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Identification of dysfunctional modules and
disease genes in congenital heart disease by a
network-based approach
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Abstract

Background: The incidence of congenital heart disease (CHD) is continuously increasing among infants born alive
nowadays, making it one of the leading causes of infant morbidity worldwide. Various studies suggest that both
genetic and environmental factors lead to CHD, and therefore identifying its candidate genes and disease-markers
has been one of the central topics in CHD research. By using the high-throughput genomic data of CHD which
are available recently, network-based methods provide powerful alternatives of systematic analysis of complex
diseases and identification of dysfunctional modules and candidate disease genes.

Results: In this paper, by modeling the information flow from source disease genes to targets of differentially
expressed genes via a context-specific protein-protein interaction network, we extracted dysfunctional modules
which were then validated by various types of measurements and independent datasets. Network topology
analysis of these modules revealed major and auxiliary pathways and cellular processes in CHD, demonstrating the
biological usefulness of the identified modules. We also prioritized a list of candidate CHD genes from these
modules using a guilt-by-association approach, which are well supported by various kinds of literature and
experimental evidence.

Conclusions: We provided a network-based analysis to detect dysfunctional modules and disease genes of CHD
by modeling the information transmission from source disease genes to targets of differentially expressed genes.
Our method resulted in 12 modules from the constructed CHD subnetwork. We further identified and prioritized
candidate disease genes of CHD from these dysfunctional modules. In conclusion, module analysis not only
revealed several important findings with regard to the underlying molecular mechanisms of CHD, but also
suggested the distinct network properties of causal disease genes which lead to identification of candidate CHD
genes.

Background
Congenital heart disease (CHD) is among the most
common human congenital defects, and is the leading
cause of infant morbidity in the world [1,2]. Although
CHD is known to arise from abnormal heart develop-
ment during embryogenesis [3,4], its molecular mechan-
ism remains far from clear. Currently, about 30 different
genes have been known to cause CHD. Understanding
the molecular functions, molecular interactions and

represented pathways implicated in these CHD genes
contribute to our knowledge of CHD pathogenesis, and
therefore help improve clinical diagnosis and medical
care of this disease. Network-based methods are power-
ful tools of systematic analysis of complex diseases, and
identification of major pathways, responsive modules
and candidate genes [5]. Previous works used those
approaches to analyze heart development and cardiovas-
cular disorders [6,7], however, there is no such study on
CHD due to lack of its genome-wide expression data,
which is publicly available only until very recently [8,9].
Therefore, in this paper by exploring high-throughput
genomic data to elucidate essential roles of local
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network structures in CHD progression, we aim to pro-
vide such a network-based study on CHD as well.
To discover molecular pathogenesis in complex dis-

ease, considerable efforts have been made to elucidate
the relations between variability in gene expression and
genotype [10-12], and putative disease genes curated
from literature research can be regarded as the source
of molecular perturbations while differentially expressed
genes identified from mRNA profiling can represent the
responsive components of source perturbations. It is
also noted that disease genes are not necessarily differ-
entially expressed [13]. Differential gene expression level
represents the changed phenotype that is potentially
associated with the causal disease genes. Hence, linking
causal disease genes with responsive differentially
expressed genes by modeling the information flow in
protein interactome can better reveal dysfunctional sub-
networks and help the identification of disease modules.
Previous research has established the analogy between
random walks and electric networks [10,14]. Doyle and
Snell [14] showed that when a unit current flow enters a
source node and leaves a sink in the circuit network, the
amount of current passing through any intermediary
node or edge is proportional to the expected number of
times the random walker visits that node or edge. Then,
the amount of current passing though each node can be
computed by solving a system of linear equations based
on Kirchhoff’s and Ohm’s laws. Several recent studies
also used such circuit flow networks to discover causal
genes and associated pathways or to analyze gene net-
work centrality [10,11,15,16].
In this paper, we construct a CHD subnetwork and

identify dysfunctional modules by developing a novel
network-based computational approach which integrates
protein-protein interactions, gene coexpression profiles
and causal paths from putative CHD genes to target
genes. We evaluate the functional implications of our
modules for phenotype classification, and further reveal
their higher order topological relationships by exploring
their represented biological processes and crosstalk.
Results show that our modules are better disease-mar-
kers than documented pathways, and have the discrimi-
native power stably across several independent
microarray datasets. In particular, correlation analysis
reveals that each module is also a group of significantly
coexpressed genes; module interaction analysis charac-
terizes the higher-order topology of these identified
modules; functional enrichment and module-pathway
crosstalk analysis suggests that the topology of a module
is highly related to its roles in CHD. While the modules
in central place of the CHD subnetwork are enriched in
core CHD-related dysfunctional processes, such as ana-
tomical structure morphogenesis, cell differentiation and
cytoskeleton organization, and regulate key pathways of

CHD such as cardiac muscle contraction, Notch signal-
ing pathway and ECM (extracellular matrix)-receptor
interaction, the modules in peripheral place are enriched
in auxiliary processes, such as cell communication and
various metabolic processes, and regulate less disease-
related pathways. In addition, we find that CHD casual
genes exhibit different network features, i.e. disease
genes tend to have lower current flow and participate in
fewer dysfunctional subnetworks than expected. More-
over, we provide a list of candidate CHD genes by mod-
ule analysis, where the top ranked genes in the
candidate list are all well supported by literature and
experiment evidence. The results not only elucidate the
functional roles of the modules on CHD, but also pro-
vide some insights into the underlying molecular
mechanisms of CHD which lead to identification of can-
didate CHD genes.

