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Abstract: Over the past decade, the idea of targeting the endocannabinoid system to treat anxiety disorders has received increasing 
attention. Previous studies focused more on developing cannabinoid receptor agonists or supplementing exogenous cannabinoids, 
which are prone to various adverse effects due to their strong pharmacological activity and poor receptor selectivity, limiting their 
application in clinical research. Endocannabinoid hydrolase inhibitors are considered to be the most promising development strategies 
for the treatment of anxiety disorders. More recent efforts have emphasized that inhibition of two major endogenous cannabinoid 
hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), indirectly activates cannabinoid receptors by 
increasing endogenous cannabinoid levels in the synaptic gap, circumventing receptor desensitization resulting from direct enhance
ment of endogenous cannabinoid signaling. In this review, we comprehensively summarize the anxiolytic effects of MAGL and FAAH 
inhibitors and their potential pharmacological mechanisms, highlight reported novel inhibitors or natural products, and provide an 
outlook on future directions in this field. 
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Introduction
Anxiety disorders represent prevalent mental health conditions characterized by persistent psychogenic anxiety, somatic 
anxiety, and sleep disorders. According to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition 
(DSM-5), the classification of anxiety disorders includes Generalized Anxiety Disorder, Phobias (including specific 
phobias and social anxiety disorder), Panic Disorder, as well as other anxiety-related conditions such as Separation 
Anxiety Disorder and Selective Mutism.1 The global prevalence of anxiety disorders ranges from 7.3% to 28.0%, making 
them a significant concern worldwide.2 Specifically, in China, anxiety disorders stand out as the most prevalent mental 
illness, with a lifetime incidence of 7.6%.3

The World Health Organization underscores the significance of anxiety disorders by ranking them as the sixth leading 
contributor to global disability, establishing it as a pressing health and wellness concern that demands attention.4 

Regrettably, the existing repertoire of anxiolytic medications faces challenges in adequately addressing the needs of 
the extensive population affected by anxiety disorders.5 Benzodiazepines and selective serotonin reuptake inhibitors 
(SSRIs) antidepressants are the primary drugs employed clinically for the treatment of anxiety disorders.6,7 However, 
their anxiolytic effects are secondary indications rather than primary, and the drugs, especially benzodiazepines, are 
subject to stringent controls and possess potential addictive properties.8 Consequently, the development of novel drugs 
targeting anxiety disorders remains a focal point in the ongoing research and development of psychotropic medications.

Traditionally, anxiolytic drug development focused on neurotransmitter-based hypotheses, yielding medications like 
eszopiclone and buspirone.9,10 Recent attention has turned to novel approaches, particularly targeting the endocannabinoid 
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system (ECS). The ECS, integral to mood regulation, has been implicated in the pathogenesis of both anxiety and depression, 
underscoring its potential as a novel therapeutic frontier.11 Novel drug designs that target the ECS are considered to be the 
most promising candidates for the treatment of anxiety disorders.12

Studies explore ECS modulation for anxiolysis, including increasing endogenous cannabinoids (eCBs) secretion and 
inhibiting their hydrolase enzymes. However, challenges arise due to the unique characteristics of endocannabinoids. 
Efforts to develop cannabinoid receptor agonists face obstacles like pharmacological intensity and adverse effects. 
A more promising strategy involves inhibiting eCB hydrolases, notably monoacylglycerol lipase (MAGL) and fatty 
acid amide hydrolase (FAAH), indirectly activating cannabinoid receptors. Clinical trials with FAAH inhibitors, such as 
JNJ-42165279, have shown positive anxiolytic potential.13 This paper comprehensively summarizes the anxiolytic effects 
of eCB hydrolase inhibitors, focusing on underlying mechanisms and highlighting novel inhibitors or natural products. 
The insights from existing studies aim to provide new perspectives for the development of innovative anxiolytic drugs.

Endocannabinoid System
The ECS is one of the crucial regulatory systems in the central nervous system, and consists of cannabinoid receptor 1 
(CB1R), cannabinoid receptor 2 (CB2R), eCBs, and their corresponding synthesizing and degrading enzymes. eCBs are 
classified into three categories according to chemical structure: 1) esters: such as 2-arachidonoylglycerol (2-AG), 
anandamide (AEA); 2) amides: such as palmitoylethanolamide (PEA), oleoylethanolamide (OEA); 3) ethers: 2-arachi
donyl glyceryl ether (noladin ether or 2-AGE).14,15 Among them, AEA and 2-AG are more abundant and widely 
distributed in the human body, while specific eCBs such as OEA and 2-AGE can only be detected in particular regions 
of brain tissue.16 Notably, 2-AG is agonistic for both CB1R and CB2R, whereas AEA selectively has a high affinity for 
CB1R but almost no activity on CB2R.17

The ways of synthesis, transport and inactivation of 2-AG and AEA in their respective target tissues are also different. 
2-AG is mainly produced by 1-oleoyl-2-arachidonoyl-sn-glycerol (OAG) and 1-stearoyl-2-arachidonoylglycerol (SAG) via 
diacylglycerol lipase α (DAGLα), whereas AEA produced by N-acylphosphatidylethanolamine (NAPE) catalysed by 
N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD).11 Degradation and inactivation of eCBs mainly 
involve two pathways: hydrolysis and oxidation. MAGL, a specific hydrolase of 2-AG, is mainly distributed on the axons of 
presynaptic neurons and is able to terminate retrograde eCB signaling generated by postsynaptic neuronal activity. 
Approximately 85% of 2-AG in the brain is hydrolyzed and metabolized to arachidonic acid and glycerol by MAGL.18 

AEA was mainly degraded by FAAH into free arachidonic acid and ethanolamine. FAAH, a serine hydrolase mainly present in 
the endoplasmic membrane, is widely distributed in the central nervous system and hydrolyses various fatty acid amides, 
including AEA. In another oxidation pathway, the critical enzyme involved is cyclooxygenase-2 (COX-2), catalyzing the 
synthesis of prostaglandin ethanolamide (PG-EA) and prostaglandin glycerol (PG-G) from 2-AG and AEA.11 Figure 1 briefly 
illustrates the composition of the endocannabinoid system, and the synthesis and degradation pathways of endocannabinoids.

