action of GLP-1-releasing MSC. Increased astro-

cytosis and microglial activation are hallmarks of the disease [44]

and is now well recognized that SOD1 (G93A) glial cells

contribute to motor neuron death in ALS [45,46]. Intracerebro-

ventricular injection of GLP-1 releasing MSC led to a (not

significant) reduction of astrocytosis and to a significant increase of

the heat shock response, suggesting less functional impairment of

remaining astrocytes. Increased levels of HSP were already shown

to be neuroprotective [47] and the HSP-inducing drug arimoclo-

mol slowed down disease progression and increased survival in

ALS mice [48]. This is in line with the reduced microglial

activation and nNOS immunostaining after GLP-1 MSC injec-

tion. Similar to astrocytes, unaffected microglia provide trophic

support but activation leads to increased release of neurotoxic

factors such as nitric oxide [49,50]. Reduced microglial activation

therefore may lead to reduced levels of nitric oxide and therefore

have contributed to the better outcome of GLP-1 MSC-treated

mice.

Figure 3. Analysis of post mortem brain tissue at day 110 of SOD1 (G93A) mice. In 5 of 12 animals there was a glial scar visible above the
right ventricle as it was shown by GFAP staining. Rectangle in the left picture is showed enlarged on the right side. Scale bar 500 mm.
doi:10.1371/journal.pone.0036857.g003
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In our pilot study we could demonstrate the feasibility of

intracerebroventricular injection of encapsulated GLP-1 produc-

ing MSC in ALS mice. Our results regarding motor performance

and survival of the animals as well as the observed effects on

inflammatory markers in the spinal cord strongly suggest further

evaluation of the potential of encapsulated MSC therapy for

treatment of ALS.

Material and Methods

Ethics Statement
All experiments were carried out in strict accordance with the

internationally accepted principles in the care and use of

experimental animals and were approved by the Institutional

Animal Care and Research Advisory Committee at Hanover

Medical School and permitted by the Lower Saxonian State Office

for Consumer Protection and Food Safety regional (Permit

Number: AZ 07/1324).

Animals
G93A transgenic familial ALS mice (high copy number;

B6SJLTg (SOD1-G93A)1Gur/J) [3] were obtained from The

Jackson Laboratory (Bar Harbor, ME, USA). These mice over-

express the human mutant SOD1 allele containing the Gly93 R
Ala (G93A) substitution. We maintained the transgenic G93A

hemizygotes by mating transgenic males with B6SJLF1/J hybrid

females. Transgenic offspring was genotyped by PCR assay of

DNA obtained from tail tissue. Mice were housed under controlled

conditions (12:12 light:dark cycle) with free access to food and

water. Animals of the same sex were kept in groups of up to five

animals in Makrolon cages type II (UNO, Zevenaar, Netherlands).

Males were kept solitary in the same cage type only when they

were also used for breeding.

Alginate Microcapsules
A human, bone marrow-derived, single cell derived mesenchy-

mal stromal cell line provided by CellMed AG, Alzenau, Germany

as previously described [21] was used in this study. It was

immortalized by transduction with the human Telomerase

Reverse Transcriptase (hTERT) gene [51]. After transfection with

a plasmid vector encoding a GLP-1 fusion gene, the cells produced

an 8.7 kDa dimeric GLP-1 molecule. The cells are embedded in a

spherical shaped alginate matrix (about 160 mm in diameter,

figure 6). The alginate matrix is generated by cross-linking alginate

with barium ions. Each capsule (trademark CellBeadsH) contained

about 94 cells. Until use, the cell capsules were stored in liquid

nitrogen.

Preoperative Procedure
For surgery animals were anesthetized by a combination of

ketamine (0.1 ml/100 g, 100mg/kg), xylazine (0.01 ml/100g,

2 mg/kg) and midazolame (0.05 ml/100 g, 0.5 mg/kg), prepared

under sterile conditions with 0.9% sodium chloride. Appropriate

to the body weight (0.1 ml/10 g) anaesthesia was administered

intraperitoneally. Duration of anaesthesia was up to 60 minutes,

which was sufficient for the surgery. Depth of anaesthesia was

controlled by the toe-and eyelid- reflex.

Cerebroventricular Injection
The heads of the animals were shaved and disinfected. Eye

ointment protected the eyes against dehydration. The head was

fixed with ear bars in a stereotactic frame and the skin was

disclosed longitudinally. Bregma was visualized by 30% hydro-

gen peroxide and coordinates of bregma were recorded. From

bregma injection coordinates (1 mm lateral, 0.5 mm anterior)

were adjusted before the cranial bone was enclosed under visual

control with a drill head of 1.4 mm diameter. Following the

preparation of injection position, 100 ml of the cell solution was

dropped on a glass dish and up to 30 GLP-1 MSC capsules

were taken with a 10 ml Hamilton syringe under visual control.

