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ABSTRACT: Microsatellite instability (MSI) is a frequent and clinically relevant
molecular phenotype in colorectal cancer. MSI cancers have favorable survival
compared with microsatellite stable cancers (MSS), possibly due to the pronounced
tumor-infiltrating lymphocytes observed in MSI cancers. Consistent with the strong
immune response that MSI cancers trigger in the host, previous transcriptome
expression studies have identified mRNA signatures characteristic of immune response
in MSI cancers. However, proteomics features of MSI cancers and the extent to which
the mRNA signatures are reflected at the protein level remain largely unknown. Here,
we performed a comprehensive comparison of global proteomics profiles between MSI
and MSS colorectal cancers in The Cancer Genome Atlas (TCGA) cohort. We found
that protein signatures of MSI are also associated with increased immunogenicity. To
reliably quantify post-transcription regulation in MSI cancers, we developed a
resampling-based regression method by integrative modeling of transcriptomics and
proteomics data sets. Compared with the popular simple method, which detects post-
transcriptional regulation by either identifying genes differentially expressed at the mRNA level but not at the protein level or vice
versa, our method provided a quantitative, more sensitive, and accurate way to identify genes subject to differential post-
transcriptional regulation. With this method, we demonstrated that post-transcriptional regulation, coordinating protein
expression with key players, initiates de novo and enhances protective host response in MSI cancers.

KEYWORDS: colorectal cancer, microsatellite instability, integrative omics analysis, protective host response,
post-transcription regulation

■ INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer
diagnosed worldwide and the fourth leading cause of cancer
death.1 Genomic instability is the key factor of CRC
development, leading to the accumulation of sequential genetic
alternations involving oncogenes and tumor suppressor genes
that drive the progression from early adenomas to metastatic
carcinomas. There are two main forms of genomic instability:
chromosomal instability (CIN) and microsatellite instability
(MSI).2 Most colorectal cancers are chromosomal instable but
microsatellite stable (MSS), whereas a small portion of
colorectal cancers (approximately 15%) is characterized by
widespread MSI.3

Microsatellites are very short repetitive units distributed
throughout the genome, which are prone to insertions and
deletions during the DNA replication process. When a
temporary error is created by DNA polymerase slippage, it is
normally recognized and corrected by the DNA mismatch
repair (MMR) system. Failure to repair these mutations due to

a defective MMR system allows the accumulation of errors in
microsatellites, resulting in the phenomenon of MSI.3 MSI
cancers are divided into two distinct phenotypes: MSI-H (high-
frequency MSI) and MSI-L (low-frequency MSI). Compared
with MSS counterparts, MSI-H cancers have distinctive
biological, pathological, and clinical features,4−9 whereas MSI-
L cancers are similar to MSS in most regards.10 MSI-H cancers
produce abnormal peptides, which act as tumor specific
antigens and trigger specific antitumor immune responses to
limit tumor progression.11,12 Strong tumor-infiltrating lympho-
cytes were observed in MSI-H cancers,13−16 which have a
favorable impact on clinical outcome and are specifically
associated with better survival rates.11,17
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Several groups have investigated genomics and tran-
scriptomics differences between MSI and MSS cancers using
high throughput technologies.18−27 Banerjea et al. compared 29
MSI-H and 104 MSS cancers and identified 2070 genes
differentially expressed between the two groups.25 Watanabe et
al. reported signatures characteristic of MSI status by the
microarray analysis of 33 MSI-H and 51 MSS cancers.20 Lanza
et al. studied mRNA and miRNA expression signatures of MSI-
H cancers and suggested that the combination of miRNA and
mRNA gene signatures improved the molecular separation of
MSS versus MSI-H colon cancers.23 Jorissen et al. evaluated
cross-study consistency of MSI-associated gene expression
changes based on the microarray data of 89 MSI-H and 140
MSS colorectal cancers from their study and 58 MSI and 77
MSS cases from three published reports.22 Most of these
studies found that genes related to immune response were
upregulated in MSI-H cancers, which is consistent with a
pronounced antitumor immune reaction and a dense immune
cell infiltration that can be observed in MSI-H cancers.
Compared to the well-studied genomics and transcriptomics
effect of mismatch repair deficiencies, little is known about
proteomics signatures of MSI-H cancers.
We previously analyzed the proteomics profiles of 10 CRC

cell lines differing in mutations in DNA mismatch repair genes
and revealed multisystem adaption of CRC cells to MMR
deficiency.28 In addition, we combined mRNA, miRNA, and
protein expression profiles to identify miRNA-mediated post-
transcriptional regulation in the CRC cell lines.29 Recently, we
performed proteogenomic analysis of 95 CRC samples by
integrating proteomics data from CPTAC and genomics and
transcriptomics data from TCGA.30 The proteogenomic
analysis refined colorectal cancer subtypes and prioritized
cancer driver genes, which holds great promise for enabling
new advances in cancer biology and diagnosis. In the meantime,
the availability of large-scale transcriptomics and matched
proteomics data sets provided a great opportunity to study
post-transcriptional regulation. Here, we compared the tran-
scriptomics and proteomics profiles associated with MSI status
using the TCGA cohort.30 We developed a resampling-based
regression method to quantify differential post-transcriptional
regulation in MSI-H versus MSS cancers. The findings broaden
our understanding of molecular features and phenotypes
associated with MSI status. Furthermore, our method is
directly applicable to other integrative proteomics and
transcriptomics studies for elucidating the role of post-
transcriptional regulation.