Numerous studies have demonstrated that the anxiolytic effects could be exerted by increasing eCB secretion, applying 
exogenous cannabinoids, agonizing cannabinoid receptors, and decreasing eCB hydrolase activity.19–21 However, unlike 
classical neurotransmitters and neuropeptides, eCBs are not stored within synaptic vesicles, but are produced on demand and 
immediately released from neurons. At the same time, the eCBs synthesis pathways are numerous and complex, and the rate- 
limiting enzymes are plentiful and poorly defined, leading to insignificant gains through the strategy of increasing the activity 
of eCB synthetases. In addition, drug development targeting cannabinoid receptor agonists or adding exogenous cannabinoids 
is susceptible to exclusion from clinical trials or even post-market withdrawal due to stronger pharmacological activity, 
irreversible binding, poor receptor selectivity, and increased risk of adverse effects.22,23 Therefore, the most prominent 
strategies may be to search for inhibitors of eCB hydrolases MAGL and FAAH, especially reversible inhibitors that indirectly 
activate cannabinoid receptors by increasing synaptic gap levels of 2-AG and AEA, respectively.24

2-AG Hydrolase MAGL Inhibitors in Treatment for Anxiety
2-AG, an abundant brain eCB, surpasses AEA levels by 200 times.25 Clinical studies revealed that serum 2-AG levels are 
significantly reduced in patients with post-traumatic stress disorder (PTSD), which was previously often categorized as 
an anxiety disorder.26 Additionally, it has been found that increasing 2-AG levels through exercise can alleviate anxiety 
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symptoms.27 This findings are consistent with rodent studies,28,29 where higher MAGL levels have been strongly linked 
to the production of anxious behaviors.30 Inhibition of MAGL activity enhances central synaptic 2-AG-mediated phasic 
and tonic signaling, which has positive implications in anxiety relief, reduction of stress-induced anxiety susceptibility, 
and fear extinction.31

Anxiolytic Effects of MAGL Inhibitors
Due to MAGL’s pivotal role in regulating 2-AG levels and synaptic transmission, efforts to enhance 2-AG signaling for 
therapeutic purposes have centered on inhibiting MAGL enzyme activity. Numerous pharmacological studies highlight 
that systemic or local administration of MAGL inhibitors can effectively reduce anxiety-like behaviors induced by acute 
or chronic stress (Table 1). For example, aberrant excitation of glutamatergic neurons in basolateral amygdala (BLA)- 
prelimbic prefrontal cortex (plPFC) neural circuit in mice subjected to chronic stress, accompanied by abnormal 2-AG- 
CB1R signal, and administration of a MAGL inhibitor reversed anxiety-like behavior.32 Overexpression of MAGL in 
hippocampal glutamatergic neurons also increases anxiety-like behavior in animals.33 In addition, anxiety-like behaviors 
induced by traumatic brain injury and alcohol withdrawal improved after administration with MAGL inhibitor.34

However, it is important to note that 2-AG levels do not consistently correlate negatively with anxiety disorders. Acute 
stress given to healthy people increased circulating concentrations of AEA in vivo but had no significant effect on 2-AG.45 In 

Figure 1 Composition of the endocannabinoid system. The endocannabinoid system consists of CB1R, CB2R, endocannabinoids, and their corresponding synthesizing and 
degrading enzymes. 2-AG and AEA, the primary endocannabinoids, are produced on demand and are synthesized from the postsynaptic terminals by DAGLα and NAPE-PLD, 
respectively, to activate presynaptic cannabinoid receptors. CB1R activation inhibits presynaptic neurotransmitter release and promotes astrocytic glutamate release. CB2R 
activation reduces microglial inflammatory factor production. 2-AG and AEA are enzymatically degraded to AA by MAGL and FAAH hydrolases, and can also be oxidatively 
degraded to PG-EA and PG-G by COX-2. 
Abbreviations: CB1R, cannabinoid receptor 1; CB2R, cannabinoid receptor 2; 2-AG, 2-arachidonoylglycerol; AEA, anandamide; NAPE-PLD, N-acylphosphatidylethanolamine- 
specific phospholipase D; DAGLα, diacylglycerol lipase α; AA, arachidonic acid; MAGL, monoacylglycerol lipase; FAAH, fatty acid amide hydrolase; PG-EA, prostaglandin 
ethanolamide; PG-G, prostaglandin glycerol; COX-2, cyclooxygenase-2.
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chronic restraint stress mice, 2-AG levels in the cingulate cortex (ACC), caudate putamen (CP), nucleus accumbens (NAc), 
and piriform cortex (PIR) all increased.46 Similarly, 2-AG content increased in the amygdala of chronic stress-induced anxiety 
mice.41,47 The researchers explained that the above phenomenon was due to CB1R desensitization, as it did not affect the 
anxiolytic effect of applying JZL184. Bedse G’s research also supports the idea that increased 2-AG is a compensatory 
response to counteract anxiety-like behaviors induced by stress, and that 2-AG pharmacological enhancers can augment this 
response to more effectively counteract the adverse effects of stress.38 Therefore, the benefit of elevating 2-AG pharmaco
logically through MAGL inhibitors in the treatment of anxiety disorders is definitive.

Interestingly, instead of demonstrating anxiolytic effects, full knockout MAGL significantly reduced the duration in 
the light box in mice.48 The study found that the CB1R receptor was significantly downregulated in MAGL knockout 
mice, possibly due to enhanced levels of innate endogenous cannabinoids leading to CB1R desensitization and the 
emergence of anxiety-like behavior. Consistent with these findings, CB1R density and functional responses were reduced 
in chronic MAGL inactivation and MAGL KO mice.49 In conclusion, congenital and chronic MAGL inactivation may 
lead to CB1R desensitization and feedback down-regulation, which may inhibit the downstream anti-anxiety effect of 
CB1R, but more in-depth studies are needed.

