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Abstract: Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a
chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and
immune dysregulation, both modulated by environmental factors. AD is strongly associated with
asthma and allergic rhinitis in the so-called ‘atopic march’. Xenobiotic receptors and their mates are
ligand-activated transcription factors expressed in the skin where they control cellular detoxification
pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial
cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be
deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their
impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because
they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their
promiscuous ligand affinity, they have recently crystalized the attention of researchers, including
in dermatology and especially in the AD field. This review examines the putative roles of these
receptors in AD by critically evaluating the conditions under which the proteins and their ligands
have been studied. This information should provide new insights into AD pathogenesis and ways to
develop new therapeutic interventions.
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1. Atopic Dermatitis

Atopic dermatitis (AD) is the most common inflammatory skin disease, predominantly affecting
young children and characterized by relapsing pruritic eczematous lesions over dry skin. AD affects
1%–37% of children and 1%–20% of adults worldwide and became a major health problem among
children born after 1980 (http://isaac.auckland.ac.nz/index.html). Importantly, AD is considered the
initial step of the so-called ”atopic march”. Indeed, while 70% of children afflicted with AD experience
a full remission at 10–12 years of age, as many as 20%–70% of them go on to develop asthma, allergic
rhinitis and/or food allergies [1]. Although significant etiological and therapeutic progress has been
made in the past 30 years, the problem of AD continues to spiral out of control.

AD is a chronic relapsing skin disease whose pathogenesis is not yet fully understood.
However, there is consensus that epidermal barrier impairment precedes the development of immune
hyper-responsiveness in both AD [2–4] and allergies [5]. Impaired epidermal barrier function likely
results from a combination of environmental, genetic and epigenetic factors, and has been best studied
in the context of loss-of-function mutations in the filaggrin gene (FLG) [6,7]. FLG is located on
chromosome 1 in a region known as the epidermal differentiation complex, which contains genes
encoding epidermal structural proteins and whose genetic variants have been repeatedly associated
with AD [8]. However, other genetic variants have also been identified but with a weaker association
strength [9]. The environmental factors involved in AD, recently designated as the exposome, are mainly
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stress, food, pollution and the skin microbiota [10]. The skin microbiota is altered in AD, beginning with
dysbiosis in non-lesional AD and culminating with Staphylococcus-mediated superinfection in lesional
AD. AD patients exhibit reduced diversity of the bacterial skin community because of enrichment in
Staphylococci—Staphylococcus aureus in the severe cases, Staphylococcus epidermidis in the milder forms of
AD—which is suspected to contribute to disease pathogenesis and flares [11–14]. Moreover, previous
work has shown a trend of increased-and-fungal diversities at the genus and species levels, with higher
frequencies of Malassezia sympodialis, sloofiae or dermatis, in AD, depending on sampling methods [15–17].
Approximately 80% of AD patients show IgE-mediated sensitization and positive skin prick tests for
Malassezia [18]. Malassezia may actively contribute to the development of AD by degrading host skin
lipids, thereby exacerbating initial skin barrier impairment. The role and composition of the skin
microbiota in AD have been reviewed recently [19–21]. Thus, environmental factors synergize with
(epi) genetic predisposition to weaken the epidermal barrier, and thus trigger AD.

Primary epidermal barrier defects provoke compensatory responses, such as keratinocyte (KC)
hyper-proliferation, leading to epidermal thickening and hyperkeratosis [22]. Consistent with this,
increased numbers of Ki67+ KCs and up-regulation of keratin (KRT) 16 have been found in AD skin.
Furthermore, various cytokines (IL-1, TNF-α) and growth factors (GM-CSF) are secreted by epidermal
cells in order to sustain KC proliferation and metabolic requirements, such as DNA and lipid synthesis.
Abnormal lipid metabolism has also been uncovered in AD skin, but it remains unclear whether it results
from genetic variants affecting lipid-related genes, the epidermal differentiation of complex genes or
from non-genetic events. Moreover, unfortunately, the literature is contradictory on skin lipid-content in
AD, precluding a clear view of associated lipid changes [23–29]. However, there is agreement on a shift
from very long chain to shorter-chain fatty acids (FAs) in ceramides of the stratum corneum in AD skin,
regardless of skin lesions and FLG null mutations, thus causing further disruption of the lamellar bilayer
organization [27,29–32]. Moreover, the amounts ofω3 andω6 polyunsaturated FAs (PUFAs) and of their
downstream metabolites are altered in AD skin [25,33,34]. These results are in line with transcriptomic
analyses showing dysregulated expression of lipid-related genes in AD skin [35–37].

The current hypothesis on the primary role of epidermal barrier impairment in initiating the
immune abnormalities in AD includes the secretion of alarmins (IL-25, HMGB1, IL-33, IL-1 and
TSLP) by damaged KCs [38], which in turn prime Langerhans cells (LCs) to initiate a local Th2
immune response [39–41]. However, the immune abnormalities accompanying the epidermal barrier
impairment in AD are complex. AD skin is abundantly infiltrated with various immune cells, including
T-lymphocytes, inflammatory dendritic cells, mast cells, eosinophils and innate lymphoid cells-2 [22,42,43].
AD is considered a Th2-driven inflammatory skin disease in which a Th2/Th17 or Th1/Th17/Th22/Th9/Th2
immune response is observed depending on the disease status (nonlesional versus lesional, respectively).
Immune abnormalities in AD have been extensively reviewed recently [44,45].

2. Xenobiotic Receptors and Mates

Xenobiotics are defined as molecules found within an organism, which are not naturally produced
by or expected to be present in this organism. Thus, the term xenobiotic includes environmental
pollutants, carcinogens, drugs, food additives and pesticides, as well as microbial-derived metabolites.
Xenobiotic receptors regulate the detoxification processes of exogenous (e.g., pollutants and drugs)
and endogenous (e.g., bile acids and bilirubin) compounds whose accumulation in cells induces cellular
damage. Such molecules bind to and activate the receptors, whose signaling results in upregulation of the
expression of a panel of detoxification enzymes and membrane transporters involved in metabolite uptake
and efflux. In turn, these enzymes and transporters promote the elimination of the toxic compounds.
However, the role of xenobiotic receptors encompasses more than xenobiotic metabolism. Accumulating
evidence has implicated their involvement in many cellular processes, including energy homeostasis, cell
proliferation, inflammation, tissue injury and repair, the immune response and cancer development [46].

The pregnane X receptor (PXR, NR1I2), constitutive androstane receptor (CAR, NR1I3), aryl
hydrocarbon receptor (AHR) and peroxisome proliferator-activated receptors (PPARs) are stricto sensu
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xenobiotic receptors [47]. Liver X receptors (LXRs) and farnesoid X receptor (FXR, NR1H4) are related
receptors that engage in crosstalk with xenobiotic receptors through, for example, protein–protein
interactions between common co-activators. Indeed, competition between such co-factors for binding
to receptors is a key mechanism for the regulation of physiological processes [48]. Moreover, some
receptors can control the expression of others or be activated by the same ligands [49–51]. Xenobiotic
receptors are all promiscuous receptors able to be activated by a broad range of molecules and involved
in the transcriptional regulation of genes encoding Phase I (e.g., CYP450s) and Phase II enzymes (e.g.,
UGTs, SULTs and GSTs), as well as uptake and efflux transporters (e.g., MRPs and MDRs). Xenobiotic
receptors and their mates are all highly expressed in the liver and intestine, but they have recently
captured the attention of skin researchers because of their potential role in the skin and especially
in AD pathogenesis. Indeed, they are expressed in skin epithelial and immune cells and dermal
fibroblasts [52–56] where they control the expression of a panel of key genes belonging to pathways
implicated in AD pathogenesis; i.e., lipid metabolism, cell proliferation and death, oxidative stress
and immune response [55,57–64]. Moreover, their potential ligands are produced by skin microbes
or present in the environment. This review will focus on receptors that are relevant in dermatology
and especially in AD; i.e., AHR, PXR, LXRs and PPARs. The role of PPARs and LXRs in the skin has
already be extensively reviewed [65–68], whereas the role of CAR and FXR in the skin and in AD has
not yet been investigated.

