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Background: Biochemical recurrence (BCR) after radical prostatectomy indicates poor
prognosis in patients with prostate cancer (PCA). DNA methylation (DNAm) is a critical
factor in tumorigenesis and has attracted attention as a biomarker for the diagnosis,
treatment, and prognosis of PCA. However, the predictive value of DNAm-derived
differentially expressed genes (DMGs) in PCA with BCR remains elusive.

Methods:We filtered the methylated genes and the differentially expressed genes (DGEs)
for more than 1,000 clinical samples from the TCGA cohort using the chAMP and DESeq2
packages of R language, respectively. Next, we integrated the DNAm beta value and gene
expression data with the Mithymix package of R language to obtain the DMGs. Then,
1,000 times Cox LASSO regression with 10-fold cross validation was performed to screen
signature DMGs and establish a predictive classifier. Univariate and multivariate cox
regressive analyses were used to identify the prognostic factors to build a predictive
model, and its performance was measured by receiver operating characteristic, calibration
curves, and Harrell’s concordance index (C-index). Additionally, a GEO dataset was used
to validate the prognostic classifier.

Results: One hundred DMGs were mined using the chAMP and Methymix packages of R
language. Of these, seven DMGs (CCK, CD38, CYP27A1, EID3, HABP2, LRRC4, and
LY6G6D) were identified to build the prognostic classifier (Classifier) through LASSO
analysis. Moreover, univariate andmultivariate Cox regression analysis determined that the
Classifier and pathological T stage (pathological_T) were independent predictors of BCR
(hazard ratio (HR 2.2), (95% CI 1.4–3.5), p < 0.0012, and (HR 1.8), (95% CI 1.0–3.2), p <
0.046). A nomogram based on the Classifier was constructed, with high prediction
accuracy for BCR-free survival in TCGA and GEO datasets. GSEA enrichment analysis
showed that the DMGs were mainly enriched in the metabolism pathways.

Conclusion: We identified and validated the nomogram of BCR-free survival for PCA
patients, which has the potential to guide treatment decisions for patients at differing risks
of BCR. Our study deepens the understanding of DMGs in the pathogenesis of PCA.
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INTRODUCTION

Prostate cancer (PCA) is a common cancer with the highest
prevalence among men worldwide. In 2018, the global incidence
of PCA was 29.3 per 100,000 (WHO, 2018). In the United States,
it is estimated that more than 30,000 cases of death in men per
year are attributable to PCA (Siegel et al., 2019); furthermore,
there are 60.3 new cases of PCA per 100,000 and 26.6 deaths per
100,000 individuals in China (Chen et al., 2016). Radical
prostatectomy (RP) is considered as an effective therapy for
the treatment of localized PCA. However, up to 20–53% of
patients experience biochemical recurrence (BCR) after RP
(Mottet et al., 2018). BCR is defined as a serum PSA equal to
or greater than 0.2 ng/ml on two consecutive occasions after
surgery or radiation. However, some studies and guidelines have
indicated that PSA cannot be used to predict BCR for each patient
with PCA, especially when its value is very low (Eisenberg et al.,
2010; Fendler et al., 2019; Wang et al., 2020). Moreover, patients
with similar clinical features or PSA levels might have a different
clinical endpoint. Among patients with high-risk PCA and
clinical stage ≥ T3a, a biopsy Gleason score of 8–10, and/or a
serum PSA level >20 ng/ml, approximately 60% had at least
15 years of metastasis-free survival after RP, indicating that
not all patients had poor prognosis (Spahn et al., 2010a;
Spahn et al., 2010b). The monitoring of BCR was expected to
effectively prevent mortality. However, overtreatment owing to
misprediction should also be avoided (Artibani et al., 2018).

Epigenetics and PCA have been studied at great length. The
evolution of PCA involves a combination of epigenetic and
genetic changes, and methylation is an important mechanism.
The methylation of KDM1A and CHD1 genes can drive the
transcription and translocation of androgen receptors (Metzger
et al., 2016). PCA recurrence can lead to many molecular
aberrations, including DNA methylation (DNAm), which can
be used as biomarkers of PCA prognosis (Fraser et al., 2017).
Additionally, the promoter methylation of CRMP4 in biopsied
tissue can predict lymph node metastasis of PCA (Gao et al.,
2017). As a critical factor in tumorigenesis, DNAm has attracted
increasing attention as a biomarker for the diagnosis, treatment,
and prognosis of PCA (Wei et al., 2015). CpG islands are rich in
cytosine and guanine dinucleotides and are 200 bp to several
kilobases in length. To better regulate highly expressed genes,
CpG islands are always in close proximity to the promoters of
these genes (Nowacka-Zawisza and Wiśnik, 2017).
Additionally, CpG islands can modulate cancer proliferation,
including that of PCA, via the hypomethylation of cytosines at
the 5′position in CpG islands within the promoter region of
oncogenes. In contrast, hypermethylation of the regulatory
(promoter) region of suppressor genes leads to gene silencing
(Herman and Baylin, 2003; Baylin and Ohm, 2006). Alterations
of tumors at the molecular level always occur before the
manifestation of clinicopathological features (Jordan et al.,
2017; Devos et al., 2020). However, to date, no reliable BCR

biomarkers for PCA have been identified for routine application
in clinical practice.