Anxiolytic Mechanisms of MAGL Inhibitors
Although preclinical studies support the anxiolytic effects of MAGL inhibitors, their specific downstream molecular 
mechanisms remain poorly understood. As shown in Figure 2, we summarized the potential mechanisms of MAGL from 
the following three aspects based on the above pharmacological studies.

Table 1 Summary of the Anxiolytic Effects of MAGL Inhibitors in Preclinical Studies

Drug Dose/Administration Animal Model Test Effects References

JZL184 2, 10, 40 mg/kg, i.p C57BL/6J mice, male – EPM; 
LDT

↑ percent time in open-arm; ↑ percent 
light time

[35]

2 mg/kg, i.p Sprague-Dawley rats, 
male and female

ELS OFT ↑ activity level [36]

1, 3 mg/kg, i.p C57BL/6J mice, male ARS EPM ↑ percent time in open-arm [34]

5, 8, 10, 40 mg/kg, i.p ICR mice, male ARS and 
Foot shock 

stress

LDT; 
NIH; 
EZM; 
OFT

↑ percent light time and distance; ↓ 
feeding latency and ↑ food 

consumption;↑ open arm entries and 
total distance, ↓ time immobile in 
open arm and exit latency; ↑ total 
distance and ↓ number of faeces

[37]

3, 5, 10, 15 mg/kg, i.p ICR mice, male ARS LDT ↑ percent light time, light distance, 
and total distance

[38]

1 μg, intra-NAc 
microinjection

C57BL/6J mice, male CSDS OFT; 
LDT; 
EPM

↑ percent center time; ↑ time in light; 
↑ percent time in open arm

[39]

8 mg/kg, i.p C57BL/6J mice, male CUS EPM; 
LDT

↑ duration and frequency in open arm; 
↑ time and frequency in light 

compartment

[40]

4, 8, 16 mg/kg, i.p ICR mice, male CRS OFT; 
NIFS; 
EPM; 
MBT

No significance in OFT and EPM test; 
↓ feeding latency; ↓ marble burying

[41]

16 mg/kg, i.p C57BL/6J mice, male - MBT ↓ marble burying [42]

KML29 200 ng, intra-vmPFC 
microinjection

Fischer-344 rats, male Tail shocks Social exploration ↑ social exploration [43]

40 mg/kg, i.p Tail shocks Social exploration ↓ social exploration

MJN110 5, 10 mg/kg, i.p Wistar rats, male and 
female

- NIH ↑ feeding consumption [44]

10, 20 mg/kg, i.p Wistar rats, male ARS EPM ↑ percent time in open-arm [34]

Abbreviations: ARS, acute restraint stress; CRS, chronic restraint stress; CSDS, chronic social defeat stress; CUS, chronic unpredictable stress; ELS, early life stress; EPM, 
elevated plus maze; EZM, elevated zero maze; i.p, intraperitoneal; LDT, light-dark box test; MBT, marble burying test; NAc, nucleus accumbens; NIFS, novelty-induced 
feeding suppression; NIH, novelty-induced hypophagia; OFT, open-field test.
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Maintenance of Glutamate/GABA Balance
Glutamate and GABA are representative excitatory and inhibitory transmitters in the central nervous system, which cause 
neurons to generate corresponding excitatory and inhibitory currents through inter-synaptic transmitter transmission. 
Typically, neuronal excitation/inhibition (E/I) is in a dynamic balance. Once this balance is disturbed, especially when it 
tends to be excitatory, it can lead to the development of anxiety disorders. The E/I balance in the PFC, a brain region 
responsible for executive function, stress and emotion regulation, seems to play an important role in the anxiolytic effects 
of MAGL inhibitors.50 PFC projection neurons are involved in the development of anxiety by modulating neural 
signaling in downstream brain regions during exposure to stress.51 Systemic administration of the MAGL inhibitor, 
KML29, increased vmPFC excitability but could be blocked by CB1R or GABA receptor antagonist, which supports the 
conclusion that activation of the CB1R leads to transient inhibition of GABA release and long-term inhibition of 
inhibitory transmission.43 Consistent with this finding, the CB1R agonist 5F-AMB attenuates glutamatergic and 
GABAergic synaptic transmission in mPFC L5 pyramidal neurons, leading to an E/I imbalance.52

Meanwhile, the amygdala, an essential part of the limbic system that controls emotion, plays a crucial role in the 
regulation of anxiety, and maintaining its E/I balance is of great significance.53 MAGL inhibitors inhibit Glutaminergic 
neurotransmission in the amygdala region. It was found that increased expression of multiple glutamate receptors in the 
amygdala, including mGluR1, mGluR5, and NMDAR1, was accompanied by elevated expression of MAGL in an 
alcohol exposure-induced anxiety model,30 and that JZL184 could exert anxiolytic effects by indirectly activating the 
CB1R to reduce NMDAR2B expression.54 Bedse et al found that acute stress increased the frequency of spontaneous 

Figure 2 Schematic representation of the mechanism of anxiolytic action mediated by MAGL inhibitors. Briefly, the anxiolytic effects of MAGL are related to its maintenance 
of Glutamate/GABA balance, inhibition of neuroinflammation, and regulation of corticosterone levels. 
Abbreviations: MAGL, monoacylglycerol lipase; CB1R, cannabinoid receptor 1; 2-AG, 2-arachidonoylglycerol; AMY, amygdala; PFC, prefrontal cortex; HPC, hippocampus; MSDB, 
medial septum and nucleus of the diagonal band; MHb, medial habenula; sEPSC, spontaneous excitatory postsynaptic currents; CB2R, cannabinoid receptor 2; COX-2, cyclooxygenase- 
2; AA, arachidonic acid; PGs, prostaglandins; LTs, leukotrienes; PG-G, prostaglandin glycerol; PGD2-G, prostaglandin D2-glyceryl ester; CRH, corticotropin-releasing hormone; ACTH, 
adrenocorticotropic hormone; CORT, corticosterone.
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excitatory postsynaptic currents (sEPSC) in basolateral amygdala neurons and was positively correlated with anxiety-like 
behaviors, with the above reversed after administration with JZL184.38

