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ABSTRACT

MicroRNAs have been found in various organisms
and play essential roles in gene expression regula-
tion of many critical cellular processes. Large-scale
computational prediction of miRNAs has been
conducted for many organisms using known geno-
mic sequences; however, there has been no such
effort for the thousands of known viral genomes.
Some viruses utilize existing host cellular pathways
for their own benefit. Furthermore, viruses are
capable of encoding miRNAs and using them to
repress host genes. Thus, identifying potential
miRNAs in all viral genomes would be valuable to
virologists who study virus-host interactions. Based
on our previously reported hairpin secondary struc-
ture and feature selection filters, we have examined
the 2266 available viral genome sequences for
putative miRNA hairpins and identified 33691 hair-
pin candidates in 1491 genomes. Evaluation of the
system performance indicated that our discovery
pipeline exhibited 84.4% sensitivity. We established
an interface for users to query the predicted viral
miRNA hairpins based on taxonomic classification,
and a host target gene prediction service based
on the RNAhybrid program and the 3'-UTR gene
sequences of human, mouse, rat, zebrafish, rice
and Arabidopsis. The viral miRNA prediction data-
base (Vir-Mir) can be accessed via http://
alk.ibms.sinica.edu.tw.

INTRODUCTION

MicroRNAs (miRNAs) are endogenous non-protein-
coding RNAs that are ~22-nt long. They negatively
regulate gene expression by complementary binding to the
3-UTR regions of target genes (1). Since the first
discovery of miRNA in Caenorhabditis elegans, thousands
of miRNAs have been computationally and/or experi-
mentally identified in many organisms, including

mammals, invertebrates, insects and plants (2). It has
been shown that miRNAs can function in various
physiological pathways. Plant miRNAs can regulate
development in embryos, leaves and floral meristems
(3,4). Mammalian miRNAs participate not only in
developmental regulation (5) but also in pathogenesis
if they are dysfunctional (6). Even with limited informa-
tion about miRNA gene structures and their target genes’
recognition selections, several genome-wide bioinfor-
matics approaches have been recently employed to
identify these important molecules (7-9). Establishing
such a bioinformatic resource for miRNA will be
beneficial for daily experimental research in the biological
laboratories.

Similar to many eukaryotic organisms, viruses also
encode miRNAs (10,11). To date, at least 82 viral-
associated miRNAs have been identified from eight
different viruses (2). Because viruses are often parasitic,
these viral miRNAs may target important host genes
to reduce the host cell defense and to control host
cell biogenesis. Human herpes virus 4 (Epstein-Barr
virus, EBV) represses several host genes, including those
encoding B cell-specific chemokines and cytokines, tran-
scriptional regulators and components of signal transduc-
tion pathways, by means of virus-encoded miRNAs (11).
Moreover, HIV-1 also has been proposed to enhance viral
infection capability by repressing host immune system
genes via specific HIV viral miRNAs (10).

MOTIVATION

It would be beneficial for biomedical researchers who
study virus—host interactions to identify potential viral
miRNAs and their target genes in hosts. Although a new
database collecting viral gene targets of host miRNAs
has been reported recently (12), but there is no genome-
wide miRNA prediction for all completed viral genome
sequences. We have modified our previous miRNA
discovery pipeline to predict viral miRNA hairpins (13).
Here, we present our research effort on candidate
hairpin discovery of virus-encoded miRNAs from all
virus genomes available from the National Center for
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Biotechnology Information (NCBI), National Institutes of
Health, USA. It would be beneficial to have a user-
friendly web interface to query the predicted viral miRNA
hairpins based on their familial taxonomic classification.
In addition, a host target gene prediction service is
established based on the RNAhybrid program and the
parsed 3-UTR gene sequences of human, mouse, rat,
zebrafish, rice and Arabidopsis species to search for
potential target genes of user’s interest.

DATA GENERATION

Predicting hairpins from virus genome scaffold sequences
using Srnaloop

During miRNA maturation, the full-length pre-miRNA
transcript needs to form a hairpin (stem-loop) structure.
The secondary structure is folded via intramolecular base
pairing and has been the most significant criterion for
computational identification of miRNAs (13-16). The
Srnaloop program, developed by Grad et al. (14), has been
used to identify putative hairpin secondary structures
from viral genomic sequences. All the viral genome
sequences were obtained on 4 May 2006 from NCBI,
National Institutes of Health, USA. The NCBI virall.
genomic.fna file comprises the genomic sequences of 2266
viruses, and the file size is 41 MB. The optimized
parameters for Srnaloop were as reported previously
(13), except for the parameters ‘—1 90" and “~t 17’. These
parameters, modified based on known viral pre-miRNAs,
are specific for identifying hairpins that are up to 90 bases
long and have a score of at least 17.