Results
Identified dysfunctional modules
The work flow of our method of identifying dysfunc-
tional modules is shown in Figure 1. To capture the
information flow from causal genes to target genes and
to identify dysfunctional modules from these causal
paths, we first identified 85 target genes which are
defined as those differentially expressed (DE) in suffi-
cient proportion of patients (Additional File 1), and
then connected each known causal genes of CHD with
these target DE genes via shortest paths shown in Fig-
ure 1A and 1B. We model the protein interaction net-
work as an electrical circuit where correlation
coexpression of two end nodes of an interaction is used
as the conductance of a resistor, and biological signals
from disease genes propagate through PPI edges to
responsive genes just like electrical current flows
through resistors [11,15]. Information from source
genes will propagate its effect via protein-protein inter-
actions, and DE genes which cover the majority of
patients represent common dysregulated pathways in
CHD. In the third step, we merged the paths from one
causal gene to all target genes into a subnetwork, and
computed the current flow for each gene to evaluate its
importance in this local subnetwork as shown in Figure
1C. To measure the importance of one node in con-
ducting electrical current, we computed the current
flows through the node using the electronic laws [14],
and defined the information flow score of the node as
the sum of current through the node among all pair-
wise combinations of the source node (the causal dis-
ease) and all target nodes (all responsive differentially
expressed genes). Since the causal subnetwork can over-
lap, i.e. a gene can have several current flow scores, we
assigned the gene to the subnetwork in which its cur-
rent flow is maximum to derive mutually exclusive
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Figure 1 Method Overview. Triangles represent disease genes, rectangles represent target genes and grey circles represent other genes on the
PPI network. (A) We overlaid expression profiles to PPI network, and mapped putative disease genes and differentially expressed target genes
onto this weighted PPI network. (B) For each disease gene, we found its shortest paths to all target genes. (C) We computed the information
flow for each node in a given subnetwork, and genes participating in several subnetworks can have several information scores. (D) We identified
modules by assigning a gene to the module in which its information score is maximum.
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modules. The modules can also be thought of as an
information-processing unit [5,17], therefore we put the
gene into the module where the largest amount of
information passes through it. At last, reasoning that
highly connected genes are more likely to coordinate
and perform the same biological functions, we pruned
the modules and iterated this process until each of

them was connected as shown is Figure 1D (further
details can be referred to Methods).
Totally, our method resulted in a connected CHD

subnetwork consisting of 498 nodes and 2413 edges
(Figure 2A). We identified 12 major disjoint modules by
assigning genes to the group which maximizes the infor-
mation flow scores while keeping each module inter-

A

B

C D E

Figure 2 CHD subnetwork and representative modules. (A) CHD subnetwork extracted from the weighted PPI network. Different colors
represent different modules. All the modules with size smaller than 10 are in the same green color. (B) Pie chart of module size, where modules
with size smaller than 10 are grouped into category “others”. (C-E) Three representative modules. Dark red diamonds represent putative disease
genes, and red rectangles represent final candidate genes identified by our method.
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connected the CHD subnetwork (Figure 2B-E). The size
of each module is shown in Table 1 and the list of all
genes in each module is shown in Additional File 2.

Modules as disease-markers
To quantitatively investigate the relationships of the
identified modules with disease phenotype, we com-
puted mutual information (MI) of each module with
sample phenotype. The results are shown in Table 1.
We used the microarray data, which represents mRNA
extracted from right ventricles (RV) of 16 children with
Tetralogy of Fallot (TOF, the most common type of
CHD) at the time of reconstructive surgery with 5 con-
trols (NCBI GEO Accession ID GSE26125), to compute
the activity vector of each module across all 21 samples.
We used MI as the discriminative score to assess
whether each module activity vector has significant rela-
tionship with phenotypes. Among 12 modules, 10 have
significant mutual information (empirical p-value<0.05)
compared with 1000 random gene sets of the same size
(shown in Figure 3). Most modules are significantly cor-
related with disease phenotype, reflecting the synergistic
differential expression within them.
To further evaluate the quality of our modules in terms

of distinguishing disease from control samples, we com-
puted the activity matrix of 12 modules (modules versus
samples) and build logistic regression models [18] in a
five-fold cross-validation approach. For comparison, we
computed activity matrix of 12 KEGG pathways that are
most enriched in the CHD subnetwork (Additional File 3).
We also used 12 random gene sets of the same size as
each module for control, and repeated this process 100
times. For experiments within the gene expression dataset

of GSE26125, modules were first ranked by MI, and fea-
tures were sequentially added to the classifier. Pathways
were ranked by enrichment p-value, and were added
sequentially. The result shows that modules are consis-
tently better in the classification accuracy than pathways
and random sets, while pathways are better than random
sets only for the first five features (Figure 4A). To test the
robustness of our module classifier, we also performed an
independent cross-dataset experiment, in which classifiers
were trained on GSE26125 and validated on GSE14970
(Figure 4B). In cross-dataset validation, both modules and

Table 1 Module information.

Module Size Interaction
Score

Mutual Information (empirical p-value) Correlation (p-value) CHD genes in this module

M1 25 2.94E-01 2.80E-02 1.80E-03 GATA6

M2 66 4.33E-01 8.00E-03 3.62E-03 ELN

M3 61 2.83E-01 2.00E-03 9.82E-01 ACVR2B

M4 14 8.50E-02 2.70E-02 7.02E-02 MYH11

M5 46 1.47E-01 2.00E-03 1.67E-02 MYH7

M6 27 4.23E-01 1.80E-02 3.36E-03 CITED2

M7 28 3.44E-01 8.39E-01 5.76E-01 FLNA

M8 40 2.25E-01 <1.00E-06 3.66E-02 MYBPC3

M9 18 9.94E-02 7.40E-02 1.02E-02 GATA4, TBX5

M10 64 5.75E-01 <1.00E-06 8.95E-03 ACTC1

M11 41 4.32E-01 2.30E-02 4.80E-01 NKX2-5

M12 46 4.51E-01 2.00E-03 1.81E-05 NOTCH1, JAG1

Size means the number of genes in each module. Interaction score evaluates the topological relations between modules. Hub modules have higher scores while
peripheral modules have lower scores. Mutual Information evaluates the significance of synergistic differential expression within a module compared with 1000
random gene sets of the same size. Correlation measures the significance of correlation coexpression of two interacting partners within a module compared with
1000 random edge lists of the same number.
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Figure 3 Synergistic differential expression of modules
compared with random gene sets of the same size.