Notably, 2-AG is recognized as a potent agonist of CB1R. CB1R is found in both glutamatergic and GABAergic 
neurons, but the relative abundance of glutamatergic and GABAergic neurons in various brain regions varies, potentially 
causing functional alterations in distinct brain regions. Lysine-specific demethylase 1 (LSD1) suppressed hippocampal 
MAGL transcript levels and activated CB1R to inhibit glutamate release in response to anxiety.55 JZL184 enhanced the 
inhibitory effect of 2-AG on the release of GABA from the medial septum and nucleus of the diagonal band (MSDB) 
axons to the medial habenula (MHb) and produced anxiolytic effects.56

Inhibition of Neuroinflammation
Neuroinflammation is considered to be a trigger for behavioral changes and cognitive deficits in several psychiatric 
disorders, including anxiety disorders. Prolonged exposure to stress imbalances the central immune system and affects 
the secretion and function of immune cells and cytokines.57 Currently, MAGL inhibitors play an important role in the 
treatment of central and peripheral inflammation.58,59 The study showed that JZL184 reduced LPS-induced expression of 
IL-1β, IL-6, TNF-α, and IL-10 in the prefrontal cortex and spleen.60

Dual metabolism of 2-AG is closely relevant to the anti-inflammatory effects exerted by MAGL inhibitors. 
Arachidonic acid (AA), the main metabolite of 2-AG hydrolysis by MAGL, is a crucial precursor of proinflammatory 
prostaglandins and leukotrienes involved in inflammatory responses and immune initiation. The latest single-cell 
sequencing found that MAGL KO mice had significantly upregulated genes related to immunity and inflammation in 
microglia and astrocytes, which enable glial cells to react rapidly to insults.61 Specifically knocking out MAGL in 
astrocytes reverses LPS-induced inflammatory activation and is not blocked by the CB1R agonist SR141716.62 Similarly, 
CB1R/CB2R antagonists did not block JZL184 from inhibiting LPS-induced neuroinflammation.63 This suggests that the 
anti-inflammatory effect produced by MAGL inhibition is a direct result of reduced prostaglandin, rather than a profile 
result of enhanced endocannabinoid signaling. In addition, enhanced inhibition of 2-AG hydrolysis can promote the 
oxidation pathway mediated by COX-2 to produce prostaglandin glycerides (PG-Gs), with PGD2-G exhibiting anti- 
inflammatory activation.64

CB2R, which can be fully activated by 2-AG, is mainly expressed in brain microglia and associated with 
neuroinflammation.65 Many studies have confirmed the anxiolytic effect of CB2R agonists, and found that the use of 
CB2R agonist AM1241 inhibited the over-activation of PFC microglia by inhibiting the NLRP3 pathway, thereby 
improving anxiety-like behavior.66 In addition, CB2R activation also promoted the transformation of microglia to M2 
anti-inflammatory phenotype, creating positive feedback by releasing more 2-AG and AEA.67,68 Thus, the effects of 
MAGL inhibitors in improving anxiety may be related to increasing the response of glial cells to external stimuli and 
promoting the polarization transformation of microglia.

Regulation of Corticosterone Levels
The dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, the main regulator of stress response, is one of the 
biological mechanisms of anxiety. Increased corticosterone is an important marker of HPA axis activation. Studies have 
shown that ECS bi-directionally regulates the function of the HPA axis. MAGL inhibitors reduced high corticosterone 
levels in mice 30 min after chronic restraint stress but restored higher corticosterone levels after 120 min, whereas these 
changes were not observed in CB1R knockout mice.69 The reason for these phenomena was the predominant inhibition 
of HPA axis activation during the early phase of JZL184 injection, whereas the sustained activation of CB1R elevated 
circulating corticosterone levels with increasing 2-AG concentrations. Aliczki et al found that metiramone, a cortisol 
synthesis blocker, reversed the increased open-arm time in the EPM test in mice with JZL184, suggesting that the 
anxiolytic effect of JZL184 is accompanied by activation of the HPA axis.70 Glucocorticoids released after exposure to 
stress activate CB1R signaling in the mPFC, inhibit GABA release, and act on the HPA axis negative feedback process to 
appropriately reduce corticosterone secretion.71 Therefore, MAGL inhibitors may exert anxiolytic effects through CB1R- 
dependent glucocorticoid increases.
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Novel MAGL Inhibitors and Natural Product Development
Given the significant pharmacological effects and higher safety of MAGL inhibitors, there is growing attention towards 
the development of novel inhibitors, with substantial efforts underway to identify safer, more effective, and reversible 
MAGL inhibitors. Research has primarily focused on developing novel inhibitors through structural modification of lead 
compounds or the use of fluorescent probes. Finding MAGL inhibitors from natural products has also been a strategic 
approach. Encouragingly, the majority of natural products reported to have MAGL inhibitory activity are reversible, 
enhancing drug safety with their gentle effects.

Reversible MAGL Inhibitors
A total of 96 patents related to MAGL inhibitors were searched (https://patentscope.wipo.int/). Initially developed MAGL 
inhibitors were eliminated due to poor inhibition and lack of selectivity for MAGL. Later, Cravatt et al discovered JZL184, 
which was irreversible, inhibitory, and selective, was widely used in experimental studies. JZL184 is a potent tool compound, 
but it is difficult to use clinically due to the fact that it exhibits some cross-reactivity of FAAH at high doses (40 mg/kg) and 
some species differences in MAGL inhibitory potency.72 Subsequently, KML29 was developed with better selectivity and 
good neuroprotection in a stroke model and good analgesic activity in a migraine model.73,74

However, JZL184, KML29, NAM, SAR629 and CK37 are all irreversible inhibitors of MAGL, which are prone to 
physical dependence, endocannabinoid dependent synaptic plasticity impairment and cross-tolerance to exogenous CB1 
agonists.75 JJKK048 is the first reported reversible, highly selective MAGL inhibitor with powerful analgesic effects and does 
not cause side effects similar to cannabis.76 (R)-3t, a synthetic selective and reversible MAGL inhibitor, reduced arachidonic 
acid levels and increased 2-AG levels in the brain after gavage in mice.77 Recently discovered M-18c, with an IC50 value of 
662.6 nM for MAGL, attenuates LPS-induced acute kidney injury by inhibiting NLRP3-associated inflammation.78 

Compared with irreversible inhibitors, reversible inhibitors have better pharmacokinetic advantages and offer substantial 
advantages in drug safety, tolerability and efficacy, with better development prospects and clinical applications.