2.1. AHR

AHR is a ligand-activated transcription factor of the basic, helix-loop-helix motif-containing
Per-ARNT-Sim family [69]. AHR is activated by a large number of halogenated aromatic hydrocarbons,
including dioxins such as TCDD, polychlorinated biphenyls (PCBs) and polycyclic aromatic
hydrocarbons (PAHs) (e.g., BaP, 3-methylcholanthrene); clinically used drugs (e.g., omeprazole);
food-derived molecules, such as flavonoids (e.g., quercetin and resveratrol); and endobiotics (e.g.,
bilirubin, FICZ and metabolites of arachidonic acid) [55,70–73]. AHR ligands can also be secreted
by bacteria [55]. AHR regulates the transcription of genes encoding phase I (i.e., CYP1A1, CYP1A2,
and CYP1B1) and phase II (i.e., UGT1A1, UGT1A3 and UGT1A4) enzymes and of efflux transporters
(i.e., ABCG2) [72,74–78]. In the absence of ligands, AHR resides in the cytoplasm where it forms a
protein complex that includes Hsp90, XAP-2 and p23 [79,80]. After ligand binding, AHR dissociates
from this complex and translocates to the cell nucleus to bind to DNA responsive elements, also
referred to as xenobiotic responsive elements, after interaction with nuclear-localized co-activators or
co-repressors [73]. The AHR repressor protein, AHRR, enables the binding of corepressors to AHR and
promotes its degradation through the proteasome [81], thus critically modulating the cellular response
to AHR activation. AHR can also regulate gene transcription via diverse epigenetic mechanisms,
including the regulation of retrotransposons, micro-RNAs and long non-coding RNAs [82–85]. Several
molecules have been found to directly induce the expression of the well-known AHR target gene
CYP1A1, suggesting possible activation of the receptor in the absence of direct ligand binding [86].
Indeed, nongenomic effects of AHR have been detected, especially in the context of the induction of
inflammatory processes. For example, TCDD has been shown to increase the intracellular concentration
of calcium, thereby initiating a cascade of reactions ultimately leading to activation of COX2 and the
accumulation of inflammatory mediators, such as prostaglandins [73,87]. Moreover, SUMOylation
of AHR has been shown to enhance its stability by inhibiting its degradation by the proteasome [88].
Furthermore, SUMOylation can mask ligand binding sites, enhance AHR binding to co-repressors
or co-activators, and induce conformational changes, making SUMOylation a critical modulating
mechanism of AHR signaling [89].

AHR exerts a plethora of cellular functions. It regulates cell proliferation in a cell-type dependent
manner [73] and cell adhesion and migration via reorganization of the cytoskeleton [90]. Its pro- and
anti-inflammatory function has been extensively reviewed [55,91–93]. There is reciprocal regulation of
AHR and NF-κB, the master regulator of many inflammatory processes [94,95]. In mouse macrophages
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stimulated with lipopolysaccharide, the complex of AHR and STAT1 interacts with NF-κB to prevent
its transcriptional activity, thus exerting contra-regulatory effects [96]. Moreover, AHR upregulates
SOCS2 which, in turn, represses NF-κB [97,98]. These data highlight the potential anti-inflammatory
role of AHR in various cell types. However, the role of AHR in inflammatory reactions, including in
AD, is far from understood. AHR has also been demonstrated to have both pro- and anti-oxidative
properties [99]. AHR activates NADPH-oxidase and, in turn, induces the production of reactive
oxygen species (ROS). In mice, AHR upregulates Nrf2 in response to its direct binding to the Nrf2
promoter [100], but whether this holds true in humans remains to be established. AHR has also been
identified as responsible for the toxic cellular effects of TCDD via pro-oxidant mechanisms [101,102].
Of note, several mechanisms preventing the deleterious effects of chronic AHR activation have been
identified, such as the depletion of the reservoir of endogenous AHR ligands via upregulation of
CYP1A1 [103,104] or overexpression of AHRR induced by AHR itself (negative feedback loop) [105].

2.2. PXR

PXR is a nuclear hormone receptor (NHR) which must heterodimerize with retinoid X receptor
(RXR) to exert transcriptional activity. PXR is among the most promiscuous xenobiotic receptors, as its
ligands include a broad range of structurally different molecules, but which are rather species specific.
For example, rifampicin can activate human but not mouse PXR, whereas pregnenolone 16α-carbonitrile
can only activate mouse PXR. Human PXR activators include drugs (e.g., rifampicin), pollutants (e.g.,
bisphenols, pesticides) and endobiotics (e.g., bile acids, corticosterone) [106–108]. Activation of PXR
is a ligand-dependent process and involves interaction with multiple coactivators (e.g., SRC-1 and
CREB- CBP/p300) or co-repressors (e.g., NCoR/SMRT) [48,109–112]. In the absence of ligands, PXR
can localize to both the cytoplasm and the nucleus, where it interacts with its corepressors [111,112].
After ligand binding, the heterodimer PXR/RXR binds to specific xenobiotic responsive elements to
regulate the transcription of genes coding for phase I (i.e., CYP3A4, CYP1A1, CYP4F12, CYP2B6 and
CYP2C8) and phase II (i.e., SULTs and UGT1A1) enzymes, as well as membrane transporters (e.g.,
MDR1, also called ABCA1) [109,111–113]. PXR might also be able to exert control of its target genes via
epigenetic modifications, such as DNA methylation and noncoding RNA [114].

PXR has pleiotropic functions in regulating bile acid, glucose and lipid metabolism, as well as
inflammatory processes, cell proliferation, steroid/endocrine homeostasis, and bone metabolism [58,60].
Similar to AHR, PXR and NF-κB exert mutual repression [115]. NF-κB is able to repress PXR by disrupting
the DNA binding of the PXR/RXRα complex on PXR-responsive elements or via post-translational
modifications, thereby down-regulating CYP expression [116–118]. Conversely, PXR activation inhibits
the activity of NF-κB in mouse and human cells [115]. Moreover, PXR regulates vitamin K and vitamin
D metabolism through the transcriptional control of CYP3A and CYP24 [119,120]. PXR has also been
shown to either promote (hepatocytes) or inhibit (colon cancer cells, neuroblastoma cells, cervical cancer
cells, hepatocarcinoma cells and lymphocytes) cell proliferation. PXR stimulates cell proliferation via
effects on the G0/G1 or G1/S phases and by suppressing cell cycle suppressor genes such as p27 and
p130. When acting as a cell proliferation repressor, PXR affects the G2/M phase of the cell cycle, when p21
expression is enhanced and pro-proliferation proteins, like CDCs 20 and 25, are suppressed [60]. PXR also
controls processes involved in cell death. For example, it appears to promote hepatocyte survival by
upregulating the Bcl-xL and Bcl-2 anti-apoptotic proteins [121]. Moreover, PXR may be protective
against DNA damage induced by noxious molecules, such as BaP, by up-regulating the expression of
NQO1, a phase II detoxification enzyme. This would occur via the activation of the phosphatidylinositol
3-kinase/Akt/Nrf2 pathway [122]. However, this effect might be cell type and context-dependent.

