
EBioMedicine 40 (2019) 583–594

Contents lists available at ScienceDirect

EBioMedicine

j ourna l homepage: www.eb iomed ic ine.com
Among older adults, age-related changes in the stool microbiome differ
by HIV-1 serostatus
Jay Liu a, Rachel Johnson b, Stephanie Dillon a, Miranda Kroehl b, Daniel N. Frank a, Yunus E. Tuncil c,d,
Xiaowei Zhang d, Diana Ir a, Charles E. Robertson a, Sharon Seifert e, Janine Higgins f, Bruce Hamaker d,
Cara C. Wilson a, Kristine M. Erlandson a,⁎
a Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
b Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
c Food Engineering Department, Ordu University, Ordu, Turkey
d Department of Food Science, Purdue University, Lafayette, IN, USA
e Department of Pharmacology, Children's Hospital Colorado, Aurora, CO, USA
f Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
⁎ Corresponding author at: 12700 E. 19th Avenue, Ma
USA.

E-mail addresses: cara.wilson@ucdenver.edu (C.C. Wil
kristine.erlandson@ucdenver.edu (K.M. Erlandson).

https://doi.org/10.1016/j.ebiom.2019.01.033
2352-3964/© 2019 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 1 December 2018
Received in revised form 14 January 2019
Accepted 14 January 2019
Available online 23 January 2019
Background:HIV-1 infection and physiological aging are independently linked to elevated systemic inflammation
and changes in enteric microbial communities (dysbiosis). However, knowledge of the direct effect of HIV infec-
tion on the aging microbiome and potential links to systemic inflammation is lacking.
Methods: In a cross-sectional study of older people living with HIV (PLWH) (median age 61.5 years, N = 14) and
uninfected controls (median 58 years, n = 22) we compared stool microbiota, levels of microbial metabolites
(short-chain fatty acid levels, SCFA) and systemic inflammatory biomarkers by HIV serostatus and age.
Findings: HIV and age were independently associated with distinct changes in the stool microbiome. For example,
abundances of Enterobacter and Paraprevotellawere higher and Eggerthella and Roseburia lower among PLWH com-
pared to uninfected controls. Age-related microbiome changes also differed by HIV serostatus. Some bacteria with
inflammatory potential (e.g. Escherichia) increasedwith age among PLWH, but not controls. Stool SCFA levels were
similar between the two groups yet patterns of associations between individual microbial taxa and SCFA levels dif-
fered. Abundance of various genera including Escherichia and Bifidobacterium positively associated with inflamma-
tory biomarkers (e.g. soluble Tumor Necrosis Factor Receptors) among PLWH, but not among controls.
Interpretation: The age effect on the gut microbiome and associations between microbiota and microbial metabo-
lites or systemic inflammation differed based on HIV serostatus, raising important implications for the impact of
therapeutic interventions, dependent on HIV serostatus or age.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

With the advent of effective antiretroviral therapy (ART), the life ex-
pectancy of people livingwith HIV-1 infection (PLWH) has dramatically
improved, with recent estimates suggesting that 70% of PLWH will be
age 50 or older by 2030 [1]. However, evenwith effective virologic sup-
pression, chronic HIV infection is associated with a low level inflamma-
tory state that has been linked to an increased risk of comorbidities, as
well as geriatric syndromes including dementia and frailty [2–4]. Phys-
iological aging is similarly associated with low levels of inflammation
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son),

. This is an open access article under
(inflammaging), as measured by increased circulating systemic inflam-
matory markers such as interleukin-6 (IL-6) and C-reactive protein
(CRP) [5–8], and is linked to increased comorbidities [9] [10]. Thus,
many PLWH will experience a double inflammatory “hit” that may to-
gether accelerate the aging process.

One source of inflammation underlying both HIV infection and aging
is the human gut [11–13]. Intestinal epithelial barrier damage and asso-
ciated microbial translocation has been observed with both HIV infec-
tion [14–19] and with physiological aging in animal models [20–24]
and humans [25,26]. We previously demonstrated an age-related in-
crease in plasma biomarkers of intestinal epithelial barrier damage (in-
testinal fatty acid binding protein; IFABP) and microbial translocation
(lipopolysaccharide; LPS) in study participants without HIV as well as
age-related increases in circulating markers of cellular immune activa-
tion (sCD14, sCD27) and inflammation (IL-6, CRP), linking gut barrier
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

The development of highly effective antiviral therapies have
greatly increased the life expectancy of people living with HIV
(PLWH). However, evenwith long-term effective treatment, a per-
sistent, low-grade inflammation persists in PLWHwhich has been
linked to increased risk for comorbidities such as diabetes and
heart disease. The inflammatory profile and comorbid conditions
associatedwith chronic HIV infection are similar to those reported
with aging. Thus, many PLWHwill experience a double inflamma-
tory “hit” that may accelerate the aging process. Previous studies
have highlighted that gut microbial communities (microbiome)
are different in both PLWH and in older persons and this dysbiosis
is independently associated with inflammation. However, knowl-
edge of the direct effect of HIV infection on the aging microbiome
and potential links to inflammation is lacking in older PLWH.

Added value of study

In this present study, we compared the profiles of bacteria in the
stool of older PLWH with those of older persons that were not in-
fected with HIV (controls). We also compared levels of short-
chain fatty acids (SCFAs), products produced by bacteria that
are important for gut health, and various indicators of inflamma-
tion between the two groups. HIV and agewere independently as-
sociated with distinct changes in the stool microbiome, and age-
related microbiome changes differed by HIV serostatus. Stool
SCFA levels were similar between the two groups yet patterns
of associations between microbiota and SCFA levels differed.