Structural Modifications Based on Lead Compounds
Virtual screening based on molecular docking was applied to discover novel reversible MAGL inhibitors. For example, 
Afzal O performed virtual docking of the ZINC database with 21 million compounds and screened seven potential 
activities, of which ZINC24092691 showed significant inhibitory activity.79 DC630-880 and CL6a81 also showed good 
inhibitory activity based on virtual docking. However, the screened compounds have poor drug-forming properties due to 
low screening efficacy. Therefore, many studies of structural modification based on lead compounds and functional group 
replacement have been added to the search for reversible inhibitors. Arylformylpiperidine derivatives developed by Zhi 
et al exhibit good reversible inhibitory properties and significantly ameliorate rifampicin-induced depressive-like 
behavior, providing support for MAGL as a potential therapeutic target for depression.82 In addition, classical MAGL 
inhibitors such as CAY10499, JZL184, and ABX-1431 (also known as Lu AG06466) are classified as carbamate 
derivatives. Tiziano Tuccinardi’s team discovered a series of new compounds with MAGL-inhibitory properties based 
on benzylpiperidine derivatives, such as compound 13 with antipancreatic cancer effects,83 compounds 28 and 29 with 
low in vivo toxicity and high selectivity,84 diphenylsulfide-benzoylpiperidine derivatives with anticancer activity.85

Looking for potential MAGL inhibitory activity in existing drugs is also a strategy. Disulfiram, an aldehyde 
dehydrogenase inhibitor used primarily in the treatment of chronic alcoholism, was shown to be a MAGL inhibitor 
that irreversibly inhibits MAGL through carbamoylation of Cys208 and Cys242 located near the MAGL active site.86 

However, due to the presence of some FAAH inhibitory activity, Omran synthesized compounds targeting MAGL but 
lacking anti-FAAH activity by replacing the two ethyl groups in the disulfide.87 Recently, cetirizine and levetiracetam 
have also been found to have potential MAGL inhibitory activity, with IC50 values of 9.3931 µM and 3.0095 µM, 
respectively, and demonstrated some analgesic and anti-inflammatory activity.88

Consideration of pharmacokinetic distribution is crucial in developing MAGL inhibitors. LEI-515, a recently discovered 
peripherally restricted reversible MAGL inhibitor, interestingly increased 2-AG levels only in peripheral organs but not in the 
mouse brain, hinting at potential applications in peripheral diseases.89 Additionally, the compound properties can be improved 
by structural modification or application of nanocarriers if the pharmacokinetics are not ideal. Muhammad Adeel’s team 
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developed the first nano-formulation of a MAGL inhibitor, MAGL23, which showed promising anti-tumour activity by using 
albumin-complexed nanocrystals that increased its solubility in water from less than 0.01 mg/mL to 0.82 mg/mL.90

Probe Development
Developing MAGL inhibitors based on active molecular probes is also a new strategy. Activity-based protein profiling 
(ABPP) technology, which uses active site-directed covalent probe molecules to detect the functional state of enzyme 
activities in complex proteomes, has been applied to various enzyme classes.91 Cisar et al identified and optimised 
a highly effective, selective and centrally permeable oral MAGL inhibitor, ABX-1431 (Lu AG06466), from a carbamate 
library by ABPP technology, which has entered Phase II clinical trials.92 In addition, some newly screened compounds 
such as quinoid diterpene and β-carbolines,93 as well as newly synthesised structural modifiers based on benzylpiperidine 
and benzylpiperazine,84 were confirmed for their potential MAGL inhibitory activity by ABPP. The ABPP technique was 
also applied in discovering and mapping the distribution of eCB hydrolase activity, and MAGL enzyme activity was 
found to be strongest in the PFC region.94 In conclusion, the ABPP has made it possible to visualize the spatio-temporal 
release of eCB hydrolases with high spatial resolution.

In recent years, many target-labeled radioactive probes have been developed based on MAGL inhibitors, some 
of which have even entered clinical trials. This technology can be used to image the in vivo distribution of MAGL 
and provide a method for subsequent disease diagnosis and treatment. PET imaging using 18F-T-401 was the first 
to image and quantify the distribution of MAGL in the human brain and found that MAGL was highest in the 
cerebral cortex, intermediate in the thalamus and nucleus accumbens, and lowest in the white matter and 
brainstem.95 He et al developed a modified compound 7 based on morpholin-3-one derivatives, which may be 
a potential MAGL PET tracer, and successfully mapped the MAGL distribution pattern on rodent brain in vitro 
radioautography using the fixation method of direct 11CO2 synthesis.96 Based on a unique 4-piperidinylazetidine 
diamide scaffold, Cheng et al developed a reversible and peripherally specific radiolucinated MAGL PET ligand, 
[18F]FEPAD, which has excellent specificity and selectivity for MAGL in brown adipose tissue, a tissue known to 
be metabolically active.97

Natural Product Development
Chemically synthesized MAGL inhibitors face challenges in clinical use due to their potent pharmacological effects and safety 
concerns. The current focus is shifting towards natural products and botanicals to discover milder, safer, and more effective 
reversible MAGL inhibitors. Pritimerin and euphol were the first identified natural products with reversible MAGL inhibitory 
activity.98 Four triterpenoid constituents, including pritimerin and euphol, have been reported to significantly inhibit human 
recombinant MAGL activity, of which pritimerin ameliorated mechanical pain in mice with a concentration-dependent manner.99 

Protium copal, commonly used as incense by the Maya, displayed significant MAGL inhibitory activity, alleviating anxiety-like 
behaviors in rats, and this effect was blocked by a CB2R blocker.100 The compound 8-prenylnaringenin in Humulus lupulus L. 
reversibly inhibited MAGL and reduces neuroinflammation, promising for Alzheimer’s disease.101 Extracts from Myristica 
fragrans exhibited anxiolytic and antidepressant effects, with significant MAGL inhibitory activity.102