■ MATERIALS AND METHODS

Transcriptomics and Proteomics Data Sets

The Cancer Genome Atlas (TCGA) Research Network has
collected detailed clinical records and generated various omics
data for multiple types of tumors, including genomics,
epigenomics, and transcriptomics profiles. An integrative
analysis of omics data sets from different molecular layers in
colorectal cancer has presented a comprehensive molecular
characterization of the cancer and suggested new markers.31 We
downloaded the TCGA CRC RNA-seq data and clinical
information from the website of Broad Institute’s Genome Data
Analysis Center (http://gdac.broadinstitute.org/runs/
stddata__2015_06_01/data/COADREAD/20150601/),
which developed the Firehose pipeline management system to
make TCGA preprocessed data publicly available via web

services and data portals. The RNA-seq data were analyzed by
the RNA-seq version 2 analysis pipeline, which used MapSplice
to do the alignment32 and RSEM to perform the quantification
and normalization.33 The transcriptomics profiles included
RSEM measurements for 264 samples and 20,531 genes. If
multiple genes have the same gene name (HGNC name), we
selected the gene with the largest interquartile range (IQR) to
represent the concentration of the gene. After this procedure,
expression abundances of 20,501 genes were log-transformed
for the integrative analysis.
The Clinical Proteomic Tumor Analysis Consortium

(CPTAC) has performed proteomics analyses of TCGA
tumor specimens for selected cancer types. In our previous
study, we performed liquid chromatography-tandem mass
spectrometry (LC MS/MS)-based shotgun proteomics analyses
on 95 TCGA tumor samples from 90 CRC patients.30 Both
database (Refseq human protein sequence database, release
version 54) and peptide library search strategies were used for
peptide identification. The IDPicker 3 algorithm was used for
protein assembly, and spectral counts were applied to quantify
protein abundance. Applying the required minimal average
count of 1.4 for a reliable relative protein abundance
comparison, we identified 4,122 protein groups with protein-
level FDR < 0.5%, which corresponded to 3,899 genes. We
used spectral count to quantify protein abundance, which has
been demonstrated to achieve similar accuracy with intensity-
based quantification methods.34−36 We also previously verified
proteomics changes based on spectral count quantification in
different data sets,28,37 demonstrating the reliability of spectral
count for differential protein analysis. The spectral counts of
3,899 genes were quantile-normalized and log-transformed.
The detailed description of methods for peptide and protein
identification and quantification of protein abundance and the
quantile-normalized and log-transformed spectral count data
for these samples are available in Zhang et al.30 The primary
data from LC-MS/MS and derived secondary data files can also
be downloaded from the CPTAC website (https://cptac-data-
portal.georgetown.edu/cptac/s/S022). We matched the pro-
teomics and RNA-seq data with sample and gene names
(HGNC name). Eighty-seven common samples and 3,764
common genes were used for the downstream analysis. Among
the 87 samples, 16 cancers were identified as MSI-H, 13 as
MSI-L, and 58 as MSS (Table S1). Because the behavior of
MSI-L cancers is similar to that of MSS cancers in most
regards,10 we followed the common procedure in this research
field and combined the MSI-L and MSS cancers as an MSS
group.
Two independent mRNA expression profiles of CRC

patients were obtained from the Gene Expression Omnibus.
One contained gene expression profiles from 155 colorectal
cancer patients (GSE13294, http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE13294), and the other included
176 colorectal cancers from the MECC study (GSE26882,
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE26682). For both data sets, the MAS5.0 procedure was
used to make calls of expression. Data from each sample were
quantile normalized and log-2 transformed.

Data Analysis

The workflow of data analysis is illustrated in Figure 1. We first
identified mRNA and protein signatures associated with MSI
status. We then integrated transcriptomics and proteomics
profiles to detect genes with differential post-transcriptional
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regulation. Finally, we tried to interpret the potential role of
post-transcriptional regulation by functional enrichment
analysis, network analysis, and independent data sets.
To identify mRNA/protein signatures associated with MSI

status, we compared mRNA/protein expression profiles
between MSI-H and MSS cancers (Figure 1). The Limma
(Linear Models for Microarray Data) R package38 (version
3.18.9) was used to identify differentially expressed mRNAs/
proteins between the 16 MSI-H and 71 MSS/MSI-L cancers.
The p-values were corrected for multiple testing using
Benjamini and Hochberg’s procedure.39 The significantly
changed mRNAs/proteins were determined based on an
absolute log2 fold change greater than 1 (|log2FC| > 1) and
an adjusted p-value less than 0.05.
Gene Ontology enrichment analysis for the upregulated and

downregulated mRNA or proteins was carried out separately by
WebGestalt (http://bioinfo.vanderbilt.edu/webgestalt/).40,41