In this study, we established a practical and reliable nomogram
based on DNAm-derived differentially expressed gene (DMG)
profiling from The Cancer Genome Atlas (TCGA) data to
improve risk stratification for patients with PCA. Moreover,
we analyzed Gene Expression Omnibus (GEO) datasets to
validate the nomogram and related genes and explored the
relationship between methylation status and gene expression.
Our findings confirm that these DMGs might be potential
therapeutic targets in the future.

MATERIALS AND METHODS

Data Collection
TCGA data (gene expression data, methylation data, and
associated clinicopathological features) were downloaded from
the Genomic Data Commons (GDC) Data Portal of the National
Institutes of Health, and TCGA level-3 molecular data and
corresponding clinical data were available through the GDC
(up to 2020/4/10; Supplementary Table S1). The DNAm level
was measured with β values ranging from 0 to 1 (the Illumina
Infinium Human Methylation 450 platform of the GDC).
Furthermore, the inclusion criteria for the discovery cohort
(TCGA cohort) were as follows: 1) patients who had
undergone RP; 2) patients with associated clinicopathological
features, such as BCR time, BCR status, residual tumor data,
TNM stage, lymph node number, pathologic Gleason Score,
target therapy, radiotherapy, and laterality; and 3) clinical
results assessed using BCR time. For the non-BCR samples
without BCR time, their last follow-up time was used for
further study.

Identification of Differentially Expressed
Genes
After downloading raw RNA-sequencing datasets of TCGA
prostate adenocarcinoma (PRAD) cohorts (HTSeq-Counts of
TCGA-PRAD transcriptome profiling) and deleting the
duplicated samples, we extracted DEGs between 474 PCA and
53 nontumorous tissues using the “DESeq2”, package (Love et al.,
2014). Here, for multiple probes, the average value corresponding
to the same gene is taken during the calculation. An absolute
logFC >1 and false discovery rate (FDR) < 0.05 were set as the cut-
off values. The results were visualized using the R language
package “ggplot2.”

Filtering and Cleaning of Methylation Data
The DNAm data contained the 499 PCA and 50 nontumorous
tissues. The data were filtered using the chAMP package of R
language (Phipson et al., 2016) according to the following criteria:
1) filter out probes with a p-value greater than 0.01; 2) filter out
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probes with a bead count less than 3 in at least 5% of the samples;
and 3) filter out probes at non-CpG sites; 4) filter all SNP-related
probes (R code: Supplementary File S1). In case of multiple CpG
sites being annotated by one methylated gene, we could calculate
their average value using the “aggregate function”of R language.
The CpGs annotation file was obtained from the TCGA dataset.

Identification of DMGs
DMGs were identified by integrating the methylated genes and
DEGs with the “MethylMix” package. A new version ofMethylMix
was developed to automatically preprocess the databases of
methylation-driven genes and subsequently analyze their
transcriptionally predictive methylation states by applying the
MethylMix algorithm (Gevaert, 2015). First, a correlation
analysis was performed between the gene expression data of
DEGs in the PCA samples and their corresponding methylation
data. The target genes with a correlation coefficient < −0.3 and
p-value <0.05 were used for subsequent analysis. Second, beta
mixture models were used to determine the methylation status of
multiple genes. Last, to verify the existence of difference between
the PCA samples and the corresponding non-tumor samples, the
Wilcoxon rank-sum test was used as the measurement standard.
Finally, mixture models and regression analyses of the DMGs were
visualized, respectively.

Functional and Pathway Enrichment
Analysis of DMGs
Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA)
were used to explore the critical pathways associated with DMGs,
which were performed using the R packages “org.Hs.eg.db” and
“clusterProfiler.”