3. Xenobiotic Receptors and Atopic Dermatitis

The skin can absorb pollutants, especially lipophilic molecules. For example, PCBs can easily
penetrate the skin to the dermis, as can airborne phthalates and, a fortiori, after topical contact [123,124].
Pesticides and PCBs can accumulate in house dust, which thus represents a primary route of skin
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contact [124]. Skin is fully equipped to metabolize pollutants, as it possesses phase I and phase II
enzymes, drug transporters, and upstream receptors; namely, the xenobiotic receptors AHR, PXR and
PPARs, and their mates, LXRs [54,125,126].

Many environmental toxicants target AHR, which may be a potential mechanism eliciting
AD [127,128]. However, a large number of environmental pollutants bind to and activate PXR as
well [113,129–131]. Accordingly, our research group found that xenobiotic metabolism is triggered in
the skin of AD patients, regardless of FLG status [37]. Consistent with this, several key genes induced
in AD skin are PXR and AHR target genes [37,109]. Moreover, metabolites released by skin microbes
can also trigger AHR [102,132], which might alleviate AD symptoms [133]. However, the pro- versus
anti-inflammatory roles of xenobiotic receptors and their mates in AD remain a matter of debate.

3.1. AHR and Atopic Dermatitis

AD skin is characterized by an impaired barrier function, inflammation and dysbiosis. AHR is
expressed in a variety of skin cells, including KCs, LCs, T cells, melanocytes, fibroblasts, mast cells and
sebocytes [102]. AHR activation has been contrastingly shown to promote [127] or alleviate [134,135]
AD. Thus, the role of AHR in AD pathogenesis remains unclear. The pro- versus anti-inflammatory
effects of AHR in AD may, in fact, be context-, species-, and ligand-dependent [136]. Some have
speculated that activation of AHR signaling might be detrimental in normal uninflamed skin, whereas
it might be beneficial in inflamed skin [137]. However, the situation is likely more complex than this
and the role of AHR in AD remains to be clarified. Here, we examined the literature in detail to identify
conditions or factors favoring one or the other role of AHR in AD.

3.1.1. When AHR Aggravates or Provokes Atopic Dermatitis

Insight from Genetic Analyses

Associations between genetic polymorphisms in AHR and AD are only beginning to be investigated.
In a recent study, two AHR single-nucleotide polymorphisms (SNPs) (rs10249788 and rs2066853)
were not associated with a higher risk of AD. However, AD patients carrying these SNPs exhibited a
significantly higher risk of severe dry skin and allergic rhinitis [138], suggesting they might contribute
to abnormal barrier function and have a potential role in the atopic march. rs2066853 causes an
arginine to lysine substitution in the acidic sub-domain of transactivation domain of AHR at position
554 (R554K), that might modify secondary structure and reduce AHR stability, as determined with
an in silico approach [139]. Another study based on the SALIA cohort investigated the link between
traffic-related air pollution and AD in the elderly. The authors found a significant association between
all parameters of traffic-related air pollution at the baseline visit and AD incidence, with a higher risk
for carriers of the minor allele rs2066853 (e.g., NOx: OR = 3.75, p = 0.030 versus OR = 1.34, p = 0.317 in
non-carriers) [140]. However, the effect of these SNPs on AHR function has not yet been investigated.

AD-Related Cellular Abnormalities Triggered by AHR Activation

The mRNA levels of AHR, ARNT and CYP1A1 were increased in the skin of AD patients [127,141,142],
suggesting a role of increased AHR signaling in AD. TCDD has been shown to increase the amounts of
epidermal CYP1A1 protein [143], as well as CYP1B1 mRNA in KCs, similar to coal tar, a mixture of
> 10,000 substances, including AHR ligands [134]. Moreover, TCDD and coal tar were able to promote
hyperkeratosis, a disorder of the stratum corneum observed in AD, in an AHR-dependent manner in
3D organotypic cultures [134,143]. In line with these observations, treatment of human KCs with TCDD
or PCB153 triggered the release of IL-8 and IL-6 [142], demonstrating activation of KCs. Furthermore,
transgenic mice expressing a constitutively active form of AHR under the control of the KRT14 promoter
(a gene expressed exclusively in basal KCs) developed AD-like symptoms, including itches, epidermal
hyperplasia and enhanced dermal inflammatory infiltrate, similar to mice topically treated for 4 weeks
with DMBA and FICZ, two AHR ligands [127,144]. The expression of genes involved in cellular
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detoxification (e.g., CYP1A1, CYP1B1, NQO1 and GSTs) was increased in the skin of those mice, as
was the expression of genes belonging to inflammatory pathways (TSLP, IL13, IL18, IL1B, CXCL5,
CXCL1, IL4R) and abnormal KC differentiation (KRT16) [127,144]. Moreover, these mice exhibited
increased levels of serum IgE, IL-4 and IL-5, demonstrating a pro-atopic role of chronic epidermal
AHR activation beyond skin [144]. Alloknesis, a sensory abnormality involving hypersensitivity and
pruritic paresthesia, was observed in AHR transgenic mice, consistent with observations made in AD
patients [127]. This effect seems to be mediated via the upregulation of artemin (ARTN) by AHR [127].
Epicutaneous application of diesel exhaust particles (DEPs), the largest source of traffic-related air
pollution, or DMBA, the main constituent of the PAHs that make up DEPs, resulted in the upregulation
of ARTN mRNA levels in the skin, in contrast to topical application with FICZ, a tryptophan-derived
endogenous AHR ligand [127], thereby demonstrating a ligand-specific effect. Thus, activation of AHR
in the skin by noxious molecules might promote AD via the dysregulation of KC differentiation and
the release of inflammatory and neurotrophic mediators by KCs in humans and mice. Nevertheless,
the nature of AHR ligands (i.e., environmental pollutants versus endogenous molecules) might be
primary in determining the pathogenic outcome of AHR activation in the skin.

AHR Activation Promotes Immune Abnormalities Observed in AD

LCs are key immune cells involved in the early development of AD by initiating a Th2 immune
response in the epidermis in response to the alarmin TSLP or after activation by allergens or
microbe-derived antigens [39–41,145]. AHR promotes the expression of TSLP by direct binding
to its promoter region [127], potentially linking AHR to LC activation which might ultimately lead
to AD initiation. In line with this, exposure of mouse skin to BaP increased LC migration and
induced a Th2/Th17 immune response mainly via AHR activation [141]. In addition, KCs from
AHR-deficient mice produce less GM-CSF, which impairs LC maturation and decreases the Th2-driven
contact-hypersensitivity reaction [146]. All together, these results highlight the capacity of AHR
activation to induce LC maturation and Th2 inflammation in the skin. However, AHR is expressed
in LCs [146,147] and its effects on LCs might be mediated by more than just the release of TSLP or
GM-CSF by surrounding KCs. Indeed, in LCs, AHR promoted the activation and metabolism of PAHs,
such as DMBA, into active molecules secreted into the epidermal microenvironment and taken up by
KCs, where they induced DNA damage [54,147]. This damage to DNA might contribute to abnormal
epidermal barrier function and inflammation by increasing the activation of NF-κB and COX2 and by
promoting the production of IL-6 and IL-1α in KCs [148–150], cellular abnormalities observed in the
epidermis of patients with AD. Moreover, PAHs have been identified as one of the main drivers of
particle matter-induced inflammation [151]. PAHs are lipophilic molecules with high affinity for AHR.
They can easily cross the stratum corneum to reach the living epidermal layers, where they might initiate
a Th2-skewed inflammatory response. This might happen via the release of proinflammatory mediators
by KCs and activation of LCs, and via additional immune abnormalities contributing to AD onset,
flare or symptom exacerbation [127]. Furthermore, several studies using AHR-silencing technology
and various AHR ligands have demonstrated the preponderant role of AHR in the development of
IL-22-producing T cells in several diseases, including AD [152,153], which, in turn, sustains abnormal
epidermal barrier function [154]. AHR might also be involved in the development Th17 inflammation;
however, this remains controversial and needs to be clarified [136,152,153,155].

