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Geptop has performed effectively in the identification of prokaryotic essential genes
since its first release in 2013. It estimates gene essentiality for prokaryotes based
on orthology and phylogeny. Genome-scale essentiality data of more prokaryotic
species are available, and the information has been collected into public essential gene
repositories such as DEG and OGEE. A faster and more accurate toolkit is needed to
meet the increasing prokaryotic genome data. We updated Geptop by supplementing
more validated essentiality data into reference set (from 19 to 37 species), and
introducing multi-process technology to accelerate the computing speed. Compared
with Geptop 1.0 and other gene essentiality prediction models, Geptop 2.0 can generate
more stable predictions and finish the computation in a shorter time. The software
is available both as an online server and a downloadable standalone application. We
hope that the improved Geptop 2.0 will facilitate researches in gene essentiality and
the development of novel antibacterial drugs. The gene essentiality prediction tool is
available at http://cefg.uestc.cn/geptop.
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INTRODUCTION

Essential genes are critical for the survival and development of organisms (Mushegian and Koonin,
1996). In dozens of prokaryotes, genome-scale essentiality data have been determined by various
experimental methods and these information has been stored in online databases such as DEG
(Luo et al., 2014) and OGEE (Chen et al., 2017). Studies on bacterial essential genes are helpful in
understanding the essence of life (Rancati et al., 2018) and screening potential drug targets to treat
pathogenic diseases (Dickerson et al., 2011).

Due to the cost and difficulties of experiments, computational identification of essential genes
presents an important alternative approach (Mobegi et al., 2017). Features including evolutionary
conservation (Nigatu et al., 2017; Dilucca et al., 2018), domain information (Lu et al., 2015),
network topology (Jeong et al., 2001; Zhang et al., 2016; Karthik et al., 2018; Li et al., 2019),
function (Lei and Yang, 2018), and expression level (Dong et al., 2018) are used in predicting gene
essentiality via the approaches of bioinformatics. Based on this, many models were developed to
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implement gene essentiality prediction (Fan et al., 2017;
Mobegi et al., 2017; Li et al., 2019; Zhang et al., 2019).

There are a few online tools to automatically predict bacterial
essential genes. CEG_Match was developed to select name-
known essential genes based on gene function information (Ye
et al., 2013). Essential Gene Prediction (EGP) is a machine-
learning-based method using only sequence compositional
features (Ning et al., 2014). We utilized another machine learning
algorithm (SVM) with features obtained by homology mapping
to predict gene essentiality (Hua et al., 2016). The BLAST tool in
DEG can be utilized to perform homolog search against essential
gene set (Luo et al., 2014).

In 2013, we released Geptop to predict essential genes of
sequenced bacterial genomes. It uses the reciprocal best hit
(RBH) method to determine orthology, and the composition
vector (CV) method to weight the contributions of each reference
genome (Qi et al., 2004; Wei et al., 2013). Since the release of
Geptop 1.0, it has become the most widely used computational
tool for predicting bacterial essential genes, in large part due
to its high accuracy and the availability as Web server (Gupta
et al., 2016; Gao et al., 2017; Nigatu et al., 2017; Peng et al.,
2017; Rancati et al., 2018). When using only three genomes
as reference set, Geptop is competitive with other integrative
methods, and its superiority becomes more pronounced when
18 genomes are used as the reference set (Wei et al., 2013).
The excellent performance of Geptop depends on our intrinsic
definition of orthology using RBH and the method of balancing
the weights of various reference genomes according to their
phylogenetic distances.

Since our release of Geptop 1.0, the number of genomes with
essential gene data has increased significantly (Luo et al., 2014;
Chen et al., 2017). In addition, the Python package contains
a multiprocessing module that can execute multiprogramming
computation, which obviously makes the process of calculating
faster. In light of the progress in data and technology, we were
inspired to update Geptop.

METHODS

Information about gene essentiality was obtained from DEG
or OGEE, and the complete protein coding sequences of
all 40 bacteria were acquired from GenBank. Detailed
information is displayed in Supplementary Table S1.
Similar with that in Geptop 1.0 (Wei et al., 2013), each
of the 40 species was used as the test set, and the other
39 proteomes being used as the reference set, separately.
After obtaining the 40 area under the curve (AUC) scores
calculated based on the real essentiality annotation and the
predicted essentiality score, we only selected those genomes
whose AUC scores were higher than 0.60 as the final
reference set. And three genomes got the AUC scores lower
than 0.60. Indeed, essentiality data of the three eliminated
genomes may have significant biases (Wei et al., 2013;
Cheng et al., 2014).