Enrichment p-values were generated by Fisher’s exact test
and adjusted by Benjamini and Hochberg’s multiple test
correction procedures.39 Gene Ontology terms with an adjusted
p-value less than 0.05 were reported. Hierarchical clustering of
differentially expressed mRNAs/proteins for 87 samples was
generated by R Stats package (version 3.1.1) using Pearson
correlation as a similarity measure and average linkage method.
The heatmap gene expression values were gene-wise Z-score
transformed in the 87 samples.
All protein−protein interactions (PPI) with at least one

publication supported from seven curated databases, HPRD,
BioGrid, BOND, DIP, IntAct, MINT, and Reactome, were
combined to build the protein−protein interaction network.42

The shortest path between two genes on the PPI network was
calculated by the R package igraph (version 0.7.1).
Modeling Post-Transcriptional Regulation

To quantify the magnitude and evaluate the significance of
differential post-transcriptional regulation in MSI-H versus
MSS cancers, we developed a resampling-based regression
method by integrative modeling proteomics and transcriptom-
ics profiles. After removing the effect of mRNA expression on
protein abundance, we attributed the residue protein change
associated with MSI status to differential post-transcriptional

regulation, which can be formulated by the additive linear
model
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where [P1, P2...Pn] is the protein expression vector of a gene in
the n samples, [M1,M2,...Mn] is the mRNA expression vector of
this gene, [G1,G2,...Gn] is the MSI-status of the n samples, α is
regression intercept, and ε is the error term. βT is the regression
coefficient for evaluating the effect of the mRNA expression on
protein abundance, which can be regarded as translational
efficiency. βPT is the regression coefficient for estimating the
residue protein change associated with MSI status beyond the
effect of mRNA expression, which can be considered as post-
transcriptional change in MSI-H versus MSS cancers.
Regression coefficients βT and βPT were estimated by ordinary
least squares (OLS) regression. The significances of the
coefficients (p-values) were determined by degrees of freedom
and t-statistic values, which were calculated by the estimated
coefficients divided by their standard errors. A regression model
was implemented for each gene separately to estimate the
significance of differential post-transcriptional regulation on
individual genes.
A resampling scheme was used to obtain robust and reliable

estimations. Because bootstrapping produces data sets with
identical replicate items, it artificially reduces the actual variance
of the original data set within each group and inflates the
significance of differential expression.43 Therefore, subsampling
technique instead of bootstrapping was chosen, whereby a
subset of samples was sampled without replacement from the
original data set. In each resampled data set, a regression model
was implemented to quantify and evaluate the significance of
post-transcriptional regulation change for each gene in MSI-H
versus MSS cancers. Genes satisfying the threshold (an absolute
value of βPT greater than 0.5 and p-value less than 0.05) were
regarded to be supported by the resampling data set. Genes
with very strong resampling support frequency (greater than
90%) were identified to be significantly differential post-
transcriptionally regulated. Otherwise, genes were detected to
be nonsignificantly changed. We studied the effect of
resampling scheme and the number of resampling repetitions
on the results. We found the post-transcriptional changes to be
highly similar between 90 and 80% item resampling even at 100
repetitions (R = 0.999, Figure S1A). As the number of
repetitions increased, the correlations between the changes in
these two types of resampling improved, coming close to 1 at
1000 repetitions (Figure S1B). That is to say, 90 and 80% item
resampling obtained almost identical results when we increased
resampling times. Here, we reported the results on 90% item
resampling and 1000 repetitions. The model was performed in
the R environment (version 3.1.1), which is freely available
under the GNU General Public License. The R source code for
the resampling-based regression model, and the input tran-
scriptomics and proteomics data are available at http://bioinfo.
vanderbilt.edu/zhanglab/msi/index.html.

Figure 1. Schema of the integrative analysis pipeline. We performed
comparative transcriptomics and proteomics analysis in 16 MSI-H
versus 71 MSS/MSI-L cancers for 3,764 genes and developed a
resampling-based regression method to detect significant differential
post-transcriptional regulation.
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In addition to the additive model, we also built a full model
that incorporates an interaction term, that is, the interaction
between mRNA expression levels and the MSI-status of genes
(P = α + βTM + βPTG + βIntM * G + ε). The interaction term
may help reveal potentially different translational rates between
MSI-H and MSS cancers. We compared the additive model and
the full model using analysis of variance (ANOVA). Only one
gene (HLA-DRA) showed a significant interaction effect (FDR
< 0.05). Thus, the additive model is sufficient for representing
the data, indicating there is a subtle, if any, difference in
translational rates between MSI-H and MSS cancers.

■ RESULTS AND DISCUSSION

Transcriptomics and Proteomics Signatures Characteristic
of MSI-H Cancers

We analyzed 87 CRC samples in the TCGA cohort with both
mRNA and protein profiles, among which 16 cancers were
classified as MSI-H, 13 as MSI-L, and 58 as MSS (Table S1).
Because the behavior of MSI-L cancers is similar to that of MSS
in most regards, we grouped MSI-L as MSS cases as have
previous studies.10