Implications of all the available evidence

To the best of our knowledge, this study represents the first de-
scription of the combined effects of HIV infection and aging on
the stool microbiome. We show that not only are HIV and age in-
dependently associated with distinct changes in the stool
microbiome in an older population, but HIV infection and age inter-
act together to shape the microbiome. Our observations highlight
that responses to microbial-based therapeutic interventions may
differ by HIV serostatus and by age.
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leakiness to systemic inflammation [26]. Changes in the composition of
stool microbial communities (dysbiosis) have also been observed in
both PLWH andwith aging (reviewed in [27–29]). Although these stud-
ies varied by the age of the population, lifestyle (diet, physical activity),
and geographic location, some commonalities exist between stool
dysbiotic profiles with HIV andwith aging. These include changes in di-
versity [30–44], increases in abundances of Proteobacteria
[30,31,41,43,45–49] and/or alterations in Prevotella/Bacteroides ratio
[39,41,43,48,50–52]. This dysbiosis has been linked to physiologic con-
sequences: stool profiles characterized by increased abundance of taxa
containing commensal bacteria with pathogenic potential, termed
pathobionts [53,54] (e.g. Enterobacteriaceae) have been associated
with markers of systemic immune activation and inflammation in
both ART-treated PLWH [45] andwith chronological aging [30,55]. Indi-
cators of biological aging such as frailty have also been linked to in-
creased abundance of pathobionts including Enterobacteriaceae [56],
Eggerthella [57] and Prevotella [58].

Microbial metabolites, such as the short chain fatty acids (SCFA) bu-
tyrate, propionate and acetate, are primarily synthesized following fer-
mentation of dietary fiber [59] and play important roles in gut function
includingmaintaininghomeostasis [60]. For example, butyrate serves as
a primary source of energy for intestinal epithelial cells and has immu-
nomodulatory properties in the gut immune system [61,62]. Butyrate is
produced primarily by bacterial species belonging to the Roseburia,
Faecalibacterium and Ruminococcus genera and propionate bymembers
of the Firmicutes (e.g. Blautia, Dialister) and Bacteroidetes (e.g.
Bacteroides, Prevotella, Alistipes) phyla, while acetate is produced by a
wide variety of enteric bacteria [63–65]. We and others have
demonstrated lower abundance of butyrate-producing bacterial taxa
(in gut or stool) among both ART-treated and untreated PLWH
[32,34,35,48,51,52,66]. Furthermore, a lower abundance of genera con-
taining butyrate-producing species (Faecalibacterium, Roseburia) in the
gutmucosa is associated with higher systemic markers of immune acti-
vation and microbial translocation [34,51,66]. A lower abundance of
butyrate-producing bacteria species has also been seen with both chro-
nological age [30,42,46,47,67] and with measures of frailty
[56,57,68,69].

Although these studies suggest similarities in parameters of gut dys-
function in both HIV and in aging, a direct understanding of the collec-
tive effect in an individual aging with HIV is an understudied area of
research. Therefore, the goals of this pilot study were to investigate
the combined effect of age and HIV infection on the stool microbiome,
and explore the functional impact of microbiome differences through
SCFA production and markers of systemic inflammation.

2. Materials and methods

2.1. Participants

Participants were recruited from two clinical studies. Eight partici-
pants with and twenty-twowithout HIV were recruited from the “Exer-
cise in Healthy Aging” study, a randomized controlled trial examining
the effect of an exercise intervention on markers of inflammation and
physical function (Clinical Trials #: NCT02404792) [70]. Six additional
PLWH were recruited from “Assessing Tenofovir Pharmacology in
Older HIV-infected Individuals Receiving Tenofovir-based Antiretroviral
Therapy”, an observational study analyzing the pharmacokinetics of
tenofovir in older vs younger individuals with HIV (Clinical Trials #:
NCT02304263). All participants were between the ages of 50 and
75 years old; PLWH were on ART for ≥2 years, had an HIV-1 RNA b200
copies/mL, and a CD4 count of N200 cells/μL. Key exclusion criteria
included active diarrhea, antibiotic use within the last twoweeks, active
hepatitis C infection, diabetes requiring insulin, BMI b20 or N 40 kg/m2,
and chronic steroid usage. All participants provided written, informed
consent, and both studieswere approved by the ColoradoMultiple Insti-
tutional Review Board.

2.2. Microbiome analysis

A self-collected stool samplewas obtained after consent and prior to
any intervention and immediately stored in the participant's home
freezer until transfer to a −80C freezer. All samples were processed
within 6 months of storage. Stool bacterial profiles were generated by
broad-range amplification and sequence analysis of bacterial 16S rRNA
genes following established methods [51,71–75]. DNA was extracted
using the QIAamp Power Fecal DNA Isolation Kit (QIAGEN, Venlo,
Netherlands) and 16S rRNA gene [51,73] amplicons were generated
using oligonucleotide primers that target the V3 V4 variable region of
the 16S rRNA gene (primers 338F and 805R) and included barcode
[76] and Illumina adapter sequences. Illumina paired-end sequencing
was performed on the Miseq platform using a 600-cycle (v.3) reagent
kit. Paired-end reads were quality-filtered, demultiplexed, merged,
and classified using SINA(1.3.0-r23838) [77,78] as previously described
[51,71–75]. Operational taxonomic units (OTUs) were produced by
clustering sequences with identical taxonomic assignments.
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2.3. SCFA extraction and analysis