Taking a computer-aided drug design (CADD) approach, combined with molecular docking, accelerates the discovery of 
MAGL inhibitors from natural products. Through the establishment of the pharmacophore model Phar-MAGL, combined with 
molecular docking and Ligplot analysis, NP-2/8-PN (IC50 = 9.5 ± 1.2 μM), NP-5 (IC50 = 14.5 ± 1.3 μM), and NP-3 (IC50 = 15.2 ± 
1.4 μM) were successfully screened for their promising in vitro inhibitory activities of MAGL.101 Interestingly, 8-PN also had 
a positive metamorphic modulatory effect on GABAA that was not mediated through a high-affinity benzodiazepine binding site, 
and its potential anxiolytic effect could be further investigated.103 Phenylethanoid glycosides from C. phelypeae104 and Jewenol 
A from S. pseudorosmarinus105 also demonstrated good MAGL inhibitory activity through enzymatic assays and molecular 
docking. Screening based on existing efficacy can enhance hit rates, as demonstrated in the study by Mei et al, who screened the 
MAGL inhibitory activity of 12 Chinese herbal medicines commonly used for analgesia, identifying Corydalis yanhusuo as the 
most effective.106 Forsythiaside, a phenolic acid glycoside in Forsythia suspensa, inhibits COX-2 and MAGL, demonstrating 
neuroprotective effects in Alzheimer’s disease by increasing hippocampal 2-AG content.107 Table 2 summarizes some reported 
natural products with MAGL inhibiting activity.
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AEA Hydrolase FAAH Inhibitors in Treatment for Anxiety
Human and rodent studies consistently show a negative correlation between anxiety levels and AEA concentrations.45,110 

Reduced AEA levels are strongly associated with PTSD severity, and moderate aerobic exercise has been found to increase 
AEA levels.111 Stress-induced anxiety-like behaviors in rodents coincide with significant reductions in brain AEA levels, 
while microinjection of methanandamide (an AEA analogue) into the rat prefrontal cortex produces anxiolytic effects.112 

Alternatively, inhibition of AEA synthase promotes anxiety production. In NAPE-PLD-deficient mice, dorsal hippocampal 
AEA is significantly reduced and induces anxiety-like behavior.113 FAAH is widely distributed in major neurons, including 
pyramidal cells in the BLA and hippocampus. Increased FAAH activity and decreased AEA levels have been found in mice 
subject to chronic restraint stress114 and in Marchigian Sardinian alcohol-preferring rats with innate anxiety.115 Therefore, 
enhancing AEA signaling by inhibiting FAAH activity is a potential strategy for the treatment of anxiety disorders.

Anxiolytic Effects of FAAH Inhibitors
Several new compounds developed for FAAH inhibitors have entered clinical trials with promising prospects (https://classic. 
clinicaltrials.gov/ct2/home). JNJ-42165279 produces central and peripheral FAAH inhibition, significantly increases AEA levels 
in cerebrospinal fluid and plasma, and has not been found to have any safety concerns.116 In the latest clinical pilot study, 
attenuation of amygdala, bilateral anterior cingulate gyrus, and bilateral insula activation during an emotional face processing task 
was found after 4 days of administration of JNJ-42165279 (100 mg) to 43 subjects, which is in line with the effects previously 
observed with anxiolytics.117 Meanwhile, in another clinical study, JNJ-42165279 (25 mg/d) was effective in improving anxiety- 
like symptoms after 12 weeks of administration to patients with social anxiety disorder.13 For PF-04457845, it was well 
tolerated,118 attenuated anxiety effects in healthy subjects facing stress,119 and weakened cannabis withdrawal symptoms.120

Several preclinical studies have shown that pharmacological inhibition of FAAH activity exhibited remarkable 
anxiolytic effects in different animal models of anxiety (Table 3). Meanwhile, genetic evidence also supports the 
above results. It was found that FAAH whole genome knockout C57BL/6J mice are not induced with anxiety-like 
behavior by chronic restraint stress.114 In contrast, increased FAAH expression leads to the development of anxious 
behaviors in animals. Specific overexpression of FAAH in hippocampal glutamatergic neurons using AAV vectors 
significantly reduced AEA and PEA levels and increased anxiety-like behaviors, which may be related to enhanced 
LTP in glutamatergic neurons, leading to increased glutamate release.121 Similarly, specific overexpression of FAAH in 
PFC significantly reduced AEA levels and had anxiogenic effects.112

Table 2 Summary of MAGL Inhibitors Derived from Natural Products

Compounds Category Source Pharmacological Effects Experiment 
Type

References

Betulinic acid, Cucurbitacin B, 
Euphol, Pristimerin

Triterpenes – Analgesic In vitro and ex 
vivo

[99]

Dehydrocorydaline Alkaloid Corydalis yanhusuo Analgesic In vitro or 
in vivo

[106]

8-prenylnaringenin Flavonoid Humulus lupulus L. Promotion of neurogenesis and 
neurodifferentiation

In vitro [101]

Lepidine B&E Alkaloid Lepidium sativum 
L. seeds

Inhibition of β-amyloid production 
and accumulation

In vitro [108]

Forsythiaside Phenolic acid 
glycosides

Forsythia suspensa Inhibition of β-amyloid production 
and accumulation

Ex vivo [107]

α-amyrins, β-amyrins, Lupeol, 
Protium copal resin

Triterpenes Protium copal Analgesic, anti-inflammatory, 
anxiolytic

In vivo and 
in vitro

[100,109]

Jewenol A Diterpenes S.pseudorosmarinus 
aerial parts

Anticancer In vitro [105]

– Phenylethanoid 
glycosides

C. phelypaea aerial parts Anticancer In vitro [104]

– – Myristica fragrans 
methanol extracts

Anxiolytic, Antidepressant In vitro [102]
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Single nucleotide polymorphism (SNP) in the FAAH gene, particularly the C385A (rs324420) allele, is noteworthy 
due to its significant association with FAAH expression. The polymorphism consists of the replacement of cytosine (C) 
by adenine (A) at nucleotide position 385, which translates into an amino acid exchange in which proline (Pro) replaces 
threonine (Thr) in codon 129. Mutations in the A allele result in decreased FAAH activity and increased AEA levels.131 