Sequence and structural features filter

To reduce the number of falsely predicted miRNAs based
on hairpin structure alone, we have included several
additional selection filters, namely GC content, minimum
free energy of the core of hairpin structure (core mfe),
minimum free energy of the whole hairpin (hairpin mfe)
and the ratio of core mfe to hairpin mfe (ch_ratio) as
defined in a previous publication (13). To distinguish
authentic miRNA candidates, we also employed addi-
tional classification criteria specific to known miRNAs.
We first investigated the features of known viral miRNAs
as well as their precursors and then determined the
reference range values of the selected features. The
reference range values are listed in Table 1. Therefore, a
candidate hairpin with sequence and structural features
within the optimized reference range values was con-
sidered to be a positive miRNA hairpin.

Application of open reading frame (ORF) feature filter

When predicting miRNAs in organisms other than
viruses, a ‘conservation pattern’ is usually used to find
evolutionarily conserved miRNA candidates (13-16).
However, this feature is not applicable for most viral
miRNA prediction here. Cullen found only a few
miRNAs located in protein-coding transcripts (17),
which is used as a criterion to predict eukaryotic
miRNAs (13,14). Therefore, we screened our candidate
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Table 1. Distribution range of sequence and structure features from
known viral miRNAs

GC content core mfe hairpin mfe ch ratio

Distribution ~34-65
Reference ~38-65
value

—37.5to —145 —22to —59.2  ~51-100
—37.5to —19.4 —50.9 to —28.2 ~51-98

From the known viral pre-miRNA information, we evaluated the
distributions of quantifiable sequence and structure features, namely
GC content, core mfe, hairpin mfe and the ratio of core mfe to hairpin
mfe. Because extreme values existed, we adopted the reference value
to be used in the sequence and structure feature filter.

hairpins to check if they overlap the ORFs belonging to
the same virus. The sequences of the ORFs were extracted
from virall.protein.gbff file downloaded from NCBI on
4 May 2006. Because viruses encode functional genes
redundantly in a highly compact genomic region, we
cannot exclude the possibility that viral miRNAs may
overlap other viral protein-coding genes. This concern
is more significant for small genome RNA viruses.
Therefore, we still considered the hairpins overlapping
ORFs to be positive miRNA hairpins, but we marked the
NP accession numbers of the overlapped ORF protein in
the dataset for reference.

DATABASE STATISTICS

Candidate hairpins predicted by Srnaloop and additional
feature filters

We identified roughly 514874 candidate hairpins from
all viral genomic sequences by means of Srnaloop from
2266 viral genomes. They were then divided into 5P and
3P stem arms as putative miRNA candidates as done
previously (13), because an miRNA could be located in
either the 5 arm or 3” arm of the stem-loop precursors.
Following the screen with the sequence and structure
feature filter, 33691 candidates survived. Among them,
5306 candidate hairpins do not overlap any ORF of the
correspondent virus, implying they have higher likelihood
to be authentic, but not absolutely as described earlier.

All the hairpin information can be accessed from the
web interface. We compared the sequences of these
putative viral candidate miRNAs with the sequences of
known miRNAs in miRBase (release 9.0). The positive
match criterion required at least an 18-nt matched length
with >90% identity. With this high stringency of sequence
similarity, only seven candidates with unique IDs of
821661, 1341202, 1343051, 1408482, 1430283, 3325175
and 3663618 showed positive matches. For example,
candidate 821661, identified from Cercopithecine
monkey herpes virus 15, is similar to ebv-miR-BART19;
candidates 1341202, 1343051 and 3325175, identified
from chimpanzee cytomegalovirus, are similar to
hemv-miR-UL112, hemv-miR-UL148D and hcmv-miR-
ULI112, respectively. It is possible that more matches
could be found if the stringency of sequence similarity was
lowered.
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Table 2. System performance test and the number of candidate hairpins

Known viral miRNAs Number of Number of Number of miRNAs Number of miRNAs

(species) miRNAs miRNAs after after sequence and after ORF filter
Srnaloop filter structure filter

HCMV 11 11 8 6

KSHV 13 12 8 7

RLCV 16 16 14 14

SV40 1 1 1 0

EBV 23 23 23 23

Total (Sensitivity) 64 (100%) 63 (98.4%) 54 (84.4%) 50 (78.1%)

Total number of 2266 virus 514 874
predicted miRNA genomic
candidate hairpins sequences

33691 5306

To test the performance of our system, we calculated the number of known viral pre-miRNAs remaining after each filter process. Originally, there
were 64 known pre-miRNAs belonging to five viruses. The number of hairpins predicted from 2266 virus genomes is also listed.