Stool SCFA was measured using gas chromatography as previously
described [79] with the following modification: seven grams of stool
taken from disparate sections of each sample were dissolved in purified
water (1:5, w/v) and homogenized by vortexing.
2.4. Dietary analysis

Each participant completed a 3-day dietary survey designed to
quantify micro andmacronutrient intake during the period of stool col-
lection. Raw dietary data was converted to caloric intake by the Nutri-
tion Core at the Colorado Clinical and Translational Sciences Institute
[80]. Dietary measurements were averaged over 3 days.
2.5. Soluble biomarker analysis

Plasma levels of soluble CD14 (sCD14), sCD163, IFABP, interleukin-
10 (IL-10) and serum levels of tumor necrosis factor alpha (TNFα) and
soluble tumor necrosis factor receptor 1 and 2 (sTNFR1 and sTNFR2)
weremeasured by ELISA (R&DSystems;Minneapolis,MN,USA). Plasma
CRP and IL-6 were quantitated by ELISA in the Colorado Clinical and
Translational Research Center.
Table 1
Study participant characteristics.

Characteristic PLWH (n = 14) Controls (n = 22) P value

Male 14 (100)a 21 (95)a 1.0
Age (years) 61.5 (13.5)b 58 (8.8)b 0.81
White Race 10 (71)a 17 (77)a 0.33
Men who have sex with other men 13 (93)a 6 (27)a b0.001
Body mass index (kg/m2) 27.0 (4)b 27.5 (6)b 0.82
Alcohol intake 1.0

N2 drinks/day 1 (7)a 2 (9)a

≤2 drinks/day 13 (93)a 20 (91)a

Current tobacco smoker 3 (21)a 2 (9)a 0.11
HIV-1 RNA b 200 copies/mL 14 (100)a NA NA
CD4 count, cells/μL 570 (364)b NA NA

Results presented as frequency (%)a or median (interquartile range)b.
2.6. Statistical analysis

Participant characteristics were summarized with frequencies (%)
for categorical variables andmeans (standard deviation) or median (in-
terquartile range [IQR]) for continuous variables. Fisher's exact tests
were used to test for differences between PLWH or uninfected controls
in categorical variables, and two-sample t-tests with unequal variances
were used to test for differences in means among continuous variables.
Linear regression was used to evaluate differences in dietary intake or
SCFA by HIV serostatus.

Relative abundance (RA)was calculated as the number of sequences
for a specific taxa standardized to the total number of sequences. Taxa
which were present in b5% of the population were collapsed into a sin-
gle “other” category. Stacked bar plots visually displayed mean RA by
HIV serostatus or predicted RA at ages 50 or 70. Low abundance taxa
at b2% were collapsed into a single “other” category for visualization
purposes on the stacked bar plots. To obtain predicted RA for ages 50
and 70, the intercept and age estimate regression coefficients from the
negative binomial regression models (described below) were used to
calculate the expected counts for each taxa, given the specified age.
The expected counts were calculated using an assumed offset of
10,000 sequences, and the RA was then calculated by dividing the
counts by 10,000. Alpha-diversity measures (Sobs, Shannon diversity
[H], and Shannon evenness [H/Hmax])were compared by HIV serostatus
using a linear regression models. Beta-diversity was compared using a
permutation-based multiple analysis of variance (PERMANOVA) test
and the Bray-Curtis diversitymeasures calculated at the phylum, family,
and genus taxonomic levels. Relationships between HIV serostatus or
age with individual taxa were evaluated using generalized linear
models assuming a negative binomial distribution and log link function.
Interactions betweenHIV and agewere evaluated for each taxa to deter-
mine whether the HIV effect differed with age; interaction termsmeet-
ing an false discovery rate (FDR) p-value threshold b0.20 were included
in final models. A FDR correction was applied to control for multiple
comparisons, with significance defined as FDR p-value b.05. Explicet
[81] (v2.8.3) was used to store/export data and calculate diversitymea-
sures, and statistical comparisons of bacterial communities were per-
formed with R software (v 3.4.4) packages vegan, MASS and gplots
[82–84].
3. Results

3.1. Study demographics

The 14 PLWH and 22 uninfected controls included in the studywere
similar by age, body mass index, race, and alcohol and tobacco use
(Table 1). All but 1 study participant identified as male. Male PLWH
were more likely to report sex with men compared to the male unin-
fected controls (p b .001). Among the PLWH, the median CD4 count
was 570 (IQR: 364) cells/μl and all had a HIV-1 RNA b50 copies/ml.
3.2. Effect of HIV serostatus on the stool microbiome

Stool microbiota profiling was successful in all samples (median of
115,568 sequences/sample, median Goods coverage of 99.97%). Mea-
sures of microbial alpha diversity (richness, diversity, evenness) were
similar between PLWH and controls (Supplemental Fig. 1).
PERMANOVA tests of beta diversity to determine overall compositional
differences in microbiota between PLWH and controls at the phylum,
family and genus levels are shown in Fig. 1A. No significant differences
were seen at the phylum level although the profile of PLWH generally
reflected higher RA of Fusobacteria and Proteobacteria in conjunction
with decreased Firmicutes. Comparisons at the family and genus
levels indicated non-significant overall differences in microbiota be-
tween PLWH and controls (p = .059 and p = .096 respectively), most
prominently reflected by higher RA of Prevotellaceae/Prevotella,
Fusobacteriaceae/Fusobacterium and lower RA of Bacteroidaceae/
Bacteroides, Faecalibacterium and Roseburia among PLWH.