Thus, increased AHR signaling after topical exposure to AHR high-affinity ligands, such as PAHs,
in both KCs and LCs might initiate a Th2/Th17/Th22 immune response and, in turn, significantly
contribute to AD development.

Role of AHR as an AD Promoter via Oxidative Stress

Oxidative stress can trigger inflammation, and skin and urine from AD patients display increased
markers of oxidative stress [37,156–159]. AHR ligands can be designated as oxidative and anti-oxidative
ligands [99]. AHR increases the transcription of genes encoding CYPs, whose activities produce
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ROS [160,161]. Thus, uncontrolled up-regulation of CYPs in cells, including in KCs, might generate
oxidative stress [57,99]. BaP activates AHR which, in turn, upregulates CYP1A1 and generates ROS,
leading to DNA damage, as evidenced by the production of 8-hydroxydeoxyguanosine and IL-8 in
KCs [162–164]. Interestingly, IL-8 content in the stratum corneum has been shown to be an indicator
of the severity of inflammation in AD lesions [165]. In addition, damaged KCs produce kynurenine,
a potent AHR ligand [166]. This metabolite might exert pro-inflammatory effects in skin and be
involved in atopic diseases, including AD [167,168]. Moreover, TCDD triggers ROS production in
KCs by altering mitochondrial function and dampening the glutathione system [169]. However, other
ligands (e.g., ketoconazole and Bidens pilosa extract) can bind to AHR without generating ROS [163,170].
Ketoconazole, similar to Bidens pilosa extract, was able to activate AHR, as demonstrated by the
upregulation of CYP1A1, but also, simultaneously, to induce the translocation of Nrf2 to the nucleus and
the expression of NQO1 [163,170], thus producing concurrently a pro-oxidative poison and its antidote.

Therefore, AHR-induced oxidative stress is likely to be evoked in a ligand-dependent manner
and associated with ligand capacity to induce or not a concomitant anti-oxidative response, hence
preserving or not the cellular redox balance [171]. However, it remains largely unknown how AHR
activators differentially affect the oxidative stress response in the skin and how these processes might
affect AD.

Thus, functional AHR and its downstream target, namely CYP1A1, have been shown to be
overexpressed in AD skin [127,141,142]. Moreover, the activation of AHR by noxious molecules, such
as pollutants, might sustain or elicit abnormal epidermal barrier function, Th2/Th17/Th22 inflammation,
and pruritus in skin via mechanisms which include oxidative stress in KCs (Table 1). In addition,
AHR promotes AD development in mice upon constitutive activation that does not require ligand
binding [127]. This finding is important because it revealed the skin’s response to chronic AHR
activation, regardless of the type of ligand, and the capacity of sustained AHR activation via repetitive
exposure to pollutants, SNPs or epigenetic modifications to contribute to AD pathogenesis.

Table 1. Dual effects of AHR in atopic dermatitis.

Pro-AD Anti-AD

Ligands
High affinity TCDD, PCB53, PAHs

(DMBA, BaP), FICZ TCDD, ITE

Low affinity none Tapiranof, indole-3-aldehyde

Epidermis
Hyperplasia Hyperkeratosis

↑KRT16
Dry skin (SNPs)

↑late differentiation
↑FLG, ↑IVL, ↑LOR, ↑HNRN,
↑LCE3, ↑FLG2, ↑IL1B
↑CER1-7, ↑CER9

Inflammation

↑IL8, ↑IL6, ↑TSLP, ↑IL1B,
↑CXCL5, ↑CXCL1,

↑IL4RA, ↑GMCSF, ↑IL18
↑COX2
↑Th22
↑Th2
↑Th17 (?)

↑LC activation and migration

↓CCL26
↓TSLP
↓Th17 (?)

↑immunosuppressive Tregs

Oxidative stress

↑CYP1A1, ↑CYP1B1
↑NADPH oxidase
↓glutathione system

Mitochondrial dysfunction

↑NQO1
↑Nrf2

Cell damage

DNA damage
↑NF-κB
↑COX2

↑IL-6, ↑IL-1α

Nervous system Alloknesis
↑ARTN (not FICZ)

Atopy (atopic march)
↑serum IL-4 & IL-5,
↑serum IgE

allergic rhinitis (SNPs)

↑: upregulation, ↓: downregulation, ?: controversial.
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3.1.2. When AHR Ameliorates AD

Promotion of Keratinocyte Late Differentiation and Ceramide Synthesis by AHR

AHR has been shown previously to modulate epidermal barrier function, as illustrated by the
significant acceleration in epidermal barrier formation in mouse fetuses after exposure to TCDD [172].
TCDD induced growth arrest in KCs and reduced early KC differentiation, whereas it augmented their
late differentiation and the expression of IL1B, a gene encoding a cytokine released by KCs to restore
epidermal barrier function [169,172–175], thus pointing to a role of AHR in KC differentiation [175,176].
This was confirmed by work carried out in AHR-deficient mice or KCs treated with AHR antagonists,
or showing upregulation of AHR and its downstream gene CYP1A1 upon KC differentiation [176].
Moreover, AHR ligands were capable of upregulating FLG mRNA levels and increasing FLG amounts,
regardless of their nature [175]. This might be beneficial in adult AD by contributing to the restoration
of natural moisturizing factor (NMF), and thus proper skin hydration [177]. Nevertheless, oxidative
stress seems to be required to mediate FLG upregulation via AHR because antioxidants were able to
block the positive effect of TCDD on the expression of cornified envelope proteins [169]. This is in line
with previous work showing the role of oxidative stress in KC differentiation [178–182]. Moreover,
the human FLG promoter contains an AHR responsive element, also putatively, the HRNR, FLG2 and
LCE3E promoters [172]. Altogether, those data show that AHR upregulates KC differentiation via
direct DNA binding and via indirect pathways requiring mild oxidative stress. As an illustration,
coal tar is able to attenuate the deleterious effects of the addition of Th2 cytokines to 3D organotypic
cultures generated with KCs isolated from AD patient skin by re-inducing the expression of FLG, LOR
and HNRN, and dampening that of CCL26 [134]. These effects occurr potentially via downregulation of
phospho-STAT6 and the translocation of Nrf2 to the KC nucleus, leading to the subsequent upregulation
of NQO1 [134]. However, TCDD was not able to recapitulate all these effects, suggesting there are
other players besides AHR involved in bringing the beneficial effects of coal tar to KC differentiation.
Nevertheless, the AHR agonist tapinarof (GSK2894512), a bacterial metabolite, was able to ameliorate
AD [183,184] via the AHR-Nrf2 axis [185] and upregulation of the expression of late differentiation
markers in KCs, including FLG, IVL and HNRN via AHR activation [185], very similarly to coal
tar [134,186,187].

In AD, the total amounts of ceramides, as well as their composition, are altered (see above).
TCDD significantly increased ceramide de novo synthesis (i.e., CER 1–7 and CER9 [169]), suggesting
another possible beneficial effect of AHR on the epidermal barrier. However, the role of AHR in lipid
metabolism and especially in ceramide synthesis deserves further investigation.