Healthy male adults carrying AC heterozygotes have higher levels of AEA and lower anxiety scores than CC 
homozygotes,132 and carriers of the A allele have been found to have more robust neural network connectivity and 
lower anxiety levels in adolescents.133 Similarly, knock-in of the FAAH C385A gene in mice significantly ameliorated 
anxiety-like behavior, which was associated with reduced FAAH expression, elevated AEA levels, and enhanced eCB 
signaling.134 However, additional studies have shown that the FAAH C385A genetic variant in children increased the risk 
of anxiety.135 Therefore, when FAAH inhibitor therapy is taken in the future, it may be necessary to consider the 
genotype of the patient’s C385A to adopt a safer and more effective therapeutic strategy.

Anxiolytic Mechanisms of FAAH Inhibitors
As shown in Figure 3, FAAH inhibitors have partly the same anxiolytic mechanism as MAGL inhibitors due to similar 
functions. Except for maintaining Glutamate/GABA balance, suppressing neuroinflammation, and regulating the HPA 

Table 3 Summary of the Anxiolytic Effects of FAAH Inhibitors in Preclinical Studies

Drug Dose/ 
Administration

Animal Model Test Effects References

URB597 0.1, 0.3, 1 mg/kg, i. 
p

C57BL/6J mice, 
male

SDS NSF ↓ latency to feed [122]

0.3384 ng, 3.384 
ng, 33.84 ng, intra- 

BNST 
microinjection

Wistar rats, male ARS EPM; 
CFC

No significance in EPM test; ↓ percentage of freezing 
behavior

[123]

0.3 mg/kg, i.p Sprague-Dawley 
rats, male

TMT exposure EPM ↑ open arm time and entries, ↓ anxiety index [124]

3 mg/kg, i.p Sprague-Dawley 
rats, female

Induced by poly I:C OFT; 
EPM

↑ number of transition to inner arena; 
↑ duration in open arm

[125]

1 μg, intra-CeA 
microinjection

Wistar rats, male CRS EPM ↑ open arm time and entries [115]

1 mg/kg, i.p C57BL/6J mice, 
male

CUS EPM; 
LDT

↑ duration and frequency in open arm; ↑ time and 
frequency in light compartment

[40]

PF-3845 10 mg/kg, i.p Wistar rats, male Cafeteria diet 
exposure

OFT; 
EPM

↑ center zone entries and distance; 
↑ open arm time and ↓ closed arm time

[126]

1, 3, 10 mg/kg, i.p C57BL/6J mice, 
male

– EPM; 
LDT

↑ percent time in open-arm; ↑ percent light time [35]

0.1, 1, 10 mg/kg, i.p ICR mice, female ARS and Foot- 
shock stress

LDT; 
NIH; 
EZM; 
OFT

↑ percent light time and distance, no significance in NIH 
test, EZM test and OFT

[37]

10 mg/kg, i.p ICR mice, male Foot-shock stress LDT ↑ percent light time and light entries [127]

URB937 1, 3 mg/kg, i.p Wistar rats and 
Sprague-Dawley 

rats, male

SDS, TMT 
exposure

EPM; 
SAA

↑ open arm time and entries, ↓ closed arm time; ↓ time 
spent in non-social compartment and latency to access the 
social compartment, ↑ time spent in social compartment

[128]

PF-04457845 100 ng, 1 μg, icv Sprague-Dawley 
rats, male

Colitis-induced 
anxiety

EPM ↑ open arm time [129]

ST4070 3, 10, 30 mg/kg, p.o CD1 mice, male – EPM ↑ open arm time [130]

10, 30 mg/kg, p.o Wistar rats, male – LDT ↑ light time

JNJ5003 50 mg/kg, p.o C57BL/6J mice, 
male

CRS EPM ↑ time spent in the open arm, ↓ latency to enter the open 
arm

[114]

Abbreviations: ARS, acute restraint stress; BNST, bed nucleus of the stria terminalis; CeA, central amygdala; CFC, contextual fear conditioning; CRS, chronic restraint 
stress, CUS-chronic unpredictable stress; EPM, elevated plus maze; EZM, Elevated zero maze; icv, intracerebroventricular; i.p, intraperitoneal; LDT, light-dark box test; NIH, 
novelty-induced hypophagia; NSF, novelty suppressed feeding; OFT, open-field test; SAA, social avoidance/approach; SDS, social defeat stress; TMT, 2,5-dihydro- 
2,4,5-trimethylthiazoline.
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axis, the promotion of neurogenesis and plasticity has also been suggested to be related to the anxiolytic effects of FAAH 
inhibitors.

Maintenance of Glutamate/GABA Balance
Similar to MAGL inhibitors, FAAH inhibitors also exert anxiolytic effects by regulating the E/I balance in various brain 
regions. As we mentioned, AEA selectively exhibits a high affinity for CB1R. CB1R exists in high density in the axonal 
terminals of Glutaminergic neurons and GABAergic neurons. When activated by AEA signals, G protein-mediated signal 
cascades are activated, thereby inhibiting the opening of voltage-gated calcium channels and membrane hyperpolariza
tion caused by increased potassium channel opening.136 Thus, FAAH inhibition restores the E/I balance and exerts 
anxiolytic effects primarily through CB1R alteration of brain Glutamatergic and GABAergic signaling.