Thy syringe filled with GLP-1 MSC capsules was kept upright

until usage so the beads were concentrated in the top of the tip.

After adjustment of injection coordinates, the syringe was

inserted 5 mm into the brain, and then withdrawn 1 mm so

the cells were injected 4 mm distal from the cranial bone. 1 ml

cell solution was injected all at once. After a waiting period of

Figure 4. Immunohistological analysis of spinal cord tissue at day 110 of SOD1 (G93A) mice. (A) Motor neuron loss was not ameliorated
by GLP-1 treatment (GLP-1 MSC) compared to vehicle treated controls (vehicle). (B) Astrocytosis (C) and microglial activation were marginally less in
GLP-1 treated animals compared to controls. (D) Heat shock response was significantly increased by GLP-1 treatment and nNOS (E) was reduced
slightly in these animals. Unpaired t-test. (*) p,0.05. Scale bar 100 mm.
doi:10.1371/journal.pone.0036857.g004

Figure 5. Immunhistological analysis of MAP2 in spinal cord tissue of SOD1 (G93A) mice. Staining against microtubule associated protein
2 was stronger in animals treated with GLP-1 (GLP-1 MSC) compared to vehicle treated controls (vehicle). Scale bar 100 mm.
doi:10.1371/journal.pone.0036857.g005
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3 minutes the syringe was withdrawn slowly and washed with

0.9% sodium chloride under visual control. Remaining cell

capsules were counted and recorded in the surgery protocol.

Postoperative Procedure
Following wound closure animals received a single dose of

carprofene (5 mg/kg subcutaneously) and metamizole via

drinking water (200 mg/kg/day) for 3 postoperative days for

analgesia.

Treatment Groups
Mice were treated with either GLP-1 producing MSC

capsules or empty alginate capsules as vehicle control (control:

n = 10 (6R/4=); GLP-1 MSC: n = 8 (5R/3=) for assessment of

survival and motor performance; control: n = 6 (5R/1=); GLP-1

MSC: n = 6 (5R/1=) for histological analyses). An increase in

the therapeutic effect of encapsulated GLP-1 producing MSC

capsules as compared to native encapsulated MSC has already

been proven before [24]. To reduce the total number of

animals in the study, we therefore did not include a second

control group of mice injected with alginate beads filled with

native MSC. Animals of each litter were randomly attributed to

either the GLP-1 MSC group or the control group and were

monitored until they reached disease end stage. The cerebro-

ventricular injection of either GLP-1 producing or empty

capsules was administered once at a presymptomatic disease

stage (d40). After surgery, experimenters were blinded to

treatment groups so that animals were objectively monitored

throughout the whole period of behavioural assessment.

Behavioural Assessment
General condition. For weekly assessment of general condi-

tion from week 14 we used a behavioural score system as

previously described [52,53], based on the score developed by

Vercelli et al. [30] from 1 to 5 defined as follows:

Figure 6. Alginate encapsulated GLP-1 producing mesenchymal cells. (A) Encapsulation with alginate leads to GLP-1 MSC capsules with a
mean diameter of 161 mm. (B) GLP-1, oxygen and nutrients are able to pass the alginate barrier, but the cells are protected against the hosts’ immune
system.
doi:10.1371/journal.pone.0036857.g006
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1. healthy without any symptoms of paralysis,

2. slight signs of destabilized gait and paralysis of the hind limbs,

3. obvious paralysis and destabilized gait

4. fully developed paralysis of the hind limbs, animals only crawl

on the forelimbs

5. fully developed paralysis of the hind limbs, animals predom-

inantly lie on the side and/or are not able to straighten up after

turning them on the back or lost more than 20% of their

starting weight.

When animals reached a score of 2, macerated food was given

daily for easy access to food and hydration. Reaching a score of 1,

the animals were euthanized.
Evaluation of onset and survival. Day of onset was set as

the first day the animals reached a score of 4 in the daily

behavioural assessment. Animals were killed when they reached a

score of 1 and this age (in days) was recorded as survival time.
Weight. We recorded the weight of the animals weekly,

beginning at 10 weeks of age, using a normal digital balance

ranging up to 800 g in 0.1 g steps.
Rotarod. Beginning at 11 weeks of age, we analyzed motor

function using a rotarod apparatus from IITC (IITC Life Science

Inc. California). After an adaptation period of 5 days the test was

performed weekly. Mice had to remain on the rotating cylinders

for up to 180 s with an increasing speed up to 18 rpm. Rotarod

test was performed as previously described [52].
Footprint analyses. Footprint analyses for step length and

runtime were performed weekly starting the same week as rotarod

tests performance [52]. The hind feet were dipped into black

finger print and animals were placed on a gangway covered with

conventional masking tape. Footprints were analyzed with respect

to the step length using the FOOTPRINTS software (Version 1.22

by K. Klapdor and B. Dulfer [54]). In addition, the time animals

needed to run along the track (50 cm) was measured.