HIV-related effects on the RA of specific taxa between PLWH and
controls were explored with negative binomial regression models. No
significant differences by HIV serostatus were detected in the RA of
any phylum, including the five most abundant phyla: Actinobacteria,
Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria (Fig. 1B,
Supplemental Table 1). At the family level, Leptotrichaceae (fold
change (effect size) 184, p = .04) and Desulfovibrionaeceae (fold
change 2.94, p = .047) were significantly higher among PLWH com-
pared to controls, while Lachnospiraceaea (fold change 0.72, p = .03)
and Oxalobacteraceae (fold change 0.44, p b .0001) were significantly
lower (Fig. 1C, Supplemental Table 1). At the genus level (Fig. 1D, Sup-
plemental Table 1), Eggerthella (Actinobacteria phylum) was signifi-
cantly lower (0.17 fold, p = .047) in PLWH. Within the phylum
Bacteroidetes, lower RA of Barnesiella (0.09 fold, p = .001) and
Odoribacter (0.70 fold, p b .0001) were noted while Paraprevotella was
higher (1.53 fold, p b .0001) in PLWH. Numerous genera belonging to
the phylum Firmicutes were also higher in PLWH including Allisonella
(2.85 fold, p b .0001), Anaerovibrio (422 fold, p b .0001) and Howardella
(1.74 fold, p b .0001) with lower RA of Oscillospira (0.01 fold, p= .001).
Within thephylumProteobacteria, Enterobacterwas significantly higher
(73.7 fold, p = .001) while Oxalobacter was significantly lower (0.43
fold, p b .0001) in PLWH compared to controls.



Fig. 1. Effect of HIV status on stool microbiota. (A) Stacked bar charts representing themean relative abundance at the phylum, family, and genus levels. P-values represent beta-diversity
differences between groups at each taxonomic level, compared using a PERMANOVA test of Bray-Curtis diversity measures. Taxawith relative abundance b2%were collapsed into a single
“Other” category. (B, C) Forest plots were created displaying effect size and 95% confidence interval (CI) for (B) top 5most abundant phyla and (C) specific families that were significantly
different based on FDR p values b.05 (all data can be found in Supplemental Table 1). Effect size N1 indicates taxa relative abundance is higher with HIV infection. (D) Manhattan plot
indicating alterations in genera using negative binomial modeling with genus-level taxa as outcomes and HIV status as the predictor. FDR p-values above the center line represent taxa
that are higher in PLWH compared to controls. The colors of each genus bar corresponds with the phylum from which the genus originates (legend).
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Fig. 2. Effect of age on stoolmicrobiota. (A) Stacked bar charts representing the predicted relative abundance for an individual at age 50 and 70 at the phylum, family and genus taxonomic
levels. P-values represent beta-diversity differences between groups at each taxonomic level, compared using a PERMANOVA test of Bray-Curtis diversitymeasures. Due to the continuous
nature of the age variable, a predicted relative abundance was estimated using coefficients from the negative binomial regression models for each taxa. Taxa with relative abundance b2%
were collapsed into a single “Other” category. (B, C) Forest plots were created displaying effect size and 95% confidence interval for (B) top 6 most abundant phyla and (C) families that
were significantly different based on FDRp valuesb.05 (all data can be found in Supplemental Table 1). Effect size N1 indicateswhen the relative abundance increases per year of increasing
age. (D)Manhattan plot indicating alterations in genera using negative binomial modeling with genus-level taxa as outcomes and age as the predictor. FDR p-values above the center line
represent taxa that significantly increase with age. The colors of each genus bar corresponds with the phylum from which the genus originates (legend).
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Among genera known to contain SCFA-producing species [63–65],
the RA of Roseburia (contains butyrate- and propionate-producing spe-
cies) and Alistipes (contains propionate-producing species) were lower
(Roseburia: 0.44 fold, p= .07; Alistipes: 0.32 fold, p= .06) in PLWH ver-
sus controls (Fig. 1D, Supplementary Table 1) but did not reach statisti-
cal significance. No significant differences were observed between
PLWH and controls in the RA of other genera containing butyrate-
producing species (Butyrivibrio, Faecalibacterium, Anaerostipes,
Subdoligranulum), propionate-producing bacteria (Bacteroides, Blautia,
Akkermansia, Prevotella, Dialister and Phascolarctobacterium) or genera
that include species that produce either butyrate or propionate
(Coprococcus) (Supplementary Table 1).

3.3. Effect of age on the stool microbiome

To assess the overall impact of age on the stoolmicrobiome indepen-
dent of HIV serostatus, the predicted RAs of an individual at age 50
versus age 70 were calculated using data from both groups (Fig. 2A).
The predicted profiles suggested that by age 70, microbial communities
were different to those at age 50, most notably at family and genus
taxonomic levels. Using negative binomial regression models, only the
RA of the phylum Synergistetes was found to significantly increase per
year of increasing age (1.62 fold; p = .0007) (Fig. 2B, Supplementary
Table 2). At the family level (Fig. 2C, Supplemental Table 2), significant
increases in the RA of Porphyromonadaceae (1.07 fold; p = .03),
Lactobacilliaceae (1.14, p = .03) and Synergistaceae (1.62 fold, p =
.002) were observed with increasing age, whereas Fusobacteriaceae
decreased (0.81, p = .01) (Fig. 2C, Supplemental Table 2). For each
year of increasing age, significant increases in a number of genera
were also noted including Parabacteroides (1.09 fold, p = .01), Lactoba-
cillus (1.15 fold, p = .03), Sneathia (1.44, p b .0001) and Desulfovibrio
(1.04, p b .0001) (Fig. 2D, Supplementary Table 2). In contrast,
Butyricimonas (0.96 fold, p b .0001), Howardella (0.96 fold, p b .0001),
Fusobacterium (0.81, p = .01), Actinobacillus (0.10, p b .0001) and En-
terobacter (0.75 fold, p = .03) decreased in RA for each year of increas-
ing age (Fig. 2D, Supplementary Table 2). No significant age effects
were evident among the butyrate- or propionate-producing genera
(all p N .1) (Supplementary Table 2).