Generation and Validation of the
DMG-Based Classifier of BCR-Free Survival
To explore the relationship between the gene expression of DMGs
and BCR-free survival, least absolute shrinkage and selector
operation (LASSO) regression was performed to identify
prognosis-related DMGs and establish a signature. Briefly,
LASSO is a method that pushes regression coefficients toward
zero via the application of an L1 penalty. If the penalty is larger,
fewer predictors are selected, and as a result, several variables are
diminished. In addition, analysis using the “glmnet” package
based on the program with 1,000 iterations of Cox LASSO
regression and 10-fold cross-validation led to seed genes being
integrated into multiple gene sets. Seed genes with nonzero
coefficients were identified as potential prognostic predictors.
The linear combination of the regression coefficient (β)
multiplied by its mRNA expression level can generate a risk
score for candidate genes based on BCR (Tibshirani, 1997;
Sauerbrei et al., 2007) as follows:

Riskscore � ∑
k

i�1
βiSi

(k: the number of candidate genes, βi: the coefficient index of
candidate genes, and Si: the expression level of candidate genes).

To classify patients into low-, medium-, and high-risk groups,
the x-tile (Version 3.6.1) tool was used to determine the cut-off
value of the risk score (Camp et al., 2004). Kaplan–Meier (K-M)
survival plots and log-rank test were used to estimate BCR-free
survival differences. To assess the effectiveness of the Classifier,
the area under the curve (AUC) of the time-dependent receiver
operating characteristic (ROC) curve was assessed. In this study,
the predictive property was evaluated based on the time-
dependent ROC curves, which were generated using the
“survivalROC” and “rms” R package. In addition, the
“ggplot2” R package was used for drawing.

Screening of Prognostic Factors
To identify the meaningful predictive factors of a BCR-free state
for PCA patients, univariate Cox regression analysis was
performed with the Classifier (risk level) and
clinicopathological features of patients. Additionally,
multivariate Cox regression with 1000-times bootstrapping was
performed using the “survival” package in R to eliminate
confounding factors. The hazard ratio and its 95% CI for each
variate were obtained. Statistical significance was set at a
p-value < 0.05.

Establishment and Validation of the
Nomogram
The nomogram was constructed with meaningful predictive
factors by multivariate Cox regression analysis. The calibration
curves were plotted using the Hosmer–Lemeshow test, which was
expected to calibrate the probability of patients with PCA after RP
at 1, 3, and 5 years. Furthermore, the identification performance
of the nomogram was quantified using Harrell’s concordance
index (C-index). In total, 1,000 bootstrap resamples were
processed for verification to obtain a stable C-index. The
C-index ranged from 0.5 (indicative of poor or no predictive
ability) to 1.0 (perfect predictive ability). A time-dependent ROC
analysis (Heagerty et al., 2000) and area AUC were used to
measure the predictive accuracy of the nomogram.

External Validation of the Nomogram
The gene expression dataset (GSE21034), as a validation cohort,
was downloaded from the GEO cohort (https://www.ncbi.nlm.
nih.gov/geo/). The GSE21034 microarray dataset included gene
expression profiles of 140 PCA samples and 29 nontumor
samples as well as the related 140 clinicopathological features
(Taylor et al., 2010) (GPL5188: Affymetrix Human Exon 1.0 ST
Array). As previously mentioned, patients were classified into
low-, medium-, and high-risk groups according to the cut-off
value of the risk score determined using x-tile. K-M survival plots
and log-rank test were used to evaluate the BCR-free survival
differences. The time-dependent ROC analysis and AUC were
used to measure the predictive accuracy of the nomogram, and
the accuracy, sensitivity, and specificity of the model were
quantitatively evaluated.
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Copy Number Variation, Mutation Features,
and GSEA of the Candidate Genes
We collected graphic illustrations for CNVs and the seven-gene
mutation profiles of all PCA tissues in the TCGA dataset,
searching from the cBioPortal website (http://www.cbioportal.
org/). Perl (strawberry-Perl-5.30.2.1) and GSEA 3.0 software
(Gene sets database: c2. cp.kegg.v7.2. symbols.gmt) were used
to perform GSEA analysis. Differences were considered
statistically significant at an FDR <0.05.

Cell Culture and DAC Treatment
The PCA cell line lymph node carcinoma of the prostate (LnCap)
was purchased from Jining company (Shanghai, China) and
maintained in minimum essential medium (cat no.
C11875500BT; Gibco, Grand Island, NY, United States at 37°C
and supplemented with 10% fetal bovine serum (cat no. A31608-
02, Gibco) in a humidified atmosphere containing 5% CO2.
LnCap cells in culture were treated with 5-aza-2ʹ-
deoxycytidine (DAC, Cat No. A3656-5MG; Sigma-Aldrich, St.
Louis, MO, United States) for 120 h, and the medium was
replaced daily owing to DAC instability. For experiments
involving DAC treatment, dimethyl sulfoxide was used as the
control. The cells were harvested for extraction of genomic DNA
and total RNA for analysis of DNAm and gene expression.