Databases currently available are list below:

Predicted viral microRNA hairpins - classified by NCBI Taxonomy list:

Deltavirus ( 0 )

dsDNA viruses, no RNA stage ( 26339 )
dsRNA viruses ( 379

environmental samples ( 0 )
Retro-transcribing viruses ( 386 )
Satellites ( 59 )

ssDNA viruses ( 410 )

ssRNA negative-strand viruses ( 167

ssRNA positive-strand viruses, no DNA stage ( 2325 )

unclassified viruses ( 374 )

Supplementary Information:
Known virus microRNAs extracted from MiRBase

Search protal:

( Accumulated Numbers of Hairpin Candidates )

(eg. NC_007605; Search by GenBank Id., RefSeq Acc., or viral scientific name)

‘ [ Search |

Figure 1. Viral miRNA candidate hairpin query web interface. Users may query the putative miRNAs of a specific virus by using the hierarchical
menu or by using the search function with GenBank identifier, RefSeq accession number or keyword.

Discovery pipeline performance

To assess the efficacy of our pipeline system, we performed
both sensitivity and specificity tests. Because it is much
easier to identify hairpin structures in sequences of known
hairpins than from entire genomic sequences, we calcu-
lated the number of predicted candidate hairpins after
each filter procedure in our pipeline to determine the
recovery rate of reported miRNAs. Originally, the test
dataset consisted of 64 known pre-miRNAs belonging to
five viruses from miRBase. As shown in Table 2, 63
known miRNAs remained after the Srnaloop step, 54 after
the sequence and structure features step, and 50 after the
ORF comparison step of the selection. These results imply
that the recovery rate is close to 98% after Srnaloop
hairpin prediction, 84% after Srnaloop hairpin prediction
and sequence and structure feature filter and 78% after
additional ORF filter.

For the specificity examination on the pipeline, the
negative dataset generation procedure was similar to the
one described by Sewer et al. (18). This procedure is based
on the fact that the fraction of miRNA-encoding
sequences in the genome is very small; therefore, randomly
extracted sequences are extremely unlikely to encode

miRNAs. We randomly extracted 19200 (64 x 300)
sequence fragments (90 bp in length) from viral genomic
sequences. These 19200 randomly chosen sequences of
1.8 Mb were applied to our discovery pipeline under the
same hairpin identification parameters and sequence and
structural filter criteria. As a result, we obtained 533
presumed false positives from three independent experi-
ments (175, 176 and 182 predicted candidates, respec-
tively), corresponding to an average of 178 false positives.
This would give an estimated 1% false positive prediction
in a randomly generated 20000 sequences. With over
40000000nt from virus genomes, we could estimate
~4000 false positive predictions (using non-overlapping
90 bp length windows). Therefore, the best specificity we
could achieve is close to 88%, and the actual prediction
rate would lower depending on the viral genome structures
(DNA versus RNA viruses) and gene organizations.

WEB INTERFACE FOR VIR-MIR db

Due to the large number of prediction results, we
constructed a user-friendly web interface to present the
viral candidate miRNAs. As shown in Figures 1 and 2, the



classification and arrangement of the viral candidates
are according to the taxonomy table of NCBI, so users can
query the viral miRNAs more easily. Users may query the
putative miRNAs from a specific virus by using the

El dsDNA viruses, no RNA stage( Accumulated: 26339 )
= Adenoviridae ( Accumulated: 1266 )
=l Atadenovirus ( Accumulated: 18 )

= Bovine adenovirus D ( Accumulated: 0)
= Bovine adenovirus 4
= Bovine adenovirus 5
*  Bovine adenovirus 8

= Duck adenovirus A ( 16 ) ( Accumulated: 16)

= Ovine adenovirus D ( Accumulated: 2 )
*  Goat adenovirus 1
= Ovine adenovirus 7 ( 2) ( Accumulated: 2 )

*  Possum adenovirus

Figure 2. Expanded view of taxonomy table. The classification and
arrangement of viral miRNA candidate hairpins are based on the
taxonomy table of NCBI. The numbers in the right parentheses of each
classification level indicate the numbers of candidate hairpins found in
those levels. By clicking on a link, users can see the expanded table.
The numbers in parentheses indicate the number of candidate hairpins
found in that particular viral genome.
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hierarchical menu or by using the simple search function.
A keyword search can be performed, but users are
recommended to use it with the GenBank identifier or
RefSeq accession number for better search result,
e.g. 30844336 or NC_003663 for Cowpox virus.