3.4. Interacting effect of HIV serostatus and age on stool microbiome
composition

To understand whether the age effect on the gut microbiome dif-
fered in the presence versus absence of HIV infection, we tested an
Table 2
Age Effect Among People Living with HIV (PLWH) and Controls, at Phylum and Family Taxono

Age effect among PLWH

Effect Size 95% CI P value

Phylum
Cyanobacteria 0.74 0.60, 0.90 0.022
Proteobacteria 1.02 0.95, 1.09 0.68

Family
Phylum Actinobacteria
Bifidobacteriaceae 1.16 1.02, 1.30 0.043
Phylum Bacteroidetes
Bacteroidaceae 1.15 1.08, 1.22 0.0001
Phylum Firmicutes
Peptostreptococcaceae 1.28 1.16, 1.41 b0.0001
Phylum Fusobacteria
Leptotrichiaceae 1.36 1.33, 1.38 b0.0001
Phylum Proteobacteria
Alcaligenaceae 1.04 0.94, 1.13 0.53
Enterobacteriaceae 0.97 0.84, 1.12 0.80
Oxalobacteraceae 1.12 1.08, 1.15 b0.0001

⁎ Taxawith anHIV-age interaction of FDR p value of ≤0.20 are included, with findings suggest
year increase (if N1) or decrease (if b1) in relative abundance of each taxa. CI = confidence in
interaction between age and HIV serostatus. The age effect differed be-
tween PLWH and controls across multiple taxa (interaction p-value
b.20) (Table 2, Table 3, Supplementary Fig. 2). For example, while
Proteobacteria was lower with increasing age among controls, it was
not in PLWH (Table 2). Conversely, a number of bacterial families (e.g.
Bifidobacteriaceae, Bacteroidaceae, Peptostreptococcaceae) and genera
(e.g. Bifidobacterium, Bacteroides) were significantly higher with
increasing age in PLWH, but not in controls (Tables 2, Table 3, Supple-
mentary Fig. 2). In some instances, significant changes were observed
in both PLWH and controls, but were opposite in direction. For example,
Leptotrichiaceae and the genera Butyricimonas, Escherichia and
Oxalobacter significantly increased with age in PLWH, but were signifi-
cantly lower with age in controls (Table 2, Table 3, Supplementary
Fig. 2). Significant age and HIV interactions were also observed for
some genera known to contain butyrate- or propionate-producing bac-
teria. Alistipes (containing propionate-producing spp.) increased with
age in PLWH, but was not significantly different in controls; Butyrivibrio
(butyrate-producers) decreased with age in both PLWH and controls,
but to a significantly greater degree in controls (Table 3, Supplementary
Fig. 2).

3.5. Stool SCFA levels, dietary intake and associations with stool microbiota

Levels of stool SCFAs and dietary intake were compared between
PLWH and controls using linear regression with HIV serostatus as the
predictor (Table 4). Stool propionate levels were lower among PLWH
(mean 10.2 mmol/g) compared to controls (14.0 mmol/g), although
this did not reach statistical significance (p = .075). Acetate (PLWH:
37.7 mmol/g, Controls: 42.0 mmol/g; p = .35) and butyrate levels
(PLWH: 7.7 mmol/g, Controls: 7.3 mmol/g; p = .87) were not signifi-
cantly different by HIV serostatus. Dietary intake was generally similar
between the two groups with the exception of soluble fiber intake
which was slightly higher in PLWH compared to controls (9.5 g vs
7.1 g; p = .073).

Next, we explored associations between stool SCFA levels and die-
tary intake measures with the RA of the top 25 bacterial genera (based
on all study participants) and noted differences in patterns of signifi-
cantly strong associations, based on HIV status (Fig. 3). For instance,
the RA of Prevotella was strongly positively correlated with stool levels
of all 3 SCFAs while Subdoligranulum and Alistipeswere inversely corre-
lated with acetate and propionate levels in PLWH, but not controls.
Furthermore, in PLWH, but not controls, Bifidobacterium and Dialister
RA were positively correlated with dietary soluble fiber intake.
Fusobacterium RA was positively correlated with fat/fiber consumption
mic Ranks.

Age effect among Controls Age and HIV Interaction

Effect Size 95% CI P value P value⁎

0.98 0.84, 1.12 0.82 0.087
0.90 0.84, 0.96 0.016 0.032

0.99 0.88, 1.10 0.91 0.10

1.00 0.94, 1.06 0.99 0.005

1.00 0.91, 1.09 0.99 0.001

0.35 0.14, 0.84 0.043 0.008

0.93 0.85, 1.01 0.14 0.13
0.82 0.72, 0.93 0.012 0.13
0.95 0.93, 0.96 b0.0001 b0.0001

ing that the age effect differs byHIV serostatus. The effect size can be interpreted as the per
terval.



Table 3
Age Effects Among People Living with HIV (PLWH) and Controls, by Genus Taxonomic Rank.