An initial comparison of transcriptomics profiles of MSI-H
versus MSS cancers identified 219 differentially expressed
mRNAs (|log2FC| > 1 and adjusted p-value <0.05, Table S2).
There were 134 genes overexpressed in MSI-H cancers, and 85
genes were underexpressed. To illustrate the difference between
the two groups, a heatmap was generated using the 219
differentially expressed genes (Figure 2A). For the 134

upregulated genes, functional enrichment analysis revealed
that they are most frequently associated with immune response,
defense response, cellular response to cytokine stimulus, and
antigen processing and presentation, which is consistent with
previous discoveries (Figure 2B).44,45 The major histocompat-
ibility complex (MHC) regulates various kinds of immune
reactions, including antigen presentation, cytotoxic response,

and immune recognition.46 Notably, our analysis identified
eight MHC class-II molecules overexpressed in MSI-H cancers,
including CD74, HLA-DRA, HLA-DPB1, HLA-DPA1, HLA-
DRB1, HLA-DQA1, HLA-DRB5, and HLA-DQB1 (Table 1),

suggesting that the efficient presentation of antigens to the
helper arm of the immune system plays a major role in the
immunogenicity of MSI-H cancers. Although not as dramatic as
the upregulation of the MHC class II machinery, the MHC
class I pathway seemed activated as well due to increased
expression of HLA-F, TAP1, and TAP2 in MSI-H cancers
(Table 1). HLA-F belongs to MHC class I, whereas TAP1 and
TAP2 transport cytosolic peptides to the endoplasmic
reticulum where they bind to MHC class I molecules. The
role of antigen processing and presentation by MHC I and II in
MSI-induced immune response is also supported by the
observation that the density of CD8 (cytotoxic T lymphocytes)
and Th1 CD4 cells are higher in MSI-H than in MSS
cancers.47,48 Besides antigen-directed immune response, genes
functioning in natural killer cell-mediated cytotoxicity (ITGB2,
RAC2, LCK, RAC3, and ICAM1) were overexpressed in MSI-
H cancers (Table 1), indicating increased innate immune
response as well. Compared to 64 out of the 134 upregulated
genes (47.8%) involved in immune or defense response, only
10.6% of downregulated genes (9 out of 85) are associated with
host defense response. Instead, genes related to metabolic
process, response to metal ion, and oxidation−reduction
processes are enriched in the downregulated gene list (Figure
2C).
Although mRNA signatures suggest increased immune

response in MSI-H cancers, it remains largely unknown how
these mRNA alterations manifest themselves at the protein
level. By comparing the protein expression between the 16
MSI-H and 71 MSS/MSI-L cancers, we only identified 34
upregulated proteins and 38 downregulated proteins (|log2FC|
> 1 and adjusted p-value < 0.05) (Table S3). A heatmap was

Figure 2. mRNA signatures associated with MSI status. (A)
Hierarchical clustering of 219 differentially expressed mRNAs in
MSI-H versus MSI-L/MSS cancers. Each row represents a single gene
and each column represents a single patient. Genes involved in
immune/defense response are represented by pink bars on the left side
of the heatmap. MSI-L/MSS patients are denoted by light blue bars
and MSI-H by dark gray bars on the top of the heatmap. mRNA
expression values are gene-wise z-transformed and are colored red for
high intensities and blue for low intensities (scale at the right bottom).
(B) Enriched GO terms of upregulated mRNAs. (C) Enriched GO
terms of downregulated mRNAs. X axis shows the significance of the
enrichment −log10(adjusted p-value).

Table 1. Protein Expression Changes of Genes Related to
MHC Class I, MHC Class II, Natural Killer whose mRNA
Abundances are Significantly Overexpressed in MSI-H
versus MSS/MSI-L Cancers

mRNA protein

log2FC adjusted p-value log2FC adjusted p-value

MHC class II
CD74 2.04 4.1e-07 1.06 8.3e-04
HLA-DPA1 2.37 4.4e-07 0.62 0.09
HLA-DRB1 2.21 4.6e-06 1.25 3.0e-03
HLA-DQA1 2.40 5.0e-06 1.20 6.6e-04
HLA-DRB5 2.12 9.6e-06 1.17 1.0e-03
HLA-DQB1 2.36 1.3e-05 1.34 6.6e-04
HLA-DRA 2.35 2.7e-07 1.05 1.4e-04
HLA-DPB1 2.29 3.5e-07 0.96 9.0e-03

MHC class I
HLA-F 1.37 1.2e-03 0.44 0.3
TAP1 1.41 9.7e-05 0.52 0.06
TAP2 1.24 6.0e-06 0.84 0.06

Nature killer cell-related
ITGB2 1.95 8.0e-05 0.97 9.0e-03
RAC2 1.01 1.3e-02 0.11 0.56
LCK 1.31 9.5e-04 −0.09 0.73
RAC3 1.03 3.3e-03 −0.14 0.43
ICAM1 1.52 8.8e-07 0.62 0.04
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generated based on the 72 differentially expressed proteins
between the two groups (Figure 3A). Among the 34