RNA Extraction and Quantitative
Reverse-Transcription PCR (qRT-PCR)
RNA extraction and qRT-PCR were performed using AG RNAex
Pro Reagent (AG21101, Accurate Biology, Changsha, China). The
samples were treated with 20% chloroform, vortexed briefly, and
incubated at room temperature for 15 min. The samples were then
centrifuged at high speed for 15min at 4°C after the aqueous phase
was transferred to a new tube, and an equal volume of isopropanol
was added. Samples were incubated at room temperature for 10 min,
followed by centrifugation at high speed for 10 min at 4°C. The
pellets were then washed in 95% ethanol, dried, and resuspended in
nuclease-free water. cDNA was synthesized using RNAiso plus
reagent (Takara, Tokyo, Japan) according to the manufacturer’s
instructions. qRT-PCR was performed using a LightCycler® 480 II
(Roche, Basel, Switzerland) with a SYBR Green PCR kit (Takara
Bio). The primer sequences are listed in Supplementary Table S6.

Cancer Cell Line Encyclopedia Database
Gene expression of PCA cell lines was obtained from CCLE. We
downloaded CCLE from the GEO dataset (Barretina et al., 2012).
The gene expression profile GSE36133 (Affymetrix GPL15308
platform, Affymetrix Human Genome U133 plus 2.0 Array) was
obtained. The probes were converted into the corresponding gene
symbol according to the annotation information of the GPL571
platform. Genes with more than one probe set were averaged
using R language.

Statistical Analysis
The gene expression data of the seven DMGs were normalized
using the TMM methods implemented in the package “edgeR.”

The statistical analyses of qRT-PCR data were performed using R
language (version 4.0.0) and GraphPad Prism 8.3.0. A p-value <
0.05 was considered statistically significant for two-sided tests.

RESULTS

Identification of DEGs
A flow diagram of the entire process is shown in Figure 1. By
comparing the mRNA expression between PCA tissues and
nontumorous prostate tissues, we identified 3,023 DEGs for
further analysis. Among these DEGs, 1,262 were upregulated
and 1761 were downregulated (Supplementary Table S2).

Identification of DMGs
After identifying 9,574methylated genes, we evaluated the level of
methylation and gene expression level of 1,285 methylated genes
from 397 PCA samples and the methylation level of these
1,285 methylation-associated genes from 49 non-tumor
samples by integrating the datasets. The MethylMix (Gevaert,
2015) package was used to import these three datasets.
Altogether, 100 DMGs were identified (Supplementary Table
S3). Heatmap was used to show the gene expression (Figure 2A)
of these 100 DMGs and took seven represented genes in black
frames as an example. GO analyses were performed to elucidate
the functional properties of the newly identified DMGs, and eight
GO terms were obtained (Figure 2B), including the organic acid
biosynthetic process, benzene-containing compound metabolic
process, and cellular modified amino acid metabolic process (p <
0.001). Moreover, pathway analysis using the KEGG revealed that
these genes were mainly enriched in glutathione metabolism,
drug metabolism -cytochrome P450, platinum drug resistance,
and the PPAR signaling pathway (p < 0.05; Figure 2C). KEGG
pathway analysis revealed that the most abundant pathways were
those related to metabolism and drug resistance. GSEA revealed
that these genes were enriched in metabolism (Figure 2D).

Establishment of a Classifier Related to
BCR-Free Survival
These 100 DMGs with 339 PCA samples with BCR time and
status were included in LASSO analysis. Of these, CCK, CD38,
CYP27A1, EID3, HABP2, LRRC4, and LY6G6D were
recommended as candidate genes (Figure 3A). The
methylation status of these seven genes was negatively
correlated with gene expression (Figure3B). Among them,
CCK, CD38, CYP27A1, EID3, LRRC4, and LY6G6D were
hypermethylated, whereas HABP2 was hypomethylated
(Figure 3C, Supplementary Figure S3). Based on the seven
genes, a formula for calculating the risk score was generated as
follows:

Risk score = −0.066 × CCK mRNA level + (−0.127) × CD38
mRNA level + (−0.0615) × CYP27A1 mRNA level + (−0.833) ×
EID3 mRNA level + 0.088 × HABP2 mRNA level + 0.473 ×
LRRC4 mRNA level + (−0.122) × LY6G6D mRNA level.