Geptop 1.0 used the method of geometric mean to combine
the contribution of each reference genome to obtain the

essentiality score of inquiry gene. When the orthologous gene
in one reference proteome is non-essential or the inquiry gene
has no ortholog, we need to neglect the contribution of this
reference genome and only consider those reference genomes
that contain essential orthologs. This manner of dealing with this
issue generates reasonable essentiality score; however, the original
equation for implementing this operation in Geptop 1.0 may be
difficult to understand.

In the new implementation of Geptop 2.0, to define the gene
essentiality score Si for gene i, we changed the cumulative formula
as follows:

Si =
1
N

N∑
j=1

Mij

Dj
(1)

where j is the jth proteome in the reference set, N is the count of
all reference proteomes, M is the mapping score. M is two-value-
variables “1” and “0.” “1” means the ortholog of a query gene is
essential in the reference genome whereas “0” means that a query
gene has not any orthologs or the ortholog is non-essential. Dj is
the evolutionary distance between the query proteome and the jth
reference proteome. It can be calculated by the CV method (Qi
et al., 2004). When D = 0, which means that the query genome
and reference genome are the same, we set D to 0.01 to avoid
division by zero. After obtaining the essentiality scores for all
genes in the query genome, we use the following formula to
normalize the result:

Sfinal =
Si −Min

Max−Min
(2)

where Sfinal is the final S score of gene i, Min is the minimum of S
over all genes in the query proteome, and Max is the maximum.
Sfinal ranges from 0 to 1, and the more essential a gene is, the
larger the value of Sfinal will be.

In addition, we utilized the multiprocessing module in Python
to increase computational efficiency.

Performance Assessment
The following indexes were used to assess the performance of the
predictor:

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP

precision =
TP

TP + FP

F−measure =
2 ∗ sensitivity ∗ precision

sensitivity+ precision

MCC =
TP ∗TN − FP ∗ FN

√
(TN + FN) ∗ (TN + FP) ∗ (TP + FN) ∗ (TP + FP)

Here TP, FN, FP, and TN denote the true positives, false
negatives, false positives, and true negatives, respectively. The
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sensitivity index represents the proportion of essential genes that
have been correctly identified, and the specificity index represents
the proportion of non-essential genes that have been correctly
identified, and the precision index is the probability that the
predicted essential genes were indeed essential. The F-measure
represents the harmonic mean of precision and sensitivity. The
Mathew Correlation Coefficient (MCC) index represents the
reliability of the algorithm which ranges from −1 to 1. When FP
and FN are both equal to 0, MCC is equal to 1, meaning that the
result of prediction is totally right; conversely, if FP and FN are
both equal to 1, MCC is equal to −1, meaning that the result of
prediction is totally wrong.

RESULTS

Improved Performance of Geptop 2.0
Than Geptop 1.0 by
Cross-Species-Validation
After choosing 37 genomes with reliable essentiality information
and aligning them as reference set in Geptop 2.0, we performed
further computation to compare the prediction performance
between Geptop 1.0 and 2.0. For this purpose, we ran both
versions for each of the 37 genomes and obtained 37 pairs
of AUC scores by cross-validations. The results are shown
in Figure 1, in which each genome is represented by one
column. The average AUC value of Geptop 1.0 among the
37 genomes was about 0.82, whereas that of Geptop 2.0
was higher than 0.84, indicating an improvement of over
2.0%. And the variance in Geptop 2.0 was less than that

in Geptop 1.0 among the 37 AUC values. In the case of
Caulobacter crescentus NA1000 (Cc), the AUC score of Geptop
2.0 was 8.0% higher.

After changing the scoring method as shown in formulae (1)
and (2), we reset the default threshold value of the essentiality
score to 0.24, meaning that if the essentiality score of one gene is
higher than 0.24, then the gene should be predicted as essential
gene. Moreover, users may also change this threshold according
to their specific requirements to ensure fewer false positives or
higher precision.

Besides AUC evaluation, we also utilized the sensitivity,
specificity, MCC and F-measure indexes to assess the prediction
performance for both versions of Geptop. The complete results
are shown in Supplementary Table S2. Except that the average
specificity index among 37 species is about 0.9% lower in Geptop
2.0 than that in Geptop 1.0, other averages for indexes in Geptop
2.0 are higher ranging from 1.5 to 4.3%.