upregulated proteins, 24 proteins (70%) are related to
immune/defense response. Upregulated proteins are specifi-
cally associated with defense response, immune response,
cellular response to cytokine stimulus, response to biotic
stimulus, and antigen processing and presentation (Figure 3B),
which agrees with the transcriptomics signatures. Among the
eight MHC II genes upregulated at the mRNA level, seven were
also overexpressed at the protein level, except for HLA-DPA1,
which had increased abundance but did not reach statistical
significance (adjusted p-value = 0.09, Table 1). In contrast, the
three MHC class I genes (HLA-F, TAP1, and TAP2) with
overexpressed transcripts only showed minor overexpression at
the protein level. Genes in the natural killer cell-mediated
cytotoxicity pathway, although significantly overexpressed at
the transcript level, were either slightly overexpressed (ITGB2
and ICAM1) or not significantly changed (RAC2, RAC3, and
LCK) at the protein level (Table 1). The results further
demonstrate the enhanced immunogenicity in MSI-H cancers
and indicate that MHC class II-dependent immune response
might play a more important role than innate and other
adaptive immune response. For the 38 downregulated proteins,
only three are associated with immune/defense response
(MRE11A, GPX2, and ROMO1). Metabolic process, lipid
oxidation, and response to oxidative stress are specifically
represented in the downregulated proteins, which are
consistent with transcriptomics changes between the two
groups (Figure 3C).
Post-Transcriptional Regulation in MSI-H Cancers

The aforementioned studies found that both mRNA and
protein signatures showed increased protective host response in
MSI-H cancers. An important question to ask is whether
transcriptional regulation determines the whole process or

whether post-transcriptional regulation also contributes to the
antitumor immune response in MSI-H cancers.
Although an increasing number of research activities are

investigating post-transcriptional regulation by joint analyses of
protein and mRNA profiling,49−61 these studies used either an
arbitrary threshold to identify genes differentially expressed at
the mRNA level but not at the protein level or vice
versa,49,52,54,56 or they simply calculated the correlation
between mRNA and protein levels.50,53 Reliable quantification
of post-transcriptional regulation remains a significant computa-
tional challenge. Here, we developed a resampling-based
regression method to reliably quantify differential post-
transcriptional regulation associated with MSI status. We
demonstrated the power of our method by comparing the
results with those from the simple comparison method using an
arbitrary threshold.
Simple Comparison between Transcriptomics and
Proteomics Profiles

The log−log linear correlation between mRNA and protein
changes was modest (rho = 0.5, Figure 4A). A similar

correlation coefficient value has been observed by many
previous comparative transcriptomics and proteomics studies
independent of the proteomics approach (labeling or label-free)
and quantification method (spectral count or intensity-
based).62,63 Therefore, the divergence between mRNA and
protein is more likely to be driven by post-transcriptional
regulation rather than an artifact introduced by the protein
quantification method. A simple comparison between differ-
entially expressed mRNAs and proteins (|log2FC| > 1 and
adjusted p-value <0.05) identified only 26 common upregulated
genes and 19 downregulated genes (Figure 4A). We did not
find any genes with opposite mRNA and protein expression
changes. Notably, eight genes showed significant upregulation
at the protein but not at the mRNA level (Figure 4B),
suggesting that post-transcriptional regulation adds new
components to the protein difference between MSI-H and

Figure 3. Protein signatures associated with MSI status. (A)
Hierarchical clustering of 72 differentially expressed proteins in MSI-
H versus MSI-L/MSS cancers. Each row represents a single gene, and
each column represents a single patient. Genes involved in immune/
defense response are annotated by pink bars on the left side, and gene
symbols are labeled on the right side of the heatmap. MSI-L/MSS
patients are denoted by light blue bars and MSI-H by dark gray bars
on the top of the heatmap. Protein expression values are gene-wise z-
transformed and are colored red for high abundances and blue for low
abundances (scale at the right bottom). (B) Enriched GO terms of
overexpressed proteins. (C) Enriched GO terms of underexpressed
proteins. The x axis shows the significance of the enrichment
(−log10(adjusted p-value)).

Figure 4. Comparison between mRNA and protein changes in MSI-H
versus MSI-L/MSS cancers. (A) Scatterplot of mRNA change versus
protein change. Genes differentially expressed at both mRNA and
protein levels (|log2FC| > 1 and adjusted p-value < 0.05) (orange),
genes detected only at the mRNA level (red), and those identified only
at the protein level (blue). (B) List of 8 genes significantly upregulated
at the protein level but not at the mRNA level, including fold change,
adjusted p-value, and functional description. (C) mRNA and protein
abundances of S100A12 in MSI-H and MSS-L/MSS cancers.
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MSS cancers. As an example, the mRNA abundance of
S100A12 was not significantly overexpressed (log2FC = 0.31,
adjusted p-value = 0.71), but its protein abundance was
significantly increased in MSI-H cancers (log2FC = 1.13,
adjusted p-value = 0.03) (Figure 4C). Functional analysis
revealed that seven out of the eight genes, all except P4HA1,
are associated with immune/defense response. Specifically,
CAMP, ELANE, PRTN3, S100A12, and S100A9 are highly
expressed in neutrophils and are responsible for neutrophil
activation and regulation of neutrophil homeostasis, migration,
and recruitment.64−69 CAMP, ELANE, and PRTN3 have also
been reported to interact with each other in the STRING
database of protein−protein interactions,70,71 which further
suggests that they might act in concert in neutrophil-mediated
immune response. Consistently, a significantly higher level of
myeloperoxidase immune reactivity, a key component of the
neutrophil cytotoxic granules, was observed in MSI-H as
compared to MSS cancers.72 Our results suggest that
neutrophil-mediated immune response is mainly initiated or
enhanced by post-transcriptional regulation. Although P4HA1
has not been annotated as an immune response gene, its
expression in macrophages indicates a possible role of
modulating macrophage-leukocyte communication and organ-
izing the immune response.73 The fact that most post-
transcriptionally regulated genes are involved in the protective
host response indicates the importance of post-transcriptional
regulation in initiating novel protective host defense response
in MSI-H cancers, especially the neutrophil-mediated immune
response.