Age effect among PLWH Age effect among Controls Age and HIV

Effect Size 95% CI P value Effect Size 95% CI P value Interaction⁎

Phylum Actinobacteria
Bifidobacterium 1.16 1.02, 1.31 0.044 0.99 0.88, 1.23 0.92 0.10
Eggerthella 1.04 0.90, 1.18 0.67 0.89 0.78, 1.00 0.10 0.14

Phylum Bacteroidetes
Alistipes 1.15 1.05, 1.25 0.0058 1.00 0.92, 1.08 0.98 0.046

Bacteroides 1.15 1.08, 1.22 0.0001 1.00 0.94, 1.06 0.99 0.004
Barnesiella 1.14 1.02, 1.27 0.038 0.99 0.89, 1.09 0.92 0.096
Butyricimonas 1.02 1.00, 1.02 0.0025 0.95 0.93, 0.95 b0.0001 b0.0001
Paraprevotella 0.99 0.98, 1.00 0.30 0.88 0.86, 0.89 b0.0001 b0.0001

Phylum Firmicutes
Anaerostipes 1.05 0.97, 1.13 0.30 0.96 0.89, 1.03 0.37 0.15
Butyrivibrio 0.95 0.94, 0.96 b0.0001 0.75 0.74, 0.76 b0.0001 b0.0001
Dorea 0.95 0.95, 0.95 b0.0001 1.01 1.01, 1.01 b0.0001 b0.0001
Flavonifractor 1.23 1.08, 1.40 0.0041 0.99 0.87, 1.11 0.92 0.035
Holdemania 1.11 1.01, 1.21 0.044 0.98 0.90, 1.06 0.69 0.074
Howardella 0.94 0.92, 0.94 b0.0001 0.99 0.97, 0.99 0.059 b0.0001
Pseudobutyrivibrio 0.96 0.87, 1.05 0.43 1.09 0.99, 1.18 0.096 0.087

Phylum Proteobacteria
Escherichia 1.37 1.19, 1.56 b0.0001 0.82 0.73, 0.93 0.005 b0.0001
Oxalobacter 1.12 1.08, 1.15 b0.0001 0.95 0.93, 0.96 b0.0001 b0.0001

⁎ Taxa with an HIV-age interaction of FDR p value of b0.20 are listed, with findings suggesting that the age effect differs by HIV serostatus. The effect size can be interpreted as the per
year increase (if N1) or decrease (if b1) in relative abundance of each taxa. CI = confidence interval.
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whereas Ruminococcuswas inversely associated with this dietary mea-
sure. Few correlations between bacterial genera and stool SCFA or die-
tary intake were observed in controls. The RA of Dorea was strongly
correlated with fat intake in controls, but not in PLWH.
3.6. Impact of HIV infection on systemic biomarkers and associations with
stool microbiota

PLWH had higher levels of sCD163, sCD14, and sTNFR2 compared to
uninfected controls (Table 5). Levels of IL-10, IFABP, TNFα, sTNFR1, CRP,
and IL-6 were not statistically different (Table 5). Again, major differ-
ences were noted in the patterns of associations of microbiota and in-
flammatory biomarkers between PLWH and controls. For example,
among PLWH, Escherichia and Subdoligranulum were positively corre-
lated with sTNFR1 and sTNFR2, Bifidobacterium with TNFR1 and IL-6,
and Prevotella inversely correlated with sTNFR1 levels (Fig. 4). Among
controls, but not PLWH, Faecalibacterium positively correlated with
levels of CRP, sTNFR1 and IL-10.
Table 4
Stool Short Chain Fatty Acid (SCFA) and dietary intake differences between People Living
with HIV (PLWH) and controls.

PLWH (n = 14) Controls (n = 22) P value

SCFA Total (mmol/g) 55.6 (22.3) 63.4 (21.9) 0.31
Acetate (mmol/g) 37.7 (14.1) 42.0 (11.7) 0.35
Propionate (mmol/g) 10.2 (4.9) 14.0 (7.6) 0.075
Butyrate (mmol/g) 7.7 (6.1) 7.3 (5.0) 0.87

PLWH (n = 13) Controls (n = 22) P value

Average daily energy intake (kcal) 2229 (629) 2034 (647) 0.39
% Carbohydrates 43.3 (6.6) 44.80 (10.9) 0.67
% Fat 39.6 (6.0) 36.5 (8.5) 0.25
Fiber (g) 23.0 (8.8) 20.5 (7.5) 0.36
Soluble fiber (g) 9.5 (5.2) 7.1 (2.3) 0.073
Insoluble fiber (g) 13.2 (4.5) 12.8 (6.3) 0.86
Fat/fiber ratio 4.9 (2.0) 4.7 (2.1) 0.82

Levels of SCFAs or dietary intakemeasurements were compared between PLWH and con-
trols using linear regressions with HIV status as the predictor. Data are presented asmean
(standard deviation). Dietary intake is missing for one PLWH.
4. Discussion

An emerging body of evidence suggests that gut dysbiosis occurs in
both the normal aging process and among PLWH, and that these alter-
ations in gut microbial communities may contribute to the low grade
chronic inflammatory state that underlies age-associated co-
morbidities [11,27,85]. However, evaluation of the effect of HIV infec-
tion on the aging microbiome, and the potential links to systemic in-
flammation is lacking. To the best of our knowledge, this study
represents the first description of the combined effects of aging and
HIV infection on the stool microbiome and demonstrates that, not
only are HIV and age independently associated with distinct changes
in the stool microbiome in an older population, but HIV infection and
age interact to shape the microbiome. Furthermore, within this older
population, associations between microbes and stool metabolites, die-
tary intake characteristics, and inflammatory biomarkers differed
based on HIV serostatus.