The numbers in the right parentheses of each classifica-
tion level indicate the numbers of candidate hairpins
found in that level. For example, Atadenovirus has
18 candidate hairpins, which are cumulated from its four
sub-classes of viruses, including Bovine adenovirus, Duck
adenovirus A, Ovine adenovirus D and Possum adeno-
virus. We identified 16 candidate hairpins from Duck
adenovirus A and no candidate hairpin from Bovine
adenovirus D. In some cases, like Bovine adenovirus 4, 5,
8 and Possum adenovirus, we did not record the number
of candidate hairpins in their right parentheses, which
means there are no genomic sequences available for
analysis at these classification levels.

After selecting a specific virus type, as illustrated in
Figure 3 for human herpes virus 4, users may further sort
the candidate hairpins according to the miRNA genomic
location (default), score by Srnaloop, or core mfe by
RNAfold. Moreover, for known pre-miRNAs, the
sequences and locations of mature miRNAs are shown
according to the known miRNA information. For
example, both ebv-mir-BHRF1-1 and ebv-mir-BHRF1-3
have only one mature miRNA in their 5 arms.

D [strand||start position|length[SRNA loop scorel|core MFE.| NP ORF |[Known viral mRNA gmc“r’e‘g’l‘.’;ﬁ# zﬁgﬁfﬁg
33364 + | 132975 | 87 2 -204 |[YP 401702 S'arm  3'am (5'arm) (3'arm)
33365 + [ 134117 | 86 20 232 |[YP 401703 Sam 3'am
33366 + | 134940 | 88 20 -22.1 |[YP 401726 S'arm  3'am (5rarm) (37arm)
33367 + | 136042 | 88 2 -216 |[YP 401704 Sam 3'am
33368 + [ 137863 | 83 21 -265 |[YP 401706 S'arm  3'am
33369 + | 139071 | 89 29 -25.1 ¢bv-mir-BART3 | S'am 3'am
33370 + || 139214 | 87 27 -26.1 cbv-mir-BART4 (5rarm)
33371 + 139335 89 23 =236 ebv-mir-BART1 S'arm 3'arm (s5'arm)(3'arm)
33372 + [ 139502 | 90 21 246 cbv-mir-BART15 (3'arm)
33373 + [ 139661 | 89 24 298 cbv-mir-BARTS
33374 + [ 139780 [ 90 19 =234 cbv-mir-BART16 (5'arm)
33375 + | 139901 | 88 265 24 cbv-mir-BART17 | S'am 3'am
33376 + [ 140017 | 90 25 276 ¢bv-mir-BART6 | S'atm 3'am 5arm) (3 arm)
33377 + [ 140357 | 89 23 -329 S'am  3'am
33378|| + 143668 || 90 21 -229 S'arm 3'am (s'arm)
33379 + || 145047 | 87 215 -206 cbv-mir-BART18
33380 + [ 146425 | 86 255 BN ebv-mir-BART7 (3'arm)
33381 + [ 146755 | 90 30 -199 cbv-mir-BART8 | S'arm 3'am
33382 + [ 146943 | 90 215 206 ebv-mir-BART9
33383 + 147304 | 90 30 -265 cbv-mir-BART10

Figure 3. Viral miRNA candidate hairpin web interface. Here, users can view all the predicted viral miRNA hairpin information for a particular
virus. They may sort the candidate hairpins according to genomic location (default), score calculated by Srnaloop or core mfe calculated by
RNAfold. The YP accession number in the NP reference protein column denotes the protein-coding ORF sequence overlapped by this candidate
hairpin. Click the field header to sort on a field. Click it again to reverse the sorted list.
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However, the pre-miRNA ebv-mir-BHRFI1-2 has two
mature miRNAS in its 5 arm and 3’ arm. In addition,
users may download the entire sequences of predicted
candidate hairpins via the link at the bottom of each page.
Besides, we also extracted all known viral miRNAs from
miRBase into an independent table that also can be
retrieved at http://alk.ibms.sinica.edu.tw/cgi-bin/miRNA/
known_viral_miRNA.cgi.