The Advantage of Geptop 2.0 Compared
With Other Essential Gene Prediction
Models
By AUC evaluation only, Geptop 2.0 is competitive with
other models. We performed prediction in four models
introduced above for 23 organisms (Hua et al., 2016; Peng
et al., 2017). The result was exhibited in Figure 2. Except
EGP, all these models performed well in the 23 organisms.
The lowest AUC score among 23 organisms of Geptop 2.0
is still higher than 0.60, and the highest is 0.97, while
all other models have some AUC scores lower than 0.60,
indicating that the prediction of Geptop 2.0 is reliable enough.

FIGURE 1 | The AUC result of 37 genomes among Geptop 1.0, Geptop 2.0. And the abbreviation of 37 bacteria please refers to Supplementary Table S1.
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FIGURE 2 | Prediction performance of BLAST tool, CEG_Match, EGP, SVM, and Geptop 2.0 in the 23 genomes. (A) AUC scores of the gene essentiality prediction
by BLAST tool, CEG_Match, EGP, SVM, and Geptop 2.0, respectively, for each genome. (B) Box plot of AUC scores from the prediction of the five tools for the 23
genomes.

FIGURE 3 | The correlation between minimal species distance and prediction performance among 37 genomes. In each sub-picture, the horizontal axis represents
the minimal distance between the query genome and 36 reference genomes. The vertical axis represents the prediction performance estimated by AUC, Sensitivity,
Specificity, F-measure and MCC indexes. The “Cor” value in figure is “Pearson correlation coefficient.” (A) The correlation between AUC score and minimal species
distance. (B) The correlation between the sensitivity index and minimal species distance. (C) The correlation between the specificity index and minimal species
distance. (D) The correlation between the F-measure index and minimal species distance. (E) The correlation between MCC index and minimal species distance.
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Considering the average AUC score of 23 organisms, Geptop 2.0
has the value of 0.84, which is the highest among the five models.

DISCUSSION

The species distance of query genome with reference genomes
can influence the prediction performance, so we calculated the
minimal distance between query genome and the 36 reference
genomes, then the closest genomes would be removed from
reference set. We performed prediction again for the query
genome using 35 reference genomes. The 14 species whose AUC
scores higher than 0.90 in Geptop 2.0 were selected. Loss of
closest species in reference genomes would indeed decrease the
performance in most case. However, the difference is slight and
the average decrease of AUC is only about 1%. There is even 0.1%
increment of AUC for Salmonella enterica serovar Typhi Ty2.

In the total 37 genomes, 18 genomes obtained a minimal
distance higher than 0.41 and this is quite far species distance.
Among these 18 genomes, 8 genomes got an AUC score higher
than 0.90, while only one genome got an AUC score lower
than 0.70, indicating that the performance of Geptop 2.0 is
stable and reliable in the essential genes identification without
close reference genomes. If we directly calculate the correlation
coefficient between minimal distance and each of the five indexes
for the 37 species, it will find there is not significant association
(Figure 3). Hence, Geptop’s performance generally relies on
the scale of reference genomes and a few special genomes will
have trivial influence on it. When there are fewer reference
genomes, the prediction accuracy will depend significantly on
the reference genome with the smallest distance. However, if
we have numerous reference genomes, the effect of smallest
evolution distance on prediction accuracy will be significantly
weaken and all reference genomes will play a collective effect
on the prediction. In fact, a larger number of genomes could
also weak the quality bias caused by one or two special reference
genomes. Therefore, updating Geptop into the version 2.0 could
generate more stable prediction.

CONCLUSION

With more reference genomes, Geptop 2.0 can get better
performance than Geptop 1.0, and it’s competitive with other
gene essentiality prediction models. Despite the limitation in
some species, its performance is reliable enough in most species.
We are confident that Geptop 2.0 would generate more stable

predictions with larger-scale reference set. Besides, we used
the multiprocessing module to achieve the multiprogramming
computation using a Linux 4 CPU system, ultimately increasing
the computation efficiency by more than fourfold. For example,
for Escherichia coli K12 MG 1655 (4100 genes in total), our
server returned prediction results in less than 35 min. The
web server and standalone version of Geptop are available at
http://cefg.uestc.cn/geptop.
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