Thus, AHR activation might contribute to the restoration of epidermal barrier function in AD
(1) via effects on late differentiation markers, (2) via pathways that do not always implicate changes in
gene expression (i.e., oxidative stress) and (3) via the synthesis of various ceramides. Interestingly,
effects on KC differentiation seem little dependent on the nature of AHR ligands, in contrast to all other
effects aforementioned.

Anti-Inflammatory Effects of AHR Activation

The anti-inflammatory effects of AHR goes beyond its role in KCs. AHR is expressed in immune
cells, where it can modulate the immune response. In AD, the percentages of circulating regulatory T
cells (Tregs) are consistently found to be increased, but their numbers may be insufficient to counteract
ongoing inflammation, or they may even contribute to inflammation by re-differentiating into Th-like
cells (e.g., “Th2-like” and “Th17-like” cells) [188–192]. AHR activation by synthetic (e.g., TCDD)
or endogenous (e.g., ITE) ligands increased the differentiation of CD4+ T cells into functional Tregs

exhibiting suppressive activities in mice through various mechanisms, including effects on dendritic
cells [55,155,193–197]. In line with this, AHR can modulate the function of Tr1 cells [55]. However, it
is not clear yet whether specific subpopulations of FoxP3+ Tregs express higher levels of AHR [198],
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rendering them more susceptible to modulation by AHR agonists. In regard to Tregs, activation of AHR
via FICZ in lymphocytes has given conflicting results so far [155,196,199].

AHR has been reported to the control Th17 immune response. Tapinarof reduced IL17A mRNA
levels in lymphocytes in an AHR-dependent manner [185], as reported for TCDD [153]. However,
AHR activation by FICZ gave discrepant results [153,155,196,199].

Patients with AD can experience disease relief in summer owing to immunosuppressive effects of
sun. Sun light and UVB induced CYP1A1 in KCs via the production of trace amounts of FICZ and the
subsequent activation of AHR [200–202]. Thus, one can speculate that FICZ-mediated AHR activation
following UV exposure may contribute to localized, beneficial immunosuppression in AD patients via
effects on KCs and dendritic cells rather than via direct effects on Treg and Th cell fate.

Beneficial Interaction between AHR and the Skin Microbiota

Recently, Ellen von der Bogaard’s team has shown that topical application of coal tar onto the
skin of AD patients reduced Staphylococcus abundance via upregulation of antimicrobial peptides in a
AHR-dependent manner [203], hence highlighting a new role of AHR in the epidermal antimicrobial
barrier. Moreover, AHR activation by indole-3-aldehyde, an indole derivative of tryptophan catabolism
by the gut microbiota but also found at the skin surface [133], has been shown to alleviate AD-like
symptoms in a mouse model of AD induced by MC903. The development of AD symptoms in
this mouse model is mediated by the initial increase of TSLP production in KCs which primes LCs
to initiate Th2-predominant skin inflammation [40,204]. Indole-3-aldehyde was found to inhibit
the MC903-induced expression of TSLP in KCs, in vivo and in vitro, via AHR binding to the TSLP
promoter [133]. Thus, AHR binding to the TSLP promoter can alternatively promote [127] or reduce [133]
TSLP expression, highlighting the dual role of AHR in inflammatory skin reactions and emphasizing
the importance of the context, the nature of the ligands, and ligand affinity.

Recent work showed a dampened tryptophan degradation pathway in the skin microbiota of
AD patients when compared to healthy controls [205]. These results suggest lower amounts of AHR
anti-inflammatory ligands in AD skin and the putative requirement of chronic activation of AHR
by such ligands in the maintenance of healthy skin. In agreement, others found lower levels of
indole-3-aldehyde at the skin surface of patients with AD, regardless of the presence of skin lesions, in
contrast to the levels of tryptophan, kynurenine and 5-hydroxy-L-tryptophan, all of which remained
unchanged [133]. Of note, IL-22 production by Th22 cells in the skin after AHR activation might be
protective against microbial infection [206–208]. However, recent work has shown little effect of IL-22
in AD pathogenesis [209].

Thus, taken together, these data suggest that the composition of low-affinity AHR ligands
produced by the skin microbiota [210] in AD is skewed toward a pro-inflammatory profile due to
depletion of indole-3-aldehyde. However, indole-3-aldehyde is synthesized by Lactobacillus, whose
amounts are not modified in AD skin [205,211,212]. Thus, further work is required to better delineate
the role of the skin microbiota in providing the skin with anti-inflammatory AHR ligands.

Thus, AHR activation by ligands, regardless of their receptor affinity and toxicological properties,
triggers KC late differentiation, and FLG especially. This might contribute to the restoration of the
proliferation/differentiation balance in AD epidermis and the amelioration of skin hydration via the
increased production of urocanic acid (UCA) and pyrrolidone carboxylic acid (PCA), components of
NMF, which could help ameliorate the epidermal barrier function. Surprisingly, the beneficial effects
of ligands on KC differentiation seem totally independent of their capacity to exert proinflammatory
effects. Instead, the positive effects might be related, at least in part, to the capacity of the ligands to
induce controlled oxidative stress. In contrast, low-affinity AHR ligands, including microbe-derived
metabolites, might exert beneficial effects in AD via anti-inflammatory effects (Table 1). As a potential
mechanism, high-affinity ligands might induce long activation of the receptor, resulting in damaging
effects, whereas low-affinity ligands might induce short activation leading to beneficial effects. This is
corroborated by data obtained in AHR transgenic mice [127]. Thus, development of therapeutic
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treatments aimed at ameliorating AD might focus on the development of low-affinity AHR ligands
that combine all the positive effects of AHR activation.

3.2. PXR in Atopic Dermatitis

The role of PXR in the skin has been little investigated [213] even though the skin is an important
xenobiotic metabolizing organ which expresses several PXR target genes [54,125,213–215]. Natural
PXR ligands in the skin are not known, but could include progesterone and cholesterol, and their
derivatives, bile acids, pregnanes and corticosterone [216–221]. The skin is in daily contact with
various noxious molecules (e.g., pesticides) contained in water, skin care products and the air, which
are potential PXR ligands [108]. Increased concentrations of air pollutants containing PXR ligands are
positively associated with AD, and the levels of endocrine disruptors, such as phthalates, are elevated
in the dust collected from the bedrooms of children with AD [128,222]. Air pollutants, of which several
are lipophilic, can penetrate the skin [123] to activate PXR. However, PXR activation has also been
shown to exert anti-inflammatory effects, thus necessitating a closer examination of the role of PXR in
the skin and in AD.