He et al. BMC Genomics 2011, 12:592
http://www.biomedcentral.com/1471-2164/12/592

Page 5 of 16



pathways achieved similar high performance of classifica-
tion accuracy, and clearly are much better than the ran-
dom sets. Therefore, our modules are better classifiers of
phenotype than pathways, and that their high classification
performances are reproducible across independent micro-
array dataset. This provides evidence for the dysfunctional
implication and importance of these identified modules.

Within module coexpression and cross module
coordination
Besides comparing module expression profiles under dis-
ease and control status to evaluate its synergistic differen-
tial expression, another way to utilize microarray data is
to exploit gene coexpression relationships within mod-
ules and across modules. Under the well-accepted
hypothesis that genes exhibiting similar expression pat-
terns across sample status are likely to have functional
relevance [19], we reasoned whether genes within mod-
ules are significantly coexpressed, and whether modules
have intense interactions in terms of interacting partners
that are highly coexpressed. To analyze coexpression
within modules, we computed the average Pearson’s cor-
relation coefficient (PCC) of all interacting proteins in
each module, and compared it with that of 1000 random
selected protein pairs of the same size (Figure 5A, Table
1). Result shows that 9 modules have significant coex-
pression (Mann-Whitney test, p-value<0.05), and all of

them also have significant MI at the same time. If all 12
modules are regarded as a whole and compared with 12
random gene sets, the result is also significant (Mann-
Whitney test, p-value = 2.96e-06).
To analyze intra-modular connectivity, we detected

the interaction among disjoint modules based on
weighted protein interactions (Figure 5B). Module inter-
action network is visualized in Figure 5C, where only
the 22 significant interactions (corrected p-value<0.05)
are shown. For each module, we defined its intra-modu-
lar connectivity as the sum of the absolute value of cor-
relation for all its outgoing edges, and used this score to
evaluate its network centrality (Table 1). Module inter-
action network not only reveals connectivity patterns
between modules and their positions in CHD subnet-
work, but also sheds light on the implications of various
biological processes and pathways represented by each
module. Therefore, besides topological meanings of this
score, we would identify its biological underpinnings
after examining the compositions of modules using
annotated gene ontologies in the next subsection.

Functional enrichment analysis of modules reveals crucial
biological processes of CHD
Utilizing our previously developed NOA (Network
Ontology Analysis) method of functional enrichment
analysis [20], we identified enriched GO terms in each
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Figure 4 Within- and cross-validation performance comparison of modules and pathways. (A) Within-dataset classification evaluation. X-
axis corresponds to the number of features added to the logistic classifier. Assuming that there are K features (modules/pathways/random gene
sets), then for each k ≤K, select the first k th modules to train the classifier. The final classification performance was reported as the AUC on the
testing set using the classifier optimized from the validation set in a five-fold cross-validation. Modules were ordered in decreasing significance
of MI, pathways were ordered in decreasing significance of enrichment, and random gene sets were in the order as their compared modules. (B)
In cross-dataset classification evaluation, all 12 features were trained on GSE26125 and validated on 12 disease samples from GSE14970
combined with 5 controls from GSE26125.
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Figure 5 Inter-module coexpression and intra-module coordination. (A) To analyze coexpression within modules, we computed the average
Pearson’s correlation coefficient (PCC) of all edges in each module, and compared it with that of 1000 random control edge sets of the same
size. (B) Module interaction identification was based on the weighted protein-protein interactions between modules. Edge width corresponds to
the absolute value of PCC of two end nodes. Color edges represent cross-module interactions which will be used to compute module
interaction, while grey edges are interactions within modules. (C) Intra-module coordination. Node colors range from green to red correspond to
significance -log(p-value) of inter-module coexpression, node size corresponds to module size, and edge width corresponds to strength of
interactions.
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module. The representative enriched GO terms with
FDR<0.05 in each module are presented in Table 2, and
the list of all enriched GO biological processes are in
Additional File 4. The top-scored Module 10 (Figure
2D) is enriched in anatomical structure morphogenesis,
cytoskeleton organization and cellular component
assembly. Since CHD manifests itself through various
aberrations in heart morphogenesis, and more than half
of known causal disease genes are transcriptional regula-
tors of heart morphogenesis, the fact that anatomical

structure morphogenesis ranks 1st in the most important
module is expected. The other two categories, i.e. cytos-
keleton organization and cellular component assembly,
can contain downstream effector genes involved in mus-
cle development, such as sarcomerec gene like ACTC1,
DYNLL1 and DMD. Particularly, ACTC1 is a known
causal gene in Module 10 [21,22]. It encodes the cardiac
actin protein that is an essential structural component
of the thin filaments of sarcomeres. Mutations in
ACTC1 seem to reduce affinity of actin for myosin, and

Table 2 Enriched GO terms in each module.