Resampling-Based Regression Model to Quantify
Differential Post-Transcriptional Regulation

Although the simple comparison between differentially ex-
pressed mRNAs and proteins already indicated the critical role
of post-transcriptional regulation in MSI-H cancers, the results

are highly dependent on the arbitrary threshold of defining
differential expression, and useful information is lost in the
discretization process. More importantly, the magnitude and
the statistical significance of post-transcriptional changes are
hard to quantify. Here, we developed a resampling-based
regression method to quantify differential post-transcriptional
regulation by integrative modeling of proteomics and tran-
scriptomics profiles (Materials and Methods). As a result, we
detected 49 significantly upregulated genes and 86 significantly
downregulated genes at the post-transcriptional level in MSI-H
versus MSS cancers (Tables S4 and S5).
The 49 post-transcriptionally upregulated genes included all

eight genes identified by the simple method (Figure 4B). As
mentioned above, the simple method first chose an arbitrary
threshold to define differential expression at both mRNA and
protein levels and then performed the comparison to select
genes only detected at one level. These eight genes were
upregulated at the protein but not at the mRNA level; thus,
they were identified to be post-transcriptionally enhanced by
the simple method (Figure 4C). Besides the eight genes, our
method discovered an additional 41 genes, among which 34
genes showed some extent of post-transcriptional upregulation
but were missed by the simple method (Table S4). Thirty-two
genes were moderately overexpressed at the protein level
(log2FC ≥ 0.58 and adjusted p-value < 0.1), and most of their
mRNA expression abundances were not significantly changed.
As an example, RFC4 was moderately upregulated at the
protein level (log2FC = 0.91, adjusted p-value = 0.0017) but
remained unchanged at the mRNA level (log2FC = 0.24,
adjusted p-value = 0.6), suggesting the role of post-transcrip-
tional upregulation in the increase of protein abundance.
However, without satisfying the stringent criteria (|log2FC| > 1
and adjusted p-value < 0.05), the moderate protein change was
completely eliminated, which led to RFC4 undiscovered by the
simple method (false negatives). Additionally, only two genes,

Figure 5. Genes with increased post-transcriptional regulation. (A) Hierarchical clustering of genes with upregulation either at mRNA, post-
transcriptional, or protein levels. Each row represents a single gene, and each column represents a single level. The value is the regulation change of
each gene at each level, which is colored blue (downregulation) or red (upregulation). The color scale is at the top of the heatmap. Three major
groups are labeled on the right side: “Maintain” (green), “Gain” (red), and “Lose” (blue). How mRNA, post-transcriptional regulation, and protein
changes in these three groups are illustrated beside each group. (B) Differential expression of genes in the “Maintain” (green) and the “Lose” groups
(blue) on two independent mRNA expression profiles (GSE13294 and GSE26682). (C) Functional relationship between the “Maintain”, “Gain”,
and “Lose” groups on the PPI network. The x axis is the shortest path length, and the y axis is the percentage of pairs with the length. Shortest path
between “Gain” and “Maintain” groups are denoted by light blue, whereas the shortest path between “Lose” and “Maintain” groups are denoted by
dark blue.
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CRTAP and STK4, exhibited moderate mRNA expression
downregulation without protein changes, indicating the minor
role of post-transcription upregulation for buffering mRNA
perturbation (Table S4). The 86 post-transcriptionally down-
regulated genes included 17 out of 19 genes detected by the
simple threshold method, except for ROMO1 and MAOA
(Figure 4A). It is highly possible that these two genes were
misclassified to be post-transcriptionally downregulated by the
simple method due to the arbitrary threshold setting (false
positives). In fact, ROMO1 and MAOA exhibited not only
protein downregulation but also moderate mRNA under-
expression (Table S2). However, the moderate mRNA
underexpression was lost in the simple method. Among the
remaining 69 genes, only three genes (CSPR2, PRKCDBP, and
MAPRE2) exhibited moderately/highly overexpressed mRNA
but no protein changes or even moderate protein down-
regulation, suggesting a minor role of post-transcriptional
downregulation in buffering unwanted transcriptomics signa-
tures. In contrast, 62 genes showed moderate protein
underexpression but unchanged mRNA abundances in MSI-H
versus MSS cancers, indicating a major role of post-transcrip-
tional regulation in generating de novo protein changes (Table
S5). These results demonstrated the advantage of the
resampling-based regression method of reducing false negatives
and false positives over the simple threshold approach.