Please note that the gene expression should be normalized
before importing the formula (Supplementary File S1).
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The range of the risk scores among the 334 patients in the
TCGA dataset was between −4.588 and −1.81 (Supplementary
Table S4). However, by analyzing the risk scores of the Classifier
and BCR status, the patients with PCA could be classified into
low-, medium-, and high-risk groups with the cut-off value from
x-tile. In total, 191 patients with a cut-off value greater than −2.89
were included in the high-risk group, 88 patients with values
between −3.33 and −2.89 were included in the medium-risk
group, and 55 others were included in the low-risk group.
K-M analyses of these three groups demonstrated that patients
with lower risk scores had a lesser occurrence of BCR than those
with medium-risk scores, which in turn had an even lower
occurrence than those with high-risk scores (p < 0.0001;
Figure 3D). The heatmap in Figure 3E shows the gene
expression of the seven candidate genes based on the risk
level. A time-dependent ROC curve was generated to describe
the predictive ability of the Classifier, and the AUC values of the
Classifier at 1, 3, and 5 years were 0.8243, 0.7878, and 0.7704,
respectively (Figure 3F). As here, the same data were used to
select genes and build the risk score, an association with BCR and
the resulting predictive ability were to be expected.

Establishment and Evaluation of the
Nomogram for BCR-Free Survival
Prediction in PCA
The prognostic classifier (Classifier) and pathological_T were
regarded as the key prognostic predictors using univariate and
multivariate regression analyses (Figure 4A). Furthermore, the
relationship between Schoenfeld model residuals and the
Classifier was plotted to evaluate the importance of these
prediction factors in the combined model. Schoenfeld

residuals showed that the combined model satisfied the risk
assumption of an equal proportion (Figure 4B). A nomogram
was established based on the Classifier and pathological_T
(Figure 4C). Based on the combined model, patients were
divided into low-, medium-, and high-risk groups with the
risk score from x-tile as the cut-off value (1.21 and 4.09).
Patients with the lowest risk scores had the lowest BCR rates
and those with the highest risk scores had the highest BCR rates
when the K-M survival analysis was applied (p < 0.0001;
Figure 4D). The C index and robust C- index values were
0.802 and 0.810, respectively, which means that the predicted
results of the model were nearly consistent with the actual
observed results. The calibration curve of the combined
model for predicting BCR-free survival at 1, 3, and 5 years
revealed favorable forecasting performance (Figure 4E).
Additionally, the time-dependent ROC curve demonstrated
that the AUC of the seven-DMG signature combined with
the Classifier and pathological_T was significantly higher
than that of the Classifier or Gleason score only at 1, 3, and
5 years (Figure 4F), indicating that the sensitivity of the
nomogram was considerably better than that of the Classifier
or the Gleason score alone. The nomogram offered excellent
performance in BCR-free survival predictions, especially with a
long term. Taken together, the findings suggest that the
nomogram can help physicians provide appropriate
recommendations for clinical therapy and follow-up
schedules for patients with PCA.

External Validation of the Nomogram
The GEO dataset GSE21034 was subsequently used to verify the
newly established nomogram. In total, 140 cases were included in the
external study (Supplementary Table S5). Based on the Classifier,

FIGURE 1 | Analysis of the flowchart illustrates the exploration procedure for the PCA prognostic DMGs and establishment of risk score signature.
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patients were divided into low-, medium-, and high-risk groups with
the risk score from x-tile as the cut-off value (0.02 and 0.03).
Generally, comparing the three cohorts, patients with the lowest
risk scores had lowest BCR rates and thosewith the highest risk scores
had the highest BCR rates when the K-M survival analysis was
applied (p = 0.00015; Figure 5A). The AUCs of BCR-free survival at
1-, 3-, and 5-year BCR-free survival were 0.7078, 0.7544, and 0.725,

respectively (Figure 5B). Based on the combined model of the
Classifier and pathologic_T, patients were divided into low-,
medium-, and high-risk groups with the risk score from x-tile as
the cut-off value (0.52 and 2.12). Comparing the three cohorts,
patients with the lowest risk scores had the lowest BCR rates and
those with the highest risk score had the highest BCR rates when the
K-M survival analysis was applied. (p < 0.0001; Figure 5C).