Module GO ID p-value GO description CHD genes in this module and
with this GO term

FDR

M1 GO:0019219 8.00E-10 regulation of nucleobase, nucleoside, nucleotide and nucleic acid
metabolic process

GATA6 1.90E-07

GO:0051171 1.10E-09 regulation of nitrogen compound metabolic process GATA6 2.70E-07

GO:0051716 4.00E-08 cellular response to stimulus GATA6 9.70E-06

GO:0045941 3.20E-07 positive regulation of transcription GATA6 7.80E-05

M3 GO:0007178 7.30E-34 transmembrane receptor protein serine/threonine kinase
signaling pathway

ACVR2B 2.70E-31

GO:0007179 3.70E-23 Transforming growth factor beta receptor signaling pathway 1.40E-20

GO:0032925 1.70E-12 regulation of activin receptor signaling pathway ACVR2B 6.60E-10

GO:0045597 1.10E-09 positive regulation of cell differentiation ACVR2B 4.40E-07

GO:0051239 5.60E-09 regulation of multicellular organismal process ACVR2B 2.10E-06

GO:0010646 1.60E-08 regulation of cell communication ACVR2B 6.40E-06

M4 GO:0006468 1.20E-04 protein amino acid phosphorylation 5.80E-03

M5 GO:0006259 7.60E-05 DNA metabolic process 1.78E-02

M6 GO:0045941 4.50E-06 positive regulation of transcription CITED2 5.90E-04

GO:0051254 9.80E-06 positive regulation of RNA metabolic process CITED2 1.20E-03

GO:0045935 1.00E-05 positive regulation of nucleobase, nucleoside, nucleotide and
nucleic acid metabolic process

CITED2 1.30E-03

M7 GO:0035556 2.20E-04 intracellular signal transduction FLNA 2.52E-02

M8 GO:0006936 1.90E-08 muscle contraction MYBPC3 3.00E-06

GO:0003008 1.80E-06 system process MYBPC3 2.90E-04

GO:0007010 8.20E-06 cytoskeleton organization 1.30E-03

GO:0030036 8.10E-05 Actin cytoskeleton organization 1.31E-02

M9 GO:0007154 9.40E-06 cell communication GATA4, TBX5 1.40E-03

GO:0048545 7.50E-05 response to steroid hormone stimulus GATA4 1.15E-02

GO:0006629 2.30E-04 lipid metabolic process 3.57E-02

M10 GO:0022607 5.10E-06 cellular component assembly ACTC1 7.30E-04

GO:0009653 9.30E-05 anatomical structure morphogenesis ACTC1 0.0132

M11 GO:0031334 2.20E-04 positive regulation of protein complex assembly NKX2-5, SRF 4.42E-02

M12 GO:0043066 2.20E-12 negative regulation of apoptosis NOTCH1 6.20E-10

GO:0045595 1.90E-10 regulation of cell differentiation JAG1, NOTCH1 5.50E-08

GO:0051093 1.90E-09 negative regulation of developmental process JAG1, NOTCH1 5.40E-07

GO:0045596 9.70E-09 negative regulation of cell differentiation JAG1, NOTCH1 2.70E-06

GO:0007219 7.30E-08 Notch signaling pathway JAG1, NOTCH1 2.00E-05

CHD genes participate in most of the top enriched GO processes in each module and the function of a module is very similar to those of the putative disease
genes in it. Only GO terms with FDR<0.05 are shown below.
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cause various CHD phenotypes such as ASD (atrial sep-
tal defect) and VSD (ventricular septal defect) [22].
ACTC1 contains all GO terms significantly enriched (p-
value<0.05) in Module 10, demonstrating the functional
relevance of Module 10 to CHD. Module 12 (Figure 2E)
ranks 2nd, and is enriched in negative regulation of
apoptosis, programmed cell death, cell differentiation
and developmental process. Module 12 is also highly
enriched in Notch signaling pathway, which plays roles
in various developmental processes by controlling cell
fate decisions, and is known to be very important in car-
diac development. Module 12 contains 2 causal genes,
NOTCH1 [23] and JAG1 [24], again, both of which par-
ticipate in all of the 40 top enriched GO processes (p-
value<1.6E-4). Table 2 also suggests that in each mod-
ule, CHD genes participate in most of its top ranked
GO terms, and the functional of the module is very
similar to its contained CHD genes. This can also prove
the functional coherence within each module, and func-
tional correlation between these modules.
We have shown that modules with highest scores,

being in the central place of the subnetwork, are
enriched in core processes related to heart development,
and that CHD genes participate in all the top ranked
GO processes in a module. We then investigated the
modules with lowest scores in the marginal place of
subnetwork and identified their relations with CHD.
Module 4 (Additional File 5) is ranked as the last, and is
enriched in phosphorus metabolic process. Module 9
(Additional File 5) is enriched in cell communication,
response to steroid hormone stimulus, lipid metabolic
process and positive regulation of transcription. Module
5 (Additional File 5) is enriched in regulation of macro-
molecule biosynthetic process and nitrogen compound
metabolic process. Although these GO processes seem
to have less relationship with CHD, these auxiliary roles
are important to facilitate key processes of heart devel-
opment. Considering the fact that fetal heart develop-
mental program involves intense transcription
regulation, ligand-receptor interactions and signaling
transduction, various macromolecules including hor-
mones, cytokines and growth factors in the circulation
or in the extracellular space of the heart, acting as
ligands, can stimulate receptors in the cell membrane of
cardiac cell [2], it is reasonable to assume that cell com-
munication, transcription regulation, steroid hormone
stimulus and macromolecules metabolism are more gen-
erally associated with CHD and can actually facilitate all
related processes. Since they are not specific to CHD,
they appear on the marginal place of the subnetwork.
The fact that these modules can also contain causal dis-
ease genes demonstrates their relevance to CHD. For
example, GATA4 and TBX5 are in Module 9, and both
of them are important transcription factors in

developmental processes. TBX5 protein associates with
cardiac transcription factors including GATA4 and
NKX2-5, and they activate many downstream cardiac
effector targets such as sarcomeric proteins and vasoac-
tive proteins. Various kinds of mutations in GATA4 and
TBX5 can lead to various subtypes of CHD [25,26].