Functional Role of Post-Transcriptional Regulation

Genes upregulated at mRNA, post-transcriptional, or protein
levels in MSI-H cancers can be classified into three major
groups (Gain, Maintain, and Lose; Figure 5A). Both “Maintain”
and “Lose” groups showed mRNA overexpression in MSI-H
cancers. However, the overexpression carried over to the
protein level in the “Maintain” group but was lost in the “Lose”
group. In the “Maintain” group, transcriptome changes
dominated proteome alterations without any additional changes
at the post-transcriptional level. As a result, upregulated mRNA
signatures were sustained at the protein level. In the “Lose”
group, however, transcriptome changes were altered by
inconsistent or heterogeneous post-transcriptional regulation,
except for CSPR2, whose mRNA overexpression was counter-
acted by significant post-transcriptional inhibition (Figure 5A).
The post-transcriptional regulation in the group is so
heterogeneous that genes were post-transcriptionally upregu-
lated in some MSI-H cancers but downregulated in others.
Because the direction and magnitudes of post-transcriptional
regulation were inconsistent across MSI-H cancers, no
significant post-transcriptional changes were detected in MSI-
H versus MSS cancers for the “Lose” group (Figure 5A). Such
heterogeneous and loosely controlled post-transcriptional
regulation perturbed the mRNA signatures, making them
unobservable at the protein level. Additionally, the mRNA
signatures in the “Maintain” group were more likely to be kept
in other independent data sets than those in the “Lose” group.
We applied the differential analysis on two independent gene
expression profiles of CRC cancers. One included 155 primary
CRC samples, of which 77 were MSS cancers and 78 were MSI
cancers (GSE13294). The other consisted of 176 samples
collected from the MECC study, of which 18 were MSI-H, 23
were MSI-L, 119 were MSS, and 16 were unknown
(GSE26682). We found that genes in the “Maintain” group
were more likely to be upregulated than genes in the “Lose”
group in the two independent data sets (Figure 5B; p = 0.0004
and p = 0.04, respectively). In comparison to the “Lose” group,

the fact that the mRNA signatures of the “Maintain” group
could be carried over to the protein level and were more likely
to be observed in independent data sets suggests that the
“Maintain” group is more important than the “Lose” group.
The potentially nonfunctional transcriptomics changes in the
“Lose” group were mainly removed or reduced by loosely
controlled and heterogeneous post-transcriptional regulation.
As compared to the genes in the “Maintain” and “Lose”

groups, most genes in the “Gain” group did not show mRNA
overexpression but rather exhibited de novo protein upregu-
lation in MSI-H cancers, which was initiated by tightly
controlled and homogeneous post-transcriptional upregulation.
To evaluate the potential role of this group, we explored the
functional relationship between key players in the “Maintain”
group and those in the “Gain” group on the protein−protein
interaction (PPI) network. Although the “Maintain” and “Lose”
groups shared common features of mRNA upregulation, genes
in the “Gain” group were more functionally related to genes in
the “Maintain” group on the PPI network than those in the
“Lose” group. Sixty percent of pairwise relationships between
the “Gain” and “Maintain” groups had the shortest path of 2 or
<2 as compared to only 55% between the “Lose” and
“Maintain” groups (p < 1e-05, Figure 5C, Fisher’s exact test).
These results suggest the biological importance of post-
transcriptional upregulation in MSI-H cancers. Although most
genes in the “Gain” group were not upregulated at the mRNA
level, post-transcriptional mechanisms upregulated their protein
expression levels to allow them to cofunction with key players
in the “Maintain” group. Compared to the loosely controlled
and heterogeneous post-transcriptional regulation in the “Lose”
group that removes potentially nonfunctional transcriptomics
signatures, the tightly controlled and homogeneous post-
transcriptional upregulation in the “Gain” group introduces
new protein signatures in MSI-H cancers.
Functional enrichment analysis found that post-transcrip-

tionally upregulated genes are highly enriched in defense
response (adjusted p-value = 0.0007), phagosome maturation
(adjusted p-value = 0.02), extracellular matrix organization
(adjusted p-value = 0.02), secretion by cells (adjusted p-value =
0.03), and nucleotide-excision repair (adjusted p-value = 0.04)
(Table 2). In addition to the five genes (CAMP, ELANE,
S100A12, PRTN3, and S100A9) involved in the neutrophil-
mediated immune response, as previously mentioned, our
method identified several other genes that regulate neutrophil
functions (Table 3). For example, APOA2 may participate in
the regulation of neutrophil activity.74 CLU is a negative

Table 2. Functional Enrichment of Post-Transcriptionally
Enhanced Genes

function genes
adjusted
p-value

defense
response

NMI, APOA2, CLU, ELANE, CAMP, AZU1,
SERPINF2, NFKB2, ITGAX, S100A9, MX2,
LTF, S100A12, BPI, IFI35

0.0007

phagosome
maturation

CAMP, ATP6V1E1, LTF 0.02

extracellular
matrix
organization

P4HA1, ELANE, NFKB2, SERPINF2, CRTAP 0.02

secretion by
cell

VGF, SEC11C, APOA2, FGG, STXBP2, CLU,
SERPINF2, S100A12

0.03

nucleotide-
excision
repair

RFC4, RPA3 0.04
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regulator specific to MT6-MMP/MMP25 produced by
neutrophils, suggesting that CLU plays a role at the
inflammatory site where neutrophils accumulate.75 ITGAX, as
a potential receptor for fibrinogen on neutrophils, induces
oxidative burst in neutrophils.76 BPI and LTF are stored in the
primary and secondary granules of neutrophils and affect
neutrophil recruitment and activation.77,78 Our resampling-
based regression method further revealed the post-transcrip-
tionally enhanced host protective response in MSI-H cancers,
especially the neutrophil-mediated immune response. Contrary
to the decreased DNA synthesis and repair in MMR-deficient
cell lines suggested by Halvey et al.,28 DNA damage repair
genes RFC4 and RPA3 were post-transcriptionally enhanced in
MSI-H patients.
Similarly, genes downregulated at mRNA, post-transcrip-