3.2.1. Circumstances in Which PXR Aggravates or Provokes AD

Constitutive PXR Activation Impairs the Function of the Epidermal Barrier

Skin contact with phthalates, pesticides, bisphenol A and PAHs leads to oxidative stress in KCs,
which can evolve into skin disease [129]. Moreover, basal KCs are a major target of topically applied
chemicals [223], and many of these molecules activate PXR [224–227]. Thus, PXR activation in the
skin might ultimately lead to skin diseases. To investigate the effects of chronic PXR activation in
the skin without being dependent on ligand properties, we generated transgenic mice expressing
a constitutively activated human PXR under the control of the KRT14 promoter. We reported that
transgenic mice displayed increased transepidermal water loss (TEWL) and elevated skin pH, abnormal
stratum corneum lipids, focal epidermal hyperplasia, activated KCs expressing more TSLP, a Th2/Th17
skin immune response and increased serum IgE, thus nicely recapitulating the main features of
AD. Furthermore, the cutaneous barrier dysfunction in these mice preceded development of skin
inflammation, thereby mirroring the time course of AD development in humans [2,3]. Moreover,
further experiments suggested increased PXR signaling in the skin of patients with AD as compared
with healthy skin. Indeed, we observed increased nuclear localization of PXR in KCs of AD skin,
suggesting constitutive activation of PXR. In line with this, we found a dramatic increase of CYP3A4
immunostaining in the epidermis of AD patients when compared to that of healthy donors [126].
Likewise, the expression of several PXR target genes was significantly enhanced in the skin of AD
patients when compared to both healthy subjects and patients with ichthyosis vulgaris (IV) [37]. IV is
a monogenetic skin disease resulting from loss-of-function mutations in FLG. Nonlesional AD and IV
share several common pathological features, such as dry skin, epidermal hyperkeratosis, and abnormal
lamellar bodies and lipid bilayers [33]. However, in contrast to AD, IV skin does not display overt
inflammation. Thus, we speculated that increased xenobiotic metabolism might promote the shift
from noninflammatory dry skin to inflammatory skin. Whether this owes to increased penetration
by noxious molecules into skin that has a compromised epidermal barrier remains to be elucidated.
Another possible hypothesis is that the enhanced xenobiotic metabolism in AD skin is a consequence of
the inflammation and not its cause. However, upregulation of key genes involved in drug, pollutant or
chemical metabolism has never been reported in psoriasis, another common inflammatory skin disease
with abnormal epidermal barrier function, thus ruling out this hypothesis [228,229]. Interestingly, PXR
overexpression or chronic activation in the skin might promote local inflammation via the upregulation
of CYP24, which, in turn, will increase the catabolism of the active form of vitamin D [120]. So,
persistent PXR activation in KCs by environmental pollutants may compromise epidermal barrier
function and favor an immune response resembling AD.
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Role of PXR in AD via Control of Langerhans Cells

PXR is expressed in LCs and we have shown that PXR deficiency promotes the migration of LCs
to skin, draining lymph nodes after topical application with DMBA via the upregulation of CCR7,
resulting in reduced damage to KCs [54]. These results suggest that PXR activation might be deleterious
to KCs, especially after activation by noxious molecules. Consistent with this, LCs treated with DMBA
have been shown to upregulate CYP1B1 and Epxh1, thereby producing active DMBA metabolites and
increasing its toxicity to surrounding KCs [147]. Thus, one can speculate that activation of PXR in
LCs by noxious molecules might trigger their biological activation via the upregulation of phase I
enzymes, such as CYP3A4 and CYP1B1. Then, PXR activation, by blocking LC migration, might lead
to accumulation of activated molecules in the epidermis and increase their toxicity, thus promoting the
release of pro-inflammatory factors by KCs. This is relevant for AD because increased DNA damage to
KCs has been observed in AD, as proven by increased levels of 8-OHdG in the serum and urine of
patients [159,230].

Thus, activation of PXR by environmental pollutants might contribute to the development of
AD symptoms by impairing the epidermal barrier function and promoting inflammation (Table 2).
Nevertheless, the mechanism through which PXR triggers AD remains to be elucidated but could
include effects on oxidative stress, vitamin D, immunity and lipid metabolism.

Table 2. Dual effects of PXR in atopic dermatitis.

Pro-AD Anti-AD

Ligands
High affinity TCDD, PAHs (DMBA, BaP)

Pollutants (??) Rifampicin, others??

Low affinity ?? ??

Epidermis

Focal hyperplasia Mild
hyperkeratosis
↑KRT16
↑TEWL

↑surface skin pH
↑ki67+ KCs

↑ short chain ceramides

↑FLG

Inflammation ↑IL6, ↑TSLP, ↑IL1B, ↑IL13,
↑CCL27, ↑IL18

↓IFN-γ
↓COX2

↑Th2
↑Th17 (↑IL17A)
↑ LC activation

↑ILC2
dermal inflammatory infiltrate

(eosinophils, T cells)

Oxidative stress ↑CYPs

Cell damage ↑DNA damage

Atopy (atopic march) ↑serum IgE, ↑serum IgG1
↑Th2 in lymph nodes

↑: upregulation, ↓: downregulation, ??: unknown.

3.2.2. Circumstances in which PXR Ameliorates AD

To date, PXR has never been investigated as an anti-inflammatory target to treat AD. However,
like AHR, PXR displays both pro- and anti-inflammatory effects. PXR is expressed in immune
cells, where its activation exerts anti-inflammatory effects. We have shown that PXR is upregulated
in activated T-lymphocytes, especially upon activation with TLR ligands, such as LPS and CpG
oligodeoxynucleotides [52]. Activation of PXR with specific ligands reduced the production of
IFN-γ by LPS/CpG activated CD4+ T cells via the upregulation of SOCS1, a master switch for IFNG
expression [52]. This is in line with other work showing an anti-inflammatory role of PXR via negative
regulation of TLR4, a critical determinant of LPS signaling [60]. Moreover, earlier work showed
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rifampicin, a potent activator of human PXR, to be a suppressor of both humoral and cellular immunity
and a powerful immunosuppressive drug [231,232]. Identically to AHR, reciprocal repression between
PXR and NF-κB has been shown, at least in the intestine [115,233]. In the colon, PXR-mediated
repression of NF-κB target genes appeared to be a critical mechanism by which PXR activation lessened
gut inflammation [233].

Thus, pharmacological PXR activation with specific ligands might be beneficial to alleviate
symptoms via immunosuppressive effects on lymphocytes in patients with chronic adult AD in which
a Th1/IFN-γ predominant immune response is observed (Table 2). Similar to AHR, the nature of
PXR ligands (low versus high affinity) and duration of PXR activation (chronic versus sequential)
might determine the pro- versus anti-inflammatory effects of PXR activation. Moreover, for PXR, a
cell-dependent effect might be predictable (KCs versus immune cells). Yet, further work to better
characterize the circumstances under which PXR exerts its multiple effects is required.

3.3. PPARs in Atopic Dermatitis

The role of PPARs in the skin has been extensively reviewed [66–68,234–236]. PPARα is present in
suprabasal KCs, where it may participate in differentiation and lipid metabolism [237,238]. However,
most results have been generated in mice or human KCs treated with supraphysiological doses of
PPARα ligands [239]. Similar statements can be made concerning PPARγ and PPARβ/δ [240,241]. Thus,
the physiological role of PPARα in human skin remains to be fully deciphered. Nonetheless, topical
application of various PPARα ligands has proven to be efficacious in reducing skin inflammation in
AD patients [234,235,242,243], in contrast to PPARγ and PPAR β/δ ligands, which have not shown
consistent therapeutic effects [241,244,245]. The beneficial effects of PPARα ligands in AD are mediated
via effects on lipid metabolism, normalization of KC hyperproliferation and promotion of late KC
differentiation, notably by increasing FLG. All these processes, as well as potential anti-inflammatory
effects, contribute to restoring the epidermal barrier [234,235,242,243].