Predicting potential viral miRINA target genes using the
RNAhybrid program

It is of researchers’ interest to learn about viral miRNAs
and their host target genes. To assist biologists, we
provide an integrated interface to identify possible host
target genes of the viral miRNA in selected host genomes
using the RNAhybrid program (19,20). Presently, as
shown in Figure 4, we provided the 3-UTR region
sequences of reference genes from human, mouse, rat,
zebrafish, rice and Arabidopsis as the search target
dataset. We retrieved 3’ UTRs based on the coding
sequence positions acquired individually from the
human.rna.gbff file (from NCBI on 19 December 2005),
mouse.rna.gbff file (from NCBI on 19 December 2005),
rat.rna.gbff file (from NCBI on 19 December 2005),
zebrafish.rna.gbff file (from NCBI on 19 June 2006) and
plantl ~ 5.rna.gbff file (from NCBI on 5 August 20006).
Users may scan the 3-UTR region sequences of
reference genes for possible viral miRNA targets. When
operating RNAhybrid, the pipeline first calculates the

RNAhybrid Service Page

RNAhybrid Job Progress Status | Tutorial of RNAhybrid Service

optimal free energy of a putative miRNA when the entire
putative miRNA binds to a perfectly complementary
target site, then it calculates the minimum free energy of
RNA duplex (mfe of the miRNA/mRNA duplex). An
alignment for which the RNA duplex mfe is more than
66% of its correspondent optimal free energy is regarded
as a positive alignment as described by Krek er al. (21).
A higher stringent 85% parameter is recommend.
A critical issue on the target prediction is that it
dramatically depends on the seed region located in the
mature miRNA. However, it is difficult to correctly
predict the mature miRNA following the hairpin predic-
tion pipeline. Therefore, we have a helix constraint option
to let users select different seed match region to be used in
the target prediction pipeline. It is suggested this
information should be used for preliminary exploration
purpose without the mature miRNA information.

DISCUSSION

The available predicted viral miRNA candidate hairpins
will certainly be beneficial to biologists who study
interactions between viral miRNAs and host genes.
There are many completed viral genome sequences in the
database, but it is not a simple task for biologists to
execute the entire bioinformatic pipeline to scan for
putative miRNA hairpins. We have identified 33691
candidate hairpins from more than 2000 virus genome
sequences. Here, we provide an easy-to-use web interface

#Sequence:(require FastA format)

#Helix constraint: ( Seed match region )
®None 02-7 03-8 049

#MFE percentage: ( Free energy ) ( Higher MFE precentage is recommended )

(O 66% (Loose) O 75% (moderate) (=) 85% (stringent)

#Select target Database:

(®Human O Mouse O Rat O Zebrafish O Arabidopsis O Rice

#Your E-mail address:(accept format: aaa@bbb.ccc)

( submit

*Note:

Since it is difficult to correctly predict
the mature miRNA following the
hairpin prediction, users can select
different seed match region to be used
in the target prediction pipeline. Please
be aware that target gene's
prediction is critically dependent on
the mature seed sequences, and
therefore is suggested to be used for
preliminary exploration purpose.

Figure 4. Target gene search web interface. Presently, we provide the 3-UTR region sequences of human, mouse, rat, zebrafish, rice and Arabidopsis
for target gene prediction. The RNAhybrid program is applied for the target search (19,20). Users can directly submit the predicted viral miRNA
hairpin sequences from the viral miRNA web interface or submit their own miRNA sequences for target gene prediction. We have a helix constraint
option to let users select different seed match region to be used in the target prediction pipeline. Since it is difficult to correctly predict the mature
miRNA from the hairpin structure. It is suggested this target prediction information should be used for preliminary exploration purpose.



for examining predicted viral miRNA hairpins based on
the previously published pipeline. To make this tool
more user-friendly, we also included the target gene search
function. Many functionally related miRNAs cluster
together to facilitate their expression and functional
regulation. For example, about half of the miRNAs
identified in Drosophila are reported to exhibit this
clustering phenomenon; they are initially co-transcribed
from one polycistronic transcript and further processed
into distinct individual mature miRNAs (1,22,23). This
phenomenon has been reported in EBV (11) and also was
observed in our present results. As illustrated in Figure 3,
two predicted candidate hairpins from this study are
clustered in the transcript of BART together with several
known EBV pre-miRNAs (11). This phenomenon is
also found in the transcript of BHRFI, which contains
two newly predicted candidate hairpins and three pre-
viously  known  pre-miRNAs, ebv-mir-BHRFI-1,
ebv-mir-BHRF1-2 and ebv-mir-BHRF1-3. This clustering
phenomenon indicates that these candidate hairpins may
be authentic viral miRNAs.
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