Interaction analyses highlighted that numerous bacterial taxa in-
creased with age in PLWH, but were either decreased or not signifi-
cantly changed among controls. Many of these bacteria have been
linked to gut inflammatory diseases. For example, Escherichia belongs
to the family Enterobacteriaceae, facultative anaerobes that are com-
monly increased in abundance in inflammatory bowel disease (IBD)
and colorectal cancer [86–88]. Similarly, Peptostreptococcaceae was re-
ported to be overrepresented in persons with colorectal cancer [86,89].
Intriguingly, Bacteroides spp. also increasedwith age in PLWH, but not in
controls. This genus typically plays an important role in immune regula-
tion including the induction of regulatory T cells [90]; however certain
strains of B. fragilis have also been linked to gut diseases including colo-
rectal cancer [86]. Notably, a number of the bacterial species that in-
creased with age among PLWH, but not in controls, such as
Oxalobacter, Alistipes and Bifidobacterium, potentially have health-
promoting properties. Oxalobacter spp. are important in degrading oxa-
late, excessive amounts of which are associated with pathological con-
ditions including kidney stone formation [91,92]. Alistipes contains
propionate-producing organisms and Bifidobacterium, a frequent com-
ponent of probiotic mixtures, has anti-inflammatory properties [93].
Some of these findings may be related to dietary differences. For exam-
ple, PLWH in our study tended to have higher fiber intake;
Bifidobacterium utilize dietary fiber as a growth substrate [94], and, in-
deed, Bifidobacterium RA was associated with greater fiber intake



Fig. 3.Associations between stool SCFA levels and dietary intakewith stoolmicrobiota. Associations between the top 25most abundant genera based on all studyparticipantswith levels of
stool SCFA levels (bolded text) and dietary intake in controls (N= 22) and in PLWH (N=13; dietary intake was unavailable from one study participant). Genera are grouped by phylum.
Pearson correlations were determined with red shading representing positive association and blue shading indicating a negative association. Correlations that were both significant (p b

.05) and strong correlations based on r N 0.6 or b −0.6 are indicated with white asterisks (**). Units for SCFA measurements are mmol/g. Macronutrients are calculated relative to total
energy intake: Carbohydrates (%), Fat (%), Soluble and Insoluble fiber (g).
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among PLWH. Increased abundancemay also be a direct result of probi-
otic use; however probiotic usewas not routinely collected in this study.

Numerous studies have demonstrated that PLWH manifest stool
dysbiosis, despite effective viral suppression with ART (reviewed in
[85]). Indeed, recent studies have shown that ART drugs themselves
may contribute to dysbiosis, although potential mechanisms by which
this occurs remain to be fully elucidated (reviewed in [95]). Therefore,
in addition to determining if the impact of age differed among PLWH
and controls, the design of our study also permitted investigation into
Table 5
HIV effect on systemic biomarker levels.

Biomarker HIV Effect 95% CI P value

IL-6 (pg/ml) 0.64 −0.49, 1.77 0.28
TNFα (pg/ml) 0.21 −0.08, 0.5 0.17
sTNFR1 (pg/ml) 199.7 −11.3, 410.7 0.079
sTNFR2 (pg/ml) 744.2 283.1, 1205.2 0.0034
CRP (mg/L) 1.50 −0.44, 3.43 0.14
sCD163 (ng/ml) 134.0 27.6, 240.3 0.019
sCD14 (ng/ml) 469.7 226.1, 713.3 0.0006
IFABP (pg/ml) 555.9 −1596.0, 2707.7 0.62
IL-10 (pg/ml) 0.17 −1.98, 2.32 0.88

Levels of biomarkerswere compared between PLWHand controls using linear regressions
with HIV status as the predictor. Effect size and confidence (CI) intervals are shown with
effect size N1 indicating higher levels in PLWH.
the interrelationships between HIV, the gut microbiome, and functional
outcomes (SCFA production and systemic inflammation) in this older
cohort of PLWH. Similar to a number of previous studies of stool micro-
biota of ART-treated PLWH, we observed higher RA of bacteria belong-
ing to the Enterobacteriaceae (Enterobacter) and Prevotellaceae
(Paraprevotella) families and lower relative abundance of Barnesiella,
Alistipes, and Roseburia in our participants with HIV [45,48,49,52,96].
The latter two genera are of particular relevance given that they contain
specieswith the capacity to produce butyrate or propionate [63–65]. In-
deed, PLWH tended to have lower levels of stool propionate than con-
trols potentially due to lower abundances of the propionate-producing
species Alistipes putredinis or Roseburia inulinivorans [63–65]. However,
in PLWH, the RA of the genus Alistipes was inversely correlated with
levels of stool propionate; thus additional studies with species identifi-
cation are required to fully delineate the role decreased Alistipes may
play in HIV-related pathogenesis. While Roseburia contains a number
of species with butyrate-producing ability, levels of butyrate were sim-
ilar between the two groups. However, it is important to note that buty-
rate is produced following fermentation of soluble dietary fibers [94],
and the higher soluble fiber intake among PLWH may account for the
lack of difference in butyrate levels. Although not significantly different
between PLWH and controls, Subdoligranulum, known to contain the
butyrate-producing bacteria S. variabile [63,64], inversely correlated
with levels of acetate and propionate in PLWH. This observation may