FIGURE 2 | Distribution of the methylation level and gene expression of DNA methylation-driven genes and GO, KEGG, and GSEA pathways of 100 DMGs. (A)
Distribution of the gene expression of 100 DMGs between PCA and nontumorous prostate tissues (seven representative genes are shown in the black frame). (B) GO
analysis classified the DEGs into 2 groups (i.e., molecular function and biological process) and significant enriched GO Terms of 100 DMGs based on their functions. (C)
KEGG pathway analysis. (D) GSEA KEGG pathway of 100 DMGs.
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FIGURE 3 | Establishment of the classifier based on seven DMGs in the TCGA cohort. (A) LASSO coefficient profiles of the 100 genes in TCGA cohort. A coefficient
profile plot was generated against the log(lambda) sequence. Selection of the optimal parameter (lambda) in the LASSOmodel for TCGA-PRAD. A vertical line is drawn at
the optimal value by 1−SE standards and results in seven nonzero coefficients. (B) Regression analysis between gene expression and DNA methylation of seven DMGs.
(C) K-M survival curves compare BCR status among the low-, medium-, and high-expression groups of seven DMGs. (D)Heatmap of the seven DMGs expression
profiles based on low-, medium-, and high-risk groups. (E) Time-dependent ROC for accuracy of BCR-free survival prediction by the seven-DMG signature (the
Classifier) among 1, 3, and 5 years in TCGA group.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 7273077

Luo et al. Methylational Genes Impact Prostate Cancer

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 4 | Nomogram to predict 1-, 3-, and 5-year BCR-free survival. The BCR-free survival nomogram was established in the TCGA cohort, incorporating
pathological_T and the Classifier. (A) Univariate and multivariate analyses of the Classifier, clinical factors, and pathological characteristics with BCR-free survival. The
statistical significance is indicated using different colors; red indicates statistical significance, and blue indicates no significance. (B) Schoenfeld residual suggested that
this model met the equally proportional risk hypothesis. Schoenfeld model residuals versus pathological_T stage and the Classifier were plotted to obtain a
preliminary assessment of whether these predictive factors should be incorporated into the model. (C) Nomogram to predict the 1-, 3-, and 5-year BCR-free survival of
PCA patients. (D) K-M survival curves for comparison of BCR-free survival among the low-, medium-, and high-risk groups based on the combined model in the TCGA
cohort. (E) Calibration curves of 1-, 3-, and 5-year BCR-free survival in the combined model. Blue dotted lines represent the ideal predictive model, and the solid red line
represents the observed model. (F) Time-dependent ROC for accuracy of BCR-free survival prediction by the combined model among 1, 3, and 5 years.
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The calibration curves for 1-, 3-, and 5-year BCR-free
survival status based on the nomogram suggested a
significant agreement between the predicted outcomes and
those observed in the validation group (Figure 5D). The
combined model of the Classifier and pathological_T
exhibited better predictive ability than either the Classifier
or pathological_T alone. The AUCs of 1-, 3-, and 5-year
BCR-free survival were 0.889, 0.871, and 0.791, respectively,
in our validation group (Figure 5E). The 1-, 3-, and 5-year
trend in the AUC in the validation cohort was consistent with
that in the TCGA cohort, which further illustrates the value of
the prediction model for long-term follow-up. Additionally,

coincidence analysis of the combined model showed that the
C-index was 0.853 and the robust C-index was 0.860.

CNV, Mutation Features, and KEGG
Signaling Pathway Based on GSEA
The seven candidate DMGs were affected by methylation, gene
amplification, deletion, and mutation. We noted that the rates of
genetic alterations among these seven genes were between 0.8 and
1.6% based on the GDC TCGA-PRAD database (Figure 6A),
indicating that the effect of methylation might promote a change
in gene expression.

FIGURE 5 | Verification of the Classifier and the combined model in the GEO dataset. (A) K-M survival curves for comparison of BCR-free survival among the low-
risk, medium-risk, and high-risk score based on the Classifier. (B) Time-dependent ROC for accuracy of BCR-free survival prediction by the seven-DMG signature
among 1, 3, and 5 years in the validated group. (C) K-M survival curves for comparison of BCR-free survival among the low-risk, medium-risk, and high-risk score based
on the combined model. (D) Calibration curves of 1-, 3-, and 5-year BCR-free survival. Blue dotted lines represent the ideal predictive model, and the solid red line
represents the observed model. (E) Time-dependent ROC analysis was used to evaluate the accuracy of the BCR-free survival nomograms. The red, blue, and green
solid lines represent the combined model, GS, and Classifier, respectively.
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To determine the potential signaling pathways affecting these
seven genes, functional category enrichment analysis was
performed to examine their function. CCK was mainly related
to glutathione metabolism, drug metabolism, and cytochrome
P450.CD38wasmainly associated with RNA degradation, the cell
cycle, and DNA replication. CYP27A1was mainly associated with
the calcium signaling pathway. HABP2 was mainly associated
with RNA degradation. LRRC4 was mainly associated with the
WNT signaling pathway, the MAPK signaling pathway, and
oxidative phosphorylation, and LY6G6D was mainly associated
with aminoacyl tRNA biosynthesis. EID3 was mainly associated
with aminoacyl tRNA biosynthesis, cytokine receptor interaction,

the MAPK signaling pathway, and the cell cycle. A NOM q-value
(FDR) < 0.05 was set as the threshold value (Figure 6B).