Module-pathway crosstalk analysis reveals hub modules
regulating key pathways of CHD
To analyze pathways represented by modules, and how
they are coordinated by modules to account for the
observed phenotypes, we went beyond identifying lists
of pathways significantly enriched in each module, or
simply counting the number of overlapping genes
shared by the module and the pathway. As previously
shown, there is a distinction between a pathway and a
module. A pathway is a specific information-flow con-
duit, consisting of a series of molecular interactions
while a module is an information-processing unit with
self-contained cellular functions [17]. Therefore, mod-
ules can contain multiple pathways while pathways can
be coordinated by various modules to allow inter-mod-
ule connections. With this in mind, we implemented an
analysis of module-pathway crosstalk similar to previous
module interaction procedure. For a given module-path-
way pair, we considered both common genes and
weighted protein-protein interactions between them
(See Methods for details of constructing module-path-
way crosstalk network). Network view of module-path-
way crosstalk is shown in Figure 6A, where circles
represent modules, rectangles represent pathways, and
edge width corresponds to strength of interaction
between module and pathway. Heatmap of pathway-
module crosstalk is shown in Figure 6B, where rows
represent 85 pathways that are significantly (empirical
p-value<0.01) influenced by at least one module, and
columns represent modules and their influence to the
85 pathways. Module 10 is the most influential and
many of its influenced pathways are closely related to
heart progression, such as cardiac muscle contraction,
Dorso-ventral axis formation, gap junction and regula-
tion of actin cytoskeleton. Specifically, the gap junction
is very important in cardiac muscle, through which the
signal to contract is efficiently passed, allowing the heart
muscle cells to contract in tandem. For example, GJA1
encodes a gap junction protein, and gene conversion in
GJA1 has been found in patients with CHD [27]. In
brief, these influenced pathways are consistent with
major roles of Module 10 in biological processes like
anatomical structure morphogenesis and cytoskeleton
organization. Module 12 is the only one that can influ-
ence Notch signaling pathway, which is also consistent
with its GO enrichment. Module 12 and module 2 are
the only two modules that regulate ECM (extracellular
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matrix)-receptor interaction, a very important pathway
in tissue and organ morphogenesis and in the mainte-
nance of cell and tissue structure and function. The
extracellular matrix protein, FLNA, for example, can
cross-links actin filaments and participates in anchoring
actin cytoskeleton to membrane proteins. Loss-of-func-
tions mutations in FLNA are lethal to male and cause
various CHD-related phenotypes in female [28,29].
Although Module 12 and Module 2 do not affect as
many pathways as Module 10 does, their dominant roles
in regulating two essential pathways demonstrate their
substantial importance during heart development. From
Figure 6B, Module 7 also seems important because it
interacts with many pathways, while we find that it has
much less influence to pathways highly related to CHD.
Compared with Module 10, it shows significant drop for
many essential pathways related to CHD such as cardiac
muscle contraction, Dorso-ventral axis formation, gap
junction and regulation of actin cytoskeleton, while
some pathways without direct relations to CHD such as
Type I diabetes mellitus and Olfactory transduction,
exhibit significant increase. Therefore, we reasoned that
the importance of a module should be evaluated not by
the number of pathway that it affected, but by its influ-
ence to important pathways implicated in CHD.

Prioritization of candidate disease genes by module
analysis
We have proved the robustness of our modules for disease
phenotype classification, investigated their functional roles

during heart development, their implications in CHD, and
their interactions with each other as well as with those
documented pathways. We also provided an application of
identified dysfunctional modules to detect disease genes.
We brought out a list of prioritized candidate disease
genes by integrating module memberships, network cen-
trality analysis and GO semantic similarities (See Addi-
tional File 6 for detailed methods). We first identified
candidate genes that are either on the shortest paths con-
necting 14 causal disease genes or the first interacting
neighbors of them in the CHD subnetwork, then assigned
a score to each of them with investigation of its module
membership and its GO semantic similarity with the puta-
tive disease genes in the same module, and at last filtered
genes with significant different network locations (Addi-
tional File 6), which resulted in a final list of 60 candidate
disease genes. The top ten candidate genes are shown in
Table 3 and the full list of candidate disease genes are
shown in Additional File 6.
HAND2 has significantly higher score than other candi-
date genes and ranks 1st in our list. HAND2, and causal
disease gene HAND1, whose somatic mutations have
been reported to contribute to CHD [30], both belong
to basic helix-loop-helix (bHLH) transcription factors,
and are expressed in cardiac mesoderm during embryo-
genesis. HAND1 expression is limited in future left ven-
tricle while HAND2 expression is limited in future right
ventricle [31]. Targeted gene deletion of HAND2 in
mouse embryos resulted in embryonic lethality from
heart failure [32]. In a recent research, Shen et al. [33]

A B

Figure 6 Module-pathway crosstalk. In both subfigures, only pathways which contain at least one gene on the CHD subnetwork are shown.
(A) Network view of module-pathway crosstalk. Blue circles represent modules and green rectangles represent pathways. Edge width
corresponds to strength of interaction. (B) Heatmap of module-pathway crosstalk. For clarity, module-pathway activity matrix is x-scaled, which
means, for each pathway, colors ranging from blue to red represent the influential power of one particular module compared with all 12
modules.
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screened for mutations in the HAND2 genes in 131
patients with various forms of CHD. Seven mutations in
HAND2 were identified in 12 out of these patients. It is
very likely that HAND2 is indeed a CHD disease gene.
FOS is ranked 2nd, and can form transcription factor
complex AP-1 with proteins from the JUN family. FOS
proteins are implicated as regulators of cell proliferation,
differentiation and transformation. Literature text-
mining using GeneCards Version 3 [34] reveals that
FOS is involved in cardiac hypertrophy. NOTCH2
ranked 3rd, and together with NOTCH1, whose autoso-
mal dominant mutations can cause CHD [23], belong to
single-pass transmembrane receptors that regulate many
developmental pathways. Mutations in gene encoding
NOTCH2 leads to Alagille syndrome [35], with cardiac
phenotypes of peripheral pulmonary artery stenosis and
septal defects. Besides genes with high score and well
supported by literature search, our candidate gene list
also contains genes with low scores. Currently, these
genes have fewer, if any, favorable GO evidence similar
to disease genes in the module, but some of them

would be potential novel disease genes and worth
further experimental research.