Fig. 4. Associations between systemic inflammatory and immune activation biomarkers with stool microbiota. Associations between the top 25 most abundant genera based on all study
participants with levels of systemic biomarkers indicative of inflammation and immune activation in controls (N= 22) and in PLWH (N= 14). Genera are grouped by phylum. Pearson
correlations were determined with red shading representing positive association and blue shading indicating a negative association. Correlations that were both significant (p b .05) and
strong correlations based on r N 0.6 or b−0.6 are indicatedwithwhite asterisks (**). CRP=C reactive protein; IFABP= intestinal fatty acid binding protein; IL-10= interleukin 10; IL-6=
interleukin 6; sCD14 = soluble CD14, sCD163 = soluble CD163, sTNFR = soluble tumor necrosis factor receptor [1] and [2]; TNFα = tumor necrosis factor alpha.
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reflect the process of bacterial cross-feedingwhereby themetabolic end
products produced by one bacteria are utilized by another as has been
reported for other known butyrate-producing bacteria and the utiliza-
tion of acetate for butyrate formation [97].

Few studies similarly investigating stool microbiomes in ART-
treated PLWH have detailed alterations in the remaining genera that
we observed to be lower (Odoribacter, Oscillospira, Oxalobacter,
Eggerthella) or higher (Allisonella, Anaerovibrio, Howardella) in PLWH
versus controls. Lozupone and colleagues noted lower abundance of
Odoribacter in ART-treated PLWH relative to uninfected controls [96].
Eggerthella was higher among PLWH receiving protease inhibitors in
combination with nucleoside/tide reverse transcriptase inhibitors
(NRTI) relative to uninfected controls, but was not different among
those on other NRTI combination therapies, suggesting associations
with both ART regimen and HIV [38]. It is also important to note that
Allisonella, Anaerovibrio and Howardella were enriched in MSM versus
non-MSM from prior studies [44]; given that our controls were not
matched for sexual behavior, the overall higher abundance of these spe-
cific genera may reflect sexual behavior rather than HIV infection itself.

As expected, we observed that a number of biomarkers of systemic
immune activation and inflammation were higher among PLWH.
Some biomarkers did not differ significantly by HIV serostatus (e.g. IL-
6, CRP): as age is a major driver of both IL-6 and CRP, any HIV-related
differences may have been attenuated by the age effects. Furthermore,
we identified expected and unexpected associations between the stool
microbiome and systemic inflammation in PLWH, with similar associa-
tions not observed in controls. In keeping with its role as a potentially
inflammatory bacterium, Escherichia RA was associated with levels of
sTNFR1 and sTNFR2 in PLWH whereas Prevotella, a genus also known
to contain species linked to inflammatory diseases (reviewed in [98]),
inversely correlated with sTNFR1 in PLWH. Moreover, Bifidobacterium
RA positively associated with sTNFR1 and IL-6 levels, an additional un-
expected finding given its previously described anti-inflammatory ca-
pabilities and the prominent use of Bifidobacterium strains in
probiotics. In older persons without HIV infection, few associations be-
tween microbiota taxa and inflammatory biomarkers were noted with
the exception of Faecalibacterium which positively correlated with IL-
10, CRP and sTNFR1. The associationwith IL-10 is congruentwith the re-
ported ability of strains of F. prausnitzii to induce IL-10 production from
human peripheral blood immune cells and myeloid dendritic cells
in vitro [99,100], yet positive correlations with CRP and sTNFR1, indica-
tors of systemic inflammation, contrast with the generally accepted
anti-inflammatory role of F. prausnitzii [101,102]. Taken together,
these observations suggest some intriguing links between microbiota
and systemic inflammation in older persons both with and without
HIV infection; however, it is essential to emphasize that these associa-
tions do not indicate causality. Further studieswill be required to deter-
mine if the association holds in a larger study population and if they are
direct associations driven by individual species or indirectly driven by
alterations in networks of bacterial communities. It will also be impor-
tant to evaluate if, like enterotoxigenic strains of E. coli and B. fragilis,
certain species traditionally considered to reflect a healthymicrobiome,
have undergone adaptive evolution due to environmental pressures
(i.e., bacterial community changes or interactions with host immune
system) resulting in positive selection of virulence genes [103–105].

A number of study limitations should be noted: the sample size was
small, which limited our ability to adjust for numerous confounders, in-
cluding sexual behaviors [44,106,107] and prebiotic/probiotic use, that
may influence themicrobiome. Fewwomen orminoritieswere enrolled
therefore generalizability is limited. Lastly, bacterial classification was



592 J. Liu et al. / EBioMedicine 40 (2019) 583–594
limited to genus-level identification due to short read sequencing. Over-
all, our findings are preliminary and need to be confirmed in larger,
more diverse participant populations.

In summary, this study has demonstrated that not only are alter-
ations in the gutmicrobiome present in older PLWH, but HIV influenced
age-associated effects on the gutmicrobiome. Furthermore, associations
between the stool microbiome and microbial metabolite levels, dietary
factors and inflammatory biomarkers differed byHIV serostatus. A ‘one-
bug-fits-all’ interpretation may therefore not be applicable, because
microbiome changes in one populationmay not have the same implica-
tions as in another population. This also raises important implications
for therapeutic interventions: targeted replacement of certainmicrobial
taxa may have different effects depending on the host. Further research
is needed to confirm our findings in a larger sample size with a wider
age range, and to testwhether the response to therapeutic interventions
such as prebiotics, probiotics or fecalmicrobial transplantation, differ by
HIV serostatus and by age.
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