Expression of Seven DMGs in DAC-Treated
LnCap Cells
As shown in Figure 3B and Supplementary Figure S3, the
methylation levels of CCK, CD38, CYP27A1, EID3, HABP2,
LRRC4, and LY6G6D exhibited the strongest negative
correlation with their gene expression, respectively. To confirm
this, we analyzed the changes in the expression of the four genes
in DAC-treated LNCaP cells to evaluate their functional

FIGURE 6 |Genetic changes andmutation features of seven DMGs by cBioPortal and pathways by GSEA. (A)Genetic alterations of DMGs in PCA samples. Rows
and columns represent the genes and tumor samples, respectively. (B) KEGG pathways enrichment analysis in each of the seven genes based on GSEA (FDR <0.05).
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correlation with methylation (Figure 7A). Our results indicated
that the expression of CD38, HABP2, LRRC4, and LY6G6D was
upregulated in LnCap cells treated with DAC, whereas that of
CCK, CYP27A1, and EID3 did not significantly change (Figures
7B–H). The results were thus not entirely validated using the
LNCaP cells’ data.

DISCUSSION

The course of PCA is long after operation, and patients often want
to know when the next recurrence will occur so that they can be
treated for it as soon as possible (Bianco et al., 2005). Predicting
the BCR of PCA is clinically essential, but it is difficult for
currently available prediction tools to meet current clinical
needs. Thus, considerable effort has been devoted to exploring
new technologies to detect early signs of tumors (Wu and Qu,
2015). This study attempted to predict BCR from a new
perspective of epigenetic DMGs. We successfully established a
predictive model based on seven DMGs to determine low-,
medium-, and high-risk groups from the TCGA and GEO

datasets. In addition, based on the Classifier, a nomogram was
constructed to predict the BCR-free survival rate, which almost
unambiguously classified patients into low-, medium-, and high-
risk groups and distinguished BCR-free survival with high
accuracy, achieving high sensitivity and specificity. Taken
together, the findings suggest that the nomogram has the
potential to predict BCR in patients with PCA after RP.

Brockman et al. (2015) constructed a nomogram that showed
excellent predictive value for BCR, but this nomogram was built
based on PSA, which limits its sensitivity at low PSA levels
(Fendler et al., 2019). 99mTc-MIP-1404 PSMA-SPECT/CT was
also shown to have high performance for detecting PSMA-
positive lesions suggestive of tumor recurrence in patients with
PCA BCR and very low serum PSA levels (Schmidkonz et al.,
2019). However, it is an invasive examination, which limits its
practical application. In contrast, our prediction tool is based
mainly on the pathological_T and the Classifier. Most of the
specimens collected were postoperative specimens that were not
affected by PSA. Thus, the nomogram can use postoperative
specimens to detect DMGs to avoid postoperative invasive
puncture and unpredictability with low PSA levels.

FIGURE 7 | Validation in prostate cancer cells for the seven DMGs. (A) Schematic illustration of demethylation of LnCap after DAC treatment. (B–H) Relative
expression of CCK, CD38, CYP27A1, EID3, HABP2, LRRC4, and LY6G6D between the DAC group and the control; ns: p > 0.05, *p < 0.05, **p < 0.01.
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Regarding the seven DMGs, cholecystokinin, also named
CCK, as a gastrointestinal hormone, is a chemical messenger
that regulates the physiological functions of the intestine and
pancreas, including secretion, motility, absorption, and
digestion (Thomas et al., 2003). The cholecystokinin
hormones affect proliferation by blocking their respective
receptors in PCA (Thomas et al., 2003). Moreover, as early
as 1997, Jean Claude Reubi studied the role of CCK-A and
CCK-B in some neuroendocrine and reproductive tumors,
including PCA (Reubi et al., 1997). In addition, we found
that CCK is mainly related to glutathione metabolism and drug
metabolism. This suggests that this might be the beginning of a
new understanding of CCK in neuroendocrine PCA. CD38 is a
glycoprotein that regulates cellular nicotinamide adenine
dinucleotide metabolism. One study suggested that the
methylation of CD38 regulates the progression of localized
and metastatic PCA. In our study, CD38 was mainly associated
with RNA degradation, the cell cycle, and DNA replication.
CYP27A1 is an enzyme that stimulates the transformation of
cholesterol to oxysterol 27-hydroxycholesterol (27-HC).
Accumulating evidence suggests that 27-HC acts as an
agonist of the estrogen receptor. Moreover, CYP27A1 is
associated with the risk of lethal PCA, another sex
hormone–dependent tumor (Shui et al., 2012). The
relationship between CYP27A1 methylation and PCA has
not been reported to date. Interestingly, one study showed
that the excessive corticosterone-induced downregulation of
CYP27A1 coincides significantly with increased CpG
methylation of its promoters (Hu et al., 2017). In this study,
CYP27A1 methylation was associated with the calcium
signaling pathway. De-regulation of calcium signals in
prostate tumor cells mediates several pathological
dysfunctions associated with PCA progression, which plays
a relevant role in tumor cell death, proliferation, motility
invasion, and tumor metastasis (Ardura et al., 2020).