PPARA mRNA levels are reduced in lesional AD skin when compared to healthy and nonlesional
skin [34,246], similar to PPARG [34]. Cellular abnormalities in lesional AD skin include production of
alarmins, also referred as to DAMPs (TSLP, IL-33, HMGB1 and IL-α), by damaged KCs. The reasons
why KCs are damaged in AD is not yet known but might result from a combination of genetic
(e.g., FLG loss-of-function mutations), epigenetic and environmental (e.g., pathogenic microbiota,
pollution) factors. Interestingly, PPARA mRNA levels were reduced in KCs after UVB irradiation
and topical application of a cream containing 5% WY14,643, a well-known PPARα agonist, alleviated
UVB-induced erythema [247]. Indeed, PPARα might be dampened in damaged KCs via activation
of TLR signaling (e.g., TLR2 and TLR4) by DAMPs (e.g., HMGB1), and subsequent activation of
NF-κB, leading to the release of proinflammatory mediators known to inhibit PPARA expression (e.g.,
IL-1β) [248,249] Moreover, PPARα deficiency has been shown to be proinflammatory by promoting
the expression of various inflammatory mediators by KCs and immune cells and impairing Treg

expansion [66–68,246,250,251]. Thus, local and transient PPARA downregulation in lesional AD might
result from damage inflected on KCs, but then promote tissue regeneration by favoring KC proliferation
and the release of inflammatory mediators involved in epidermal barrier recovery. However, these
effects might not cover the entire role of PPARα in the epidermis. Moreover, it is likely that persistent
PPARα downregulation in this context might, over the long run, become deleterious for the skin.

Interestingly, PPARα can be activated by xenobiotics, such as phthalates, tributyltin, PCBs,
bisphenols, DDT, perfluorooctanoic acid and perfluorooctanesulfonic acid to induce peroxisome
proliferation and exert deleterious effects on cells [47,252–256]. Moreover, several genes involved in
xenobiotic metabolism are regulated by PPARα [257,258]. Furthermore, DEHP moderately upregulates
PPARA [259]. Therefore, PPARα might be involved in the toxic effects caused by environmental
pollutants. Notably, several studies have demonstrated the impact of such molecules on the metabolism
and function of sex steroids through PPAR signaling [254]. This might be relevant in skin diseases,
including AD [260]. However, such noxious molecules are low-affinity PPAR activators and further work
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is required to delineate in vivo the significance of PPAR altered signaling in response to environmental
pollutants, including in the skin [252]. Moreover, similar to AHR and PXR, PPAR ligand properties
determine the recruitment of co-activators, thus leading to different metabolic responses. Another level
of complexity with PPARs is the ability of their ligands to directly regulate metabolic pathways due to
“off-target” mechanisms. PPAR ligands can activate kinases able to phosphorylate PPARs and change
their transcriptional activity [252]. Moreover, PPAR ligands can exert anti-inflammatory effects in the
skin by directly inhibiting pro-inflammatory enzymes (e.g., myeloperoxidase) [261] and modulators
(e.g., iNOS, COX-2 and TNF-α) [262,263]. This last point is unfortunately often neglected.

Thus, PPARα ligands exert beneficial effects in AD not only via activation of PPARα but likely also
via direct effects (whose proportional contribution remains to be determined) on pathways that remain
to be identified. Indeed, these latter PPAR-independent effects of PPARα ligands are poorly understood.
Finally, the role of PPARα as a xenobiotic receptor in the skin remains to be fully elucidated.

4. Xenobiotic Receptor Mates in AD: LXRs

Both LXRα and LXRβ are expressed in the skin, where their role has already been reviewed [65,67].
Natural LXR ligands include oxysterols, PUFAs, arachidonic acid and PGF2α, which are present in
the skin [65]. LXRs inhibit proliferation and promote differentiation of KCs [264,265]. Furthermore,
LXR activation exerts anti-inflammatory and anti-oxidant effects [65,67]. Nevertheless, their beneficial
effects on epidermal barrier function and in inflammation have so far been attributed to effects on lipid
metabolism [65,266–269]. By extrapolating the beneficial effects of LXR ligands in the skin, the authors
of a recent article concluded that LXR ligands might be promising drugs to treat AD [270], although
the role of LXRs in AD has not yet been investigated. However, the role of LXRs in human immune
cells has been extensively studied and recently reviewed [267,268]. Of note, we found increased levels
of LXRβ but unchanged levels of LXRα in AD skin, suggesting a role of LXRβ but not of LXRα in AD
(S. Dubrac, unpublished data).

Topical treatment with pharmacological doses of synthetic LXR ligands (GW3965 and T0901317)
ameliorated epidermal hyperplasia and skin inflammation, as well as ultrastructural abnormalities,
including lamellar body secretion in a mouse model of AD [245]. This is in contrast with the topical
application of the natural LXR ligand, 22(R)-hydroxycholesterol, which lacked any benefit. Authors
speculated that this naturally-occurring LXR ligand could be metabolized further into an inactive
species or act as a bulk lipid, hence destabilizing extracellular lamellar bilayers [245]. Hubaux et al.
employed human epidermal equivalents (HEEs) generated with cells from healthy donors and treated
with Th2 cytokines to mimic AD, as well as primary cells isolated from AD skin [271]. Concomitant
treatment of HEEs with Th2 cytokine cocktail and the LXR agonist GW3965 prevented cellular and
molecular abnormalities induced by the Th2 cytokines [271]. However, the authors showed that
addition of Th2 cytokines to HEEs inhibited the expression of several genes that are normally increased
(e.g., LCE3A, SPRR2A and SPRR2B) [37,272] in AD.

In a cohort of patients with mild AD, topical treatment with VTP-38543, a LXR selective agonist,
significantly increased the expression of genes related to epidermal barrier differentiation (LOR and
FLG) and to lipid metabolism (ABCG1 and SREBF1C) in a randomized, double-blind, vehicle-controlled
trial [270]. Moreover, this compound reduced epidermal hyperplasia and restored the balance
between KC proliferation and differentiation, as shown by the reduced levels of KRT16 mRNA [270].
However, VTP-38543 was ineffective at significantly dampening dermal inflammatory infiltrates and
down-regulating the mRNA levels of Th17/Th22-related and innate immunity markers. Thus, while
LXR ligands might be able to ameliorate epidermal barrier defects by normalizing KC proliferation and
lipid metabolism, they appear to lack efficacy for alleviating inflammation in AD. Thus, therapeutic
approaches based on LXR ligands might better suit patients with low to mild AD or be proposed as
a treatment to prevent AD flare. However, further studies are required to prove their efficacy and
determine which LXR isoform is better to target.
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LXRs are not primary xenobiotic receptors, but have shown interactions with AHR and PXR (see
below), and to a certain extent, are activated by environmental pollutants. Phthalates, organophosphates
and fibrates are able to activate LXRα with affinities similar to that of oxysterols, the natural LXR
ligands, and to induce changes in the expression of LXRα target genes [273]. Moreover, peaks of
ozone (O3) are potentially associated with exacerbation of AD symptoms [274] and with asthma [275].
In the lungs, O3 interacts with cholesterol to produce O3-derived oxysterols whose pro-inflammatory
effects might be at least partly mediated via the formation of lipid–protein adducts with LXR. This
might dampen LXR signaling and lead to abnormal lipid metabolism and adverse health effects [276].
Observation of the effects of O3 in lungs might also hold true in the skin [277] and in AD [274,278].

Thus, LXRβ expression is increased in AD, potentially as a counteracting mechanism aimed at
restoring the barrier via effects on lipid metabolism. Moreover, drugs targeting LXR might exert
beneficial effects on low to mild AD and contribute to the prevention of disease flares by ameliorating
the quality of the epidermal barrier. However, further research is required on LXR in the context of AD.