tional, or protein levels can also be classified into three major
groups (Gain, Maintain, and Lose; Figure S2A). Most genes in
the “Gain” group were post-transcriptionally repressed,
inducing downregulated protein signatures in MSI-H cancers.
In contrast, mRNA signatures in the “Maintain” group were
sustained at the protein level without the involvement of post-
transcriptional regulation, whereas most mRNA features in the
“Lose” group were altered by heterogeneous post-transcrip-
tional regulation, leading to indistinguishable protein signa-
tures. The post-transcriptionally downregulated genes are
enriched in the organic acid metabolic process (adjusted p-
value = 0.004), DNA geometric change (adjusted p-value =
0.003), and cell adhesion (adjusted p-value = 0.01) (Table 4).
Similar to post-transcriptional upregulation, the “Gain” group
was more functionally related to the “Maintain” group than the
“Lose” group on the PPI network (Figure S2B). These results
suggest the role of heterogeneous post-transcriptional regu-

lation in removing less important mRNA signatures in the
“Lose” group and significant and homogeneous post-transcrip-
tional downregulation for generating new signatures in the
“Gain” group.
Recent studies have explained the difference between

proteome and transcriptome changes by features or post-
transcriptional regulators that affect translation and protein
degradation, which include RNA-binding proteins,55 small
regulatory RNAs (e.g. , miRNA, piRNA, antisense
RNA),29,50,79 codon usage,80 and so forth. We discovered two
major types of post-transcriptional regulatory mechanisms that
led to mRNA and protein divergence. One is the loosely
controlled post-transcriptional regulation on proteins whose
abundance might not be critical for defining phenotypic
differences, and the other is the tightly controlled post-
transcriptional regulation to generate de novo protein
signatures. Loosely controlled regulation leads to inconsistent
post-transcriptional impact on different samples, which is
different from the previously proposed feedback model where
post-transcriptional regulators function with other regulators to
reduce transcription noise.81,82 In contrast, tightly controlled
regulation results in consistent post-transcriptional impact on
different samples and de novo protein signatures. On the basis
of matched miRNA expression data from 71 samples, we tried
to explain the mRNA and protein difference in terms of miRNA
activity using the Lasso approach (Figure S3A). We found
several miRNAs that might be responsible for generating novel
protein signatures in MSI-H cancers. Among them, three
downregulated miRNAs (miR-181d, miR-552, and miR-592)
were highly associated with enhanced protective host response
in MSI-H cancers (Figure S3B). Interestingly, miR-552 and
miR-592 were found to exhibit decreased abundances in MSI
cancers as compared to MSS cancers in an independent data
set,83 and miR-181 family members are known to play
important roles in the immune system.84−86

■ CONCLUSIONS

We performed the first comprehensive comparison of
proteomics profiles between microsatellite instable and stable
CRC tumors and developed a novel quantitative method to
evaluate differential post-transcriptional regulation by integrat-
ing transcriptomics and proteomics profiles. Proteomics
signatures are characterized by an increased protective host
response in MSI-H cancers, which is consistent with the
features of known transcriptomics signatures. Moreover, both
transcriptional and post-transcriptional regulations contribute
significantly to enhanced protective host response in MSI-H
cancers.

Table 3. List of 15 Post-Transcriptionally Upregulated
Genes Related to Defense Response

gene log2FC supp. freq. neutrophil

APOA2 0.79 96% √
IFI35 0.58 94%
CLU 0.61 96% √
ELANE 1.13 100% √
CAMP 1.15 100% √
AZU1 1.03 97% √
SERPINF2 0.86 100%
NFKB2 0.82 100%
ITGAX 0.73 99% √
S100A9 0.89 97% √
MX2 0.79 99%
LTF 0.78 92% √
S100A12 1.06 98% √
BPI 1.01 96% √
NMI 0.91 100%

Table 4. Functional Enrichment of Post-Transcriptionally Downregulated Genes

function genes
adjusted p-

value

organic acid metabolic process ACSL5, PCCB, CHDH, PCCA, MCCC1, DDAH2, ACSS2, VCAN, DARS2, ACOT11, ACAD8, ACSS1,
ACOT8, TMLHE, PSMB6, B3GNT3

0.004

DNA geometric change MRE11A, ATRX, RAD50, NBN 0.003
cell adhesion FBLIM1, AOC3, FERMT1, MCAM, FBLN5, VCAN, PRKG1, FERMT2, SCRIB, SORBS3, ITGA1,

TGFB1I1, PTPRK, LPP
0.01

negative regulation of G1/S transition of
mitotic cell cycle

KANK2, FHL1 0.02
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