Discussion
It has long been noted that genetic, physical interaction
and transcriptional expression data are complementary
to each other in response to molecular perturbations
[36-38]. We also found that not all CHD genes are dif-
ferentially expressed and that none of them can be the
target gene. Therefore, using a source-sink relationship
is better than simply using disease genes as seeds for
module identification in that the former regards the
whole transcritome as phenotype data while the later
merely utilizes disease/control status as phenotype.
Actually, it was pointed out previously that a gene-dis-
ease phenotype association provides little insight into
the molecular mechanism for the association [10,39].
Bridging the discordance between CHD genes and target
genes through a source-sink approach can not only
identify intermediary genes not discovered in the tran-
scriptional data itself, but also reveal dysfunctional or

Table 3 Top 10 candidate disease genes and supporting evidence.

Gene Score Description (GeneCards Version 3) Supporting evidence PubMed ID

HAND2 6.87 heart- and neural crest derivatives-expressed protein 2,
essential for cardiac morphogenesis, particularly for the
formation of the right ventricle and of the aortic arch
arteries

population study: various mutations found in
TOF patients

20819618

FOS 4.09 Nuclear phosphoprotein which interacts JUN/AP-1
transcription factor. Has a critical function in regulating the
development of cells destined to form and maintain the
skeleton.

literature text-mining: cardiac hypertrophy 16696897,
10328763,
12713689,
16259952

NOTCH2 2.5 Functions as a receptor for membrane-bound ligands
Jagged1, Jagged2 and Delta1 to regulate cell-fate
determination.

population study: various mutations found in
CHD patients

16773578

MLLT4 1.72 Belongs to an adhesion system which plays a role in the
organization of cell-cell adherens junctions (AJs). Nectin-
and actin-filament-binding protein that connects nectin to
the actin cytoskeleton

similar functions to FLNA [28,29]: actin
cytoskeleton, and to GJA1 [27]: cell-cell
adhensions

see reference of
supporting
evidence

THBS1 1.7 Adhesive glycoprotein that mediates cell-to-cell and cell-to-
matrix interactions

genetic association database: myocardial infarct 12482844,
16684956

MAPK14 1.69 act as an integration point for multiple biochemical signals,
and are involved in a wide variety of cellular processes such
as proliferation, differentiation, transcription regulation and
development.

literature text-mining: pulmonary disease
chronic obstructive

19880675,
17959643,
20093202,
19004925

ELK1 1.56 Can form a ternary complex with the serum response factor
and the ETS and SRF motifs of the fos serum response
element

SRF [4] is a cardiac-tissue enriched transcription
factor that regulate many cardiac effector genes
during embryogenesis

see reference of
supporting
evidence

MAPKAPK5 1.54 similar to MAPK14

DCN 1.52 This protein is a component of connective tissue, binds to
type I collagen fibrils, and plays a role in matrix assembly.

literature text-mining: myocardial infarction,
heart failure, congenital malformation, vascular
diseases

17558846,
9162605,
18514055,
9493904

NUMB 1.49 plays a role in the determination of cell fates during
development. associate with disease gene NOTCH1

MGI database: targeted knock-out in mice affect
cardiovascular systems

11412999

Score is a candidate’s GO semantic similarity with disease genes in the same module, and IEA GO terms are excluded. Description briefly introduces the
candidate’s CHD-related functions. Supporting evidence lists the types of literature support, and PubMed IDs of related articles are provided in the last column
for reference.
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even causal pathways and modules for CHD. In our
approach, information from the source gene will propa-
gate its effect via protein-protein interactions, and DE
genes which cover the majority of patients represent
common dysregulated pathways in CHD. It is reasoned
the common pathways, regardless of various kinds of
source mutations, are responsible for the final set of
similar CHD phenotypes. One of the applications of
methods like ours is that by identifying intermediary
genes involved in signal transduction, it can suggest
potential intervention nodes for drug targeting.
Our method simulated the causality-response relation-

ship between the known disease genes and differentially
expressed genes. The dysfunctional information transfer-
ring between them in the network is utilized to identify
the disease modules, which have proved to be highly
related to the phenotypes. The robust performance has
to be evaluated for our approach in computing informa-
tion score – we identify the shortest paths from a source
gene to all target genes, and compute information score
in this subnetwork, which means that the information
score for each gene in this subnetwork is only related to
a particular source gene. The choice of subsets of source
genes changes available subnetworks, and can influence
the result during the module identification procedure, in
which a gene is reassigned to the modules which maxi-
mize its information score while maintaining connectiv-
ity. To evaluate the robustness and reproducibility of
modules when some known disease genes are withheld
(Additional File 6), we generated 100 alternative sets of
testing modules and computed the overlap with the refer-
ence modules. The modules have significantly consistent
overlap with testing modules (Additional File 6). This
indicates that our methods are robust to identify these
modules when we eliminate some source genes. The
details of the tests and results are available in Additional
File 6. From these dysfunctional modules, we also identi-
fied some candidate CHD genes which are based on the
score of associating with the causal disease genes.