2.4 Histological Evaluation
At d110, six vehicle and six GLP-1 MSC-treated animals (5R/

1=) were sacrificed by an overdose of anesthetic (ketamine

(0.1 ml/100 g, 100 mg/kg), rompune (0.01 ml/100 g, 2 mg/kg)

and midazolame (0.05 ml/100 g, 0.5 mg/kg)). After transcardial

perfusion with 25 ml 4% paraformaldehyde (PFA) in phosphate

buffer (PBS), the brain and lumbar part of the spinal cord was

removed. Postfixation for 1 day in 4% PFA was followed by

storage in 70% ethanol until dehydration by progressively more

concentrated ethanol baths and xylene (Mallinckrodt Baker B.V.,

Deventer, Netherlands) and embedding in paraffin blocks.

Sections of 7 mm were cut on a microtome and 5–6 sections were

transferred to one object slide, respectively.
2.4.1 Motor neuron survival. One slide per animal (i.e. 5–6

spinal cord sections) was rehydrated in xylene and graded ethanol,

stained with 0.2% Thionin, dehydrated in graded ethanol and

xylene and coverslipped with Eukitt quick hardening mounting

medium (Sigma-Aldrich, Steinheim, Germany). At 20x magnifi-

cation in an Olympus B661 microscope, cells in the ventral horn

region with a diameter .200 mm2 were defined as motor neurons,

according to Chen et al., who determined a- motor neurons as

cells with cell body areas ranging from 200 to 1100 mm2 [55].

Motor neurons were counted, using cell* software (Olympus,

Hamburg, Germany). Only intact ventral horn regions were used

for counting so that, depending on the quality of the section, 5 to

12 ventral horn regions were counted for motor neuron numbers

and the mean was used for statistical evaluation.

2.4.2 Immunohistochemistry. For immunohistochemical

staining, slides were rehydrated in xylene, graded ethanol and

PBS. For antigen retrieval, slides were boiled for 5–10 min in

citrate buffer and cooled for 15 minutes at 4uC. After immersion

in PBS, slides were blocked for 5 min with peroxidase block

(DakoCytomation, Glostrup, Denmark) and antibody diluent

(DakoCytomation, Glostrup, Denmark) for 1 h followed by

overnight incubation at 4uC with primary antibodies specific for

GFAP (1:600; polyclonal rabbit anti glial fibrillary acidic protein;

DakoCytomation, Glostrup, Denmark), Iba1 (1:250; polyclonal

rabbit anti ionized calcium binding adaptor molecule 1; WAKO

Chemicals GmbH, Neuss, Germany), HSP70 (1:250; monoclonal

mouse anti heat shock protein; Acris antibodies, Herford,

Germany) or nNOS (1:250; polyclonal rabbit anti neuronal nitric

oxide synthase; Millipore, Bedford, USA) diluted in antibody

diluent. Secondary HRP antibody anti-rabbit or anti-mouse

respectively (EnVision+System-HRP (AEC+); DakoCytomation,

Glostrup, Denmark) was added for 30 min, followed by 20–

25 min incubation in chromogene substrate (EnVision+System-

HRP (AEC); Dako-Cytomation, Glostrup, Denmark). Slides were

covered with Kaiser’s glycerol gelatin (Merck, Darmstadt,

Germany).

For quantitative analyses of astrocytosis, microglial activation,

heat shock response and nNOS staining, the percentage of stained

area of the ventral horn was determined using the phase analysis

tool of cell* software in pictures taken at 20x magnification by an

Olympus Bx61 microscope.

For MAP2 staining, slides were blocked with 5% goat serum in

PBS with 0.3% Triton X-100 (Sigma-Aldrich, Steinheim,

Germany) for 1 h followed by overnight incubation at 4uC with

primary antibodies specific for MAP2 (1:250; polyclonal rabbit

anti microtubule-associated protein 2; Millipore, Bedford, USA)

diluted in 5% goat serum in PBS with 0.3% Triton X-100.

Secondary anti-rabbit or Alexa Fluor 488 antibody (1:500; anti-

IgG (H+L); Invitrogen, Darmstadt, Germany) was added for

45 min. Slides were then counterstained with the fluorescent DNA

dye DAPI (10 mg/ml; Invitrogen, Darmstadt, Germany).

Statistics. Data were analyzed by two-way ANOVA in order

to evaluate time evolution of the different parameters. In case of

significant parameter interaction (p,0.05), comparison with a

Bonferroni posthoc test was performed. All data are presented as

mean 6 SD and significance level was set as p,0.05. Survival was

analyzed by the Gehan- Breslow- Wilcoxon test with a significance

level of p,0.05.
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