Furthermore, HABP2, LRRC4, LY6G6D, and EID3 had not
been studied in PCA to date. HABP2 has mostly been studied in
thyroid cancer (Zhao et al., 2015; Zhang and Xing, 2016).
However, it is expected to be studied in PCA, another
endocrine-dependent cancer. As a tumor suppressor gene,
inactivation of LRRC4 mediates DNA hypermethylation in
central nervous system tumors (Zhang et al., 2008). In our
study, LRRC4 was mainly associated with the WNT signaling
pathway, the MAPK signaling pathway, and oxidative
phosphorylation, which are the common pathways in the
progression of PCA (Schöpf et al., 2016; Murillo-Garzón and
Kypta, 2017; Park et al., 2020). LY6G6D can lead to the
progression of colorectal cancer and colon adenocarcinoma
(Sewda et al., 2016; Giordano et al., 2019). However, its
relationship with PCA needs further study. High expression
of EID3 is an adverse prognostic indicator for patients with
colorectal cancer (Munakata et al., 2016). In our study, EID3
was mainly associated with aminoacyl tRNA biosynthesis,
cytokine–cytokine receptor interaction, the MAPK signaling
pathway, and the cell cycle, which requires further study for
validation. In addition, we further studied these seven genes as
DMGs in LnCap cells. The changes in the expression of CD38,

HABP2, LRRC4, and LY6G6D after DAC demethylation were
statistically significant, whereas CCK, CYP27A1, and EID3 were
not statistically significant. We searched the datasets of
GSE36,133 and GSE21034 and found that the gene
expression of the seven DMGs was also found in other
prostate cancer cell lines (Supplementary Table S7,
Supplementary Table S8). Thus, other cell lines might be
included for validation in the future.

Notably, this new nomogram excluded the Gleason score, N
staging, and the number of positive lymph nodes from being
considered as the predictive factors. However, the pathological
stage markedly contributes to the predisposition of distant
metastasis (Pound et al., 1999). T staging, Gleason score, and
PSA can be evaluated to precisely predict the BCR risk
stratification of PCA (Eisenberg et al., 2010). Although T
staging was included, it had limited impact on the model
according to the AUC. The number of lymph node
metastases also significantly affected the survival time of
patients with PCA. However, Felix Preisser et al. (2020)
suggested that there was no significant difference in clinical
outcomes in patients with D’Amico high- or intermediate-risk
PCA who had or had not undergone pelvic lymph node
dissection during radical prostatectomy. Therefore, the
therapeutic benefits of pelvic lymph node dissection remain
elusive (Preisser et al., 2020). This observation corroborates our
finding from the nomogram on early PCA, as it also excludes the
influence of the positive lymph nodes. In addition, a positive
surgical margin was also an effective predictor of BCR ≥5 years
post-surgery (Negishi et al., 2017). However, our prediction
model did not take this into account. This may be due to the
weakening of the function of this project after the replacement
of DNAm biomarkers.

A limitation of this study is that the data obtained were from
TCGA and GEO datasets only, and it lacks further validation
using third-party clinical data. In addition, family history and
ethnic/ethnic background are closely associated with PCA
morbidity and affect it significantly. Hence, further
investigations are warranted to conclusively establish whether
the nomogram is applicable to the Asian population or not. This
can be addressed by verifying the function of the Classifier with
relevant data. Furthermore, owing to the lack of in vivo
validation of our data, further evaluation of altered
expression of these genes in cancer tissues compared to the
normal tissues is required.

CONCLUSION

In this study, we constructed a nomogram based on DMGs that
can predict postoperative BCR of PCA with high sensitivity and
specificity, which expands our understanding of DMGs in the
pathogenesis of PCA. The target genes had high clinical
specificity and may function as a molecular marker and a
potential therapeutic target for PCA in the future. However,
these results were not validated using the data obtained from
the LNCaP cells. Further verification using clinical and
experimental data is required.
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