Conclusions
Using a network-based approach, we identify dysfunc-
tional modules and disease genes in CHD by modeling
the information flow from source disease genes to tar-
gets of differentially expressed genes. Several other stu-
dies also inferred causal genes, dysregulated pathways
and central nodes of a network using flow-based
approach [11,15,38]. However, we went a step further
and brought a group of dysfunctional modules. By con-
sidering only one source node and multiple target nodes
in each circuit flow instance, and iterating over all
source nodes, we identified 12 dysfunctional modules
which are well validated by various types of statistical
measures, an independent dataset and biological

annotations. Although not required by our method,
each module contains CHD genes, making it possible to
prioritize candidate CHD genes using a “guilt-by-asso-
ciation” approach. The identified dysfunctional modules
show their biomarker properties for CHD phenotypes
and these candidate disease genes will benefit further
research.

Methods
Datasets
GSE26125 consists of RNA extracted from right ventri-
cle of 16 idiopathic TOF (Tetralogy of Fallot) patients
and 5 controls obtained at the time of reconstructive
surgery. The microarrays were CodeLink Human Whole
Genome Bioarray, which contain > 54,000 probes. Raw
data was preprocessed as described in the original paper
[8,9]. The microarrays of GSE14970 were Affymetrix
Human Genome U133 Plus 2.0 Array. Raw data was
preprocessed using RMA algorithm in R bioconductor
[40]. Probe sets were mapped to NCBI entrez genes,
and for genes with multiple probe sets, the average
expression value of all corresponding probe sets was
used. Together 8547 genes were expressed in the right
ventricle tissues on GSE26125, which will be used for
our study. 6818 genes were expressed in both GSE26125
and GSE14790, whose expression values will be used for
cross-data validation. GSE14970 consists of 12 diseased
samples (5 pre-operation acyanotic TOF and 7 pre-
operation cyanotic TOF in the RV tissue) without con-
trols but is the only alternative CHD-related dataset at
this time, we added 5 control samples from GSE26125
and z-transformed the combined dataset.

Conditional-specific interaction network
We utilized protein-protein interaction data from several
curated interaction databases in human, i.e., HPRD,
BIND, BioGrid, IntAct, and MINT [41-45]. Those inter-
actions contained in at least three of the five databases
were selected. Only genes both in the PPI network and
in the microarray were used in the following study, and
we extracted the maximum connected component of
the network, which consists of 4761 nodes and 18084
edges. To construct a context-specific protein interac-
tion network, the weight of each interaction between
protein u and v, as well as the conductance of each edge
e(u,v), was defined as their correlation value, i.e. w(u,v) =
|corr(u,v)|

Module identification
Source CHD genes were extracted from a recent litera-
ture review [2], and 14 of them were mapped to the
conditional-specific protein interaction network. Similar
to the identification of Differentially Expressed (DE)
genes and target genes in previous work [11], we have
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scaled and centered gene expression values into a Z-
score. A gene is defined to be a differentially expressed
gene in a disease case if its normalized gene expression
value has a p-value <0.01 in the given disease case ver-
sus all controls using t-test, and a gene is defined as a
target gene, if it has p-value<0.01 in more than 75% dis-
ease cases. Based on the definition of information flow
score in previous work [15], we computed the informa-
tion flow score of node k for a given source gene s as
the sum of current through node k among all pair-wise
combinations of the source s and all target DE genes
Tar, detailed rationales for this information flow score
can be referred to the original paper [15]. There are
together 14 source genes, and the information flow
through node k for a given source s is

Ik =
1
2

∑
t∈Tar

(∑
Nei

|IkNei|
)

,

where IkNei is the current between node k and its
neighbor, ∑Nei is the sum of all neighbors connected to
node k.
For a given pair of source node s and a target node t

(tÎTar), we have the following equation for node k(k≠t)
according to Kirchhoff’s current law:

∑
Nei (vNei − vk)

RkNei
+ Ik = X,

where vk is the voltage at node k, and the sum ∑Nei is
for all direct neighbors of node k. X is a unit value of
current when k = s and 0 otherwise. Let G=(N, E) repre-
sent the protein interaction network where N is the set
of nodes and E is the set of edges, node voltages V can
be computed by the following linear system of equations
according to Ohm’s law:

P × V = I,

where P is a symmetric (N-1)×(N-1) conductance
matrix, V is a (N-1)×1 vector of node voltages and I is a
(N-1)×1 vector of currents passing through the nodes,
the row and column of ground node is removed since
its voltage is zero.
Such a linear system considered all interactions in the

global network and required that every interaction can
have a regulatory role for the expression of the target
gene. We therefore implemented a straightforward heur-
istic approach: we identified the nodes that are on the
maximum weighted shortest paths from a source gene
to all target genes and performed the calculations of
information flow score on this subnetwork. The mod-
ules were identified using the following algorithms.
Pesudocode for identifying modules is shown below:
1. For each causal disease gene si,

a. For each target DE gene tj,
i. identify all shortest paths from si to tj,
ii. choose the path with maximum sum of
weight,

b. merge all nodes on the chosen paths into a sub-
network Subi, for si,
c. compute the information flow score Ik for each
node in Subi.

2. For each gene on the subnetworks, put it into the
module Mm where its information flow score is
maximum,
3. For each module Mm, identify the unconnected

genes. After extracting the unconnected genes from all
modules, simultaneously put each of them into another
module Mn where the information score is the second
largest.
4. Repeat step 3 until all modules are interconnected.
5. For genes that cannot connect to any module in

which it has an information flow score, regard each of
their connected components as a new module.
The source code for module identification and related

data in this study can be downloaded at http://doc.
aporc.org/wiki/CHD.