5. AHR, PXR, LXR and PPAR Crosstalk

Interactions between AHR, PXR, PPARs and LXRs have been demonstrated in various organs,
such as the liver and intestine, but so far, not in the skin. However, one can expect that similar
crosstalk occurs in the skin as well. AHR and PXR not only regulate overlapping pathways [279–281],
they also exert mutual regulation [282,283]. Indeed, activation of PXR by rifampicin resulted in a
modest induction of AHR, but a marked induction of its target genes CYP1A1 and CYP1A2 [282].
PXR and LXR upregulate several overlapping genes, including CYP3A4 and CD36 [280,283,284], and
LXR can downregulate PXR [283]. PXR and PPARγ similarly regulate genes involved in lipogenesis,
and PXR activation may upregulate PPARG expression [283,284]. Moreover, it has been previously
shown that activation of AHR by Sudan III disturbs lipid and glucose metabolism by inhibiting
PPARα and γ signaling [285] and that the effects of TCDD on diabetogenesis might be mediated via
PPAR antagonism [286], thereby corroborating other work [287]. Thus, AHR activation in the skin
might contribute to PPARA downregulation and, over time, to epidermal barrier dysfunction and
inflammation. Interestingly, PPARα has been reported to possess two DNA binding sites on the CYP1A1
promoter [288] and to control the expression of several genes involved in xenobiotic metabolism,
described as PXR and/or AHR target genes [281], thus confirming crosstalk between PPARα and the
two other receptors. Moreover, crosstalk between PPAR and LXR has also been identified. PPAR and
LXR coregulate a panel of genes involved in cholesterol efflux [289]. Furthermore, a PPAR responsive
element (PPRE) has been found in the human LXRα flanking region [290]. This is in line with data
showing diminished binding of LXR/RXR to LXRE upon activation of PPARα and PPARγ [291]. Finally,
LXRα can interact with all three PPARs to inhibit peroxisome proliferator signaling [292,293]. Thus,
PPARs and LXRs play opposite roles in regulating lipid metabolism.

Therefore, an ongoing challenge is the difficulty of being able to discriminate the effects of one
receptor from those of another due to (1) overlapping ligands and (2) the capacity of receptors to
interact with each other [294]. Thus, because xenobiotic receptors and their mates engage in crosstalk
(Figure 1), the definitive attribution of specific effects to either receptor is fraught with potential error.
Therefore, studies of the roles of such receptors in AD should in the future include, as much as possible,
experiments to rule out involvement of other xenobiotic receptors.
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Figure 1. Selected examples of crosstalk between PXR, AHR, PPARs and LXRs. Plain lines designate
an activation, whereas dotted lines designate an inhibition.

6. Conclusions

Taken together, there is sufficient evidence to support involvement of xenobiotic receptors and
their mates in AD, by either exacerbating or ameliorating the condition, although mechanisms remain
to be deciphered, and circumstances under which receptors exert one or the other effect remain to be
determined. The current body of literature emphasizes the complexity and often contradictory results
and mechanisms associated with receptor activation. The context and the nature of ligands, as well
as the duration of the activation, clearly determine the detrimental or beneficial outcome. Indeed,
the nature of the ligands—availability, structure, half-life and affinity to the receptor—can lead to
diverse cellular responses via processes involving the recruitment of different co-factors [73,252,295].
Noxious molecules, which are, in most cases, high-affinity ligands, might induce prolonged activation
of xenobiotic receptors and be deleterious because of ROS production, for example. In contrast,
endogenous or microbe-derived ligands, considered for many (not for all) as low-affinity ligands,
might only transiently activate the receptors, thus either limiting their potential deleterious effects
or even exerting beneficial effects. Therefore, the affinity of ligands to xenobiotic receptors is likely a
critical parameter in AD pathogenesis. Other hypotheses include ligand-dependent post-translational
modifications of the receptor, thereby affecting its function. Importantly, the effects of ligands have to be
distinguished from those owing to receptor activation, because ligands can exert receptor-independent
effects [107,252]. Thus, future work should include gene-silencing strategies or receptor antagonists
to verify the requirement of the receptor for the observed effects. Discriminating receptor versus
non-receptor-mediated effects will serve the development of therapeutically relevant compounds.
Moreover, crosstalk between xenobiotic receptors and their mates complicates the attribution of
effects solely to one receptor, necessitating complementary experiments to rule out effects from
related transcription factors. For example, the use of transgenic mice overexpressing a constitutively
activated receptor, and thereby circumventing many of the aforementioned problems linked to ligand
or receptor specificity [126,127], demonstrated pathogenic roles of AHR and PXR in AD. However,
these observations in mice need to be validated in humans. Thus, understanding the role of xenobiotic
receptors and their mates in AD is crucial for limiting exposure to drugs or environmental pollutants
that help trigger the disease, and in aiding the development of novel therapeutic approaches able
to treat specific disease features (dry skin, epidermal barrier weakness, specific Th inflammation or
superinfection) in a personalized medicine approach.
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Abbreviations

ABC ATP-binding cassette
AD atopic dermatitis
AHR aryl hydrocarbon receptor
AHRR AHR repressor
ARNT aryl hydrocarbon receptor nuclear translocator
ARTN artemin
BaP benzo(a)pyrene
Bcl-2 B-cell lymphoma 2
Bcl-xL B-cell lymphoma-extra large
CAR constitutive androstane receptor
CBP CREB-binding protein
CCR7 C-C chemokine receptor 7
CDC cell division cycle protein homolog
CER ceramide
CREB cAMP response element-binding protein
COX2 cyclooxygenase 2
CYP cytochrome P450
DAMP damage-associated molecular pattern
DDT dichlorodiphenyltrichloroethane
DEP diesel exhaust particle
DEPH di-2-ethylhexyl phthalate
DMBA 7,12-dimethylbenz[a]anthracene
FA fatty acid
FICZ 6-formylindolo[3,2-b] carbazole
FLG filaggrin
FXR farnesyl X receptor
GM-CSF granulocyte-macrophage colony-stimulating factor
GST glutathione S-transferase
HEE human epidermal equivalent
HMGB1 high mobility group box 1
HNRN hornerin
Hsp90 heat shock protein 90
8-OHdG 8-hydroxydesoxyguanosine
IFN interferon
IL interleukin
ITE 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester
iNOS inducible nitric oxide synthase
IV ichthyosis vulgaris
IVL involucrin
KC keratinocyte
KRT keratin
LC Langerhans cell
LCE late cornified envelop
LPS lipopolysaccharide
LOR loricrin
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LXR liver X receptor
MDR multidrug resistance protein
MRP multi resistance-related protein
NADPH nicotinamide adenine dinucleotide phosphate
NCoR/SMRT nuclear receptor co-repressor
NF-B nuclear factor kappa-light-chain-enhancer of activated B-cells
NHR nuclear hormone receptor
NMF natural moisturizing factor
NOx nitrogen oxides
NQO1 NADPH quinone oxidoreductase 1
NRF2 nuclear factor (erythroid-derived 2)-like 2
O3 ozone
OR odds ratio
PAH polycyclic aromatic hydrocarbon
PCB polychlorinated biphenyl
PG prostaglandin
PPAR peroxisome proliferator-activated receptor
PUFA polyunsaturated fatty acid
PXR pregnane X receptor
ROS reactive oxygen species
RXR retinoid X receptor
SNP single-nucleotide polymorphism
STAT signal transducer and activator of transcription
SOCS suppressor of cytokine signaling
SREB1c sterol regulatory element binding protein 1c
SRC-1 steroid receptor coactivator-1
SULT sulfotransferase
SUMO small ubiquitin-like modifier
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
TEWL transepidermal water loss
TLR toll-like receptor
TNF- tumor necrosis factor
Treg regulatory T cell
TSLP thymic stromal lymphopoietin
UGT uridine 5′-diphospho-glucuronosyltransferase
XAP-2 HBV X-associated protein 2
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