Within the amygdala, constitutive signaling of AEA is present at the glutamatergic terminal CB1R, which limits 
excitatory transmission in the BLA and central amygdala (CeA).137 Expression of FAAH in the postsynaptic terminal is 
higher in the BLA compared to the CeA.138 The loss of AEA signaling in the amygdala leads to increased glutamate 
release, which increases the activity of postsynaptic output neurons, triggering anxious behaviors and stress responses.139 

Inhibition of FAAH prevented the rapid loss of AEA signalling caused by stress, which countered the effects of different 
types of stress, including elevated anxiety.124 PF-04457845 similarly reversed the dysregulation of amygdala E/I balance 
in rats, reducing anxiety-like behaviors and increasing social behaviors.140,141 Interestingly, in contrast to activating 
neuronal CB1R to inhibit glutamate release, AEA could activate astrocytic CB1R to promote glutamate release, leading 

Figure 3 Schematic representation of the mechanism of anxiolytic action mediated by FAAH inhibitors. Briefly, the anxiolytic effects of FAAH are related to its maintenance 
of Glutamate/GABA balance, suppression of neuroinflammation, regulation of HPA axis, and promotion of neurogenesis and plasticity. 
Abbreviations: FAAH, fatty acid amide hydrolase; CB1R, cannabinoid receptor 1; AEA, anandamide; AMY, amygdala; PFC, prefrontal cortex; AA, arachidonic acid; PGs, 
prostaglandins; IL-1β, Interleukin-1β; TNF-α, Tumor Necrosis Factor-α; iNOS, inducible nitric oxide synthase; TLRs, Toll-like receptors; CRH, corticotropin-releasing 
hormone; ACTH, adrenocorticotropic hormone; CORT, corticosterone; corticotropin-releasing hormone receptor 1; NPY, neuropeptide Y; BDNF, brain-derived 
neurotrophic factor.
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to NMDAR2B activation and AMPAR internalization, which induced long-term depression (LTD) and inhibited BLA 
pyramidal neurons to produce anxiolytic effects.142 Therefore, the excitatory balance of BLA may depend on the level of 
glutamate release in neurons and astrocytes.

The striatum is also rich in CB1R and is involved in the regulation of anxiety. FAAH inhibition of accumulated AEA 
modulates excitatory and inhibitory neurotransmission in the striatum.143 Social defeat stress induction decreased the 
sensitivity of striatal GABAergic synapses, but not glutamatergic, to CB1R activation and was restored by UBR597.144 

URB597 also prevented quinolinic acid-induced neuroexcitotoxic damage and preserved striatal structural integrity.145

Suppression of Neuroinflammation
FAAH inhibitors have also been reported to have robust anti-inflammatory effects. For example, URB937 reversed 
increased plasma inflammatory factor levels in social failure stress rats.128 URB597 also reversed the expression of 
peripheral and cerebral proinflammatory cytokines under stress induced by LPS.146 Studies have additionally shown that 
increased FAAH activity in LPS induced social behavioral deficits in adolescent rats and that imposition of PF04457845 
reversed social behavioral changes.147

The central anti-inflammatory effects of FAAH inhibitors have been linked to the modulation of microglia polarisa
tion phenotype.148 AEA is an important signalling molecule in regulating microglia function, promoting their anti- 
inflammatory gene expression and inhibiting pro-inflammatory cytokine release.67,149 The FAAH inhibitors PF3845 and 
URB597 both inhibited the production of prostaglandin E2 and pro-inflammatory gene expression in the BV2 microglial 
cell line, and the inhibitory effect of PF3845 was more pronounced.150 URB597 improved the morphological character
istics of rat hippocampal microglia and promoted the transformation of microglia into an anti-inflammatory phenotype.151 

In addition, PF3845 also inhibits the expression of inducible nitric oxide synthase and COX-2 and promotes the shift of 
M1 pro-inflammatory phenotype to M2 anti-inflammatory phenotype.152

Modulation of Toll-like receptors (TLRs) may be another pathway. TLRs are intimately involved in the nervous 
system’s immune response and are thought to underlie and exacerbate neurological disorders. Systemic administration of 
URB597 or PF3845 both inhibited TLR3/4-induced associated neuroinflammation in the PFC and hippocampus.153 

URB597 also reduced the TLR3-mediated increase in the expression of microglia/macrophage activation markers 
CD11b/CD68 and significantly alleviated anxiety-like behavior in rats.125 Furthermore, recent studies revealed that 
FAAH has membrane anchoring and stabilising effects on NLRP3, and that URB597 and PF-04457845 inhibit NLRP3- 
FAAH interactions and induce autophagic NLRP3 degradation, suppressing the inflammatory phenotype.154

Regulation of the HPA Axis
Patients with anxiety disorders were accompanied by high levels of adrenocorticotropic hormone (ACTH), glucocorti
coids in the blood, and overall hyperactivity of the HPA axis.155 The level of AEA is negatively correlated with the 
activation of the HPA axis. It has been found that reduced homeostasis of AEA after repeated stressor exposure leads to 
basal overproduction of corticosterone.156 The use of the hydrolase inhibitor URB937 reversed high plasma corticoster
one levels 24 hours after social failure.128

The underlying mechanisms of FAAH inhibitors suppress HPA axis activation may be mediated by AEA/CB1R. In 
stressed rats, AEA levels in the amygdala were negatively correlated with serum corticosterone concentrations, and 
repeated corticosterone injections also resulted in a stress response. Meanwhile, injection of UBR597 into the BLA 
reduced stress-induced corticosterone secretion, and this effect was blocked by the CB1R antagonist AM251.157 The 
administration of AM251 to rats similarly increased their plasma concentrations of ACTH and CORT.158

Alternatively, corticotropin-releasing hormone (CRH) may be a candidate for linking the AEA to the HPA axis. The 
FAAH inhibitor URB597 reduced HPA axis hyperactivation and anxiety-like responses to stress159 and dose-dependently 
down-regulated stress-induced CRH mRNA expression in the paraventricular nucleus of the hypothalamus.160 CRH 
administration rapidly reduced AEA levels in the amygdala but not 2-AG, and induced anxiety-like behavior and HPA 
activation, both of which were reversed by URB597.161 Interestingly, the increase in FAAH activity induced by the 
administration of CRH was not accompanied by an increase in FAAH protein levels or mRNA levels, which may be 
related to dynamic changes in enzyme activity or consistent with the specific coupling of the CRHR1 and FAAH regions. 
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Up-regulation of CRH was associated with CORT, with CRH mRNA significantly elevated in the rat PFC after CORT 