Mutual information
For each of the identified dysfunctional modules, we
quantified its discriminative power by an information-
theoretic scheme [13]. Various methods have been
developed to infer expression activity from a group of
functionally related genes. Just as reasoned in previous
research [46] that not all genes within a pathway are
highly discriminative and that using a subset of “condi-
tion-responsive genes” achieves better discriminative
power than conventional gene and pathway based
approach, we defined the differentially expressed (t-test,
corrected p-value<0.05) genes as those that can repre-
sent the synergistic activity of a module or a pathway.
For these differentially expressed genes, let a(M) denote
the preprocessed and z-transformed m-dimensional
microarray expression vector across 16 disease and 5
control samples on GSE26125. Let c denote an m
dimensional binary vector representing the phenotype
class of each sample, and ci = 1 if the ith sample is dis-
ease, 0 if it is control. The aggregated expression activity
vector a(M) for the module induced by its differentially
expressed genes is

a (M) =
k∑

g∈M

a
(
g
)

√
k

.

We defined the discriminative score S(M) as MI
(a’(M),c), and the mutual information MI between a’, a
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discretized form of a, and c as

S (M) = MI
(
a′ (M) , c

)
=

∑
x∈a′

∑
y∈c

p
(
x, y

)
log

p(x, y)
p(x)p(y)

.

Here, a’ is obtained by discretizing a into [log2(# of
samples)+1] = 6 equally spaced bins [13], and the mid-
point of each bin is used as the value for a’. × and y
enumerate values of a and c, p(x,y) is the joint probabil-
ity density function (pdf) of a’ and c, and p(x) and p(y)
are the marginal pdf’s of a and c.
To get empirical p-value for the discriminative score,

we also generated N random gene sets of the same size
as each module R, aggregated their genes’ expression
vectors a(R) and computed their MI with phenotype S
(R):

empirical p - value =
(the number of S (R) > S (M))

N
,

where N is set as N = 1000.

Phenotype classification comparison
To evaluate the ability of our modules for discriminat-
ing phenotypes, we performed both within-dataset and
cross-dataset classification validation. To allow for
comparison with pathways and random controls, we
aggregated the expression values of DE genes in each
module and in each pathway from the CHD subnet-
work. We also aggregated the expression of random
gene sets with the same size as the module. The activ-
ity vector aggregation method is the same as in the
former Mutual Information section. Modules were
ordered in decreasing significance of MI, pathways
were ordered in decreasing significance of enrichment
and random gene sets were ordered the same
sequence as modules. Then, logistic regression models
were trained on the module activity matrix (modules
versus samples), pathway activity matrix (pathways
versus samples) and random gene sets (gene sets ver-
sus samples). For within-dataset experiments, each
time 4/5 of the samples were implemented as the
training set to build the classifier and the remaining 1/
5 samples were used as testing set to evaluate the per-
formance (five-fold cross validation). Assuming that
there are K modules, then for each k ≤ K, select the
first kth modules to train the classifier. Pathways and
random gene sets were also used in similar manner.
The final classification performance was reported as
the Area Under ROC Curve (AUC [47]) on the testing
set using the classifier optimized from the validation
set. For cross-dataset experiment, all 12 modules/path-
ways/random gene sets were trained on GSE26125 and
validated on 12 disease samples from GSE14970

combined with 5 controls from GSE26125. All prepro-
cessed microarray expressions were z-transformed
before activity vector is aggregated. For both within-
and cross-dataset experiments, random controls were
repeated 100 times.

Correlation and crosstalk
Previous work [48] has identified crosstalk of pathways
based on overlapping genes and weighted interactions,
we used similar metrics to measure module coordina-
tion and module-pathway crosstalk in the present study.
For each module-module pair X and Y, we firstly identi-
fied the edges with two end nodes, each of which
belongs to one module, and then we summed up the
weights of all these connecting edges using

score (X, Y) =
∑
x∈X

∑
y∈Y

∣∣weight
(
x, y

)∣∣.

For module-pathway crosstalk, we only considered the
pathway which contains at least one gene on the CHD
subnetwork in order to filter out unspecific pathways.
For each module-pathway pair M and P, we firstly iden-
tified the edges with two end nodes, each belonging to
the module and the pathway, and detected the nodes in
both the module and the pathway. Then we summed up
the weights edges and number of nodes using

score (M, P) =

∑
x∈M,y∈P

∣∣weight
(
e
(
x, y

))∣∣ +
∑

x∈M∩P
1

√|M|√|P| .

where ∑xÎM,yÎP|weight(e(x,y))| corresponds to the sum
of the weight of all edges, and {e(x,y):xÎM,yÎP} are
those edges that connect a pathway P and a module M.∑
x∈M∩P

1 corresponds to the total number of common

nodes shared by M and P, where each node is given the
weight equals to 1.

√|M|√|P| corresponds to the
square root product of the number of nodes in module
M and pathway P. The summation is such divided in
order to normalize the size of module and pathway.
To get empirical p-value, we generated 1000 gene sets

pairs containing the same number of nodes as the mod-
ule-module or module-pathway pair, and computed
their interaction scores. Random controls were gener-
ated from genes on the whole weighted PPI network,
and genes in the KEGG. The significance of interaction
is defined as

empirical p - value =
(the number of S (R) > S (M))

N2
,

where N2 is set as N2 = 1000.

He et al. BMC Genomics 2011, 12:592
http://www.biomedcentral.com/1471-2164/12/592

Page 14 of 16



Additional material

Additional file 1: List of selected target genes and sample distance
of 21 expression profiles.

Additional file 2: Genes in each module.

Additional file 3: Pathways enriched in CHD subnetwork using
hypergeometric test. Top 12 pathways are used for classification
evaluation.

Additional file 4: List of enriched GO terms in each module.

Additional file 5: Network view of Modules 4, 5 and 9.

Additional file 6: Details of prioritizing of candidate disease genes
by module analysis and robustness analysis of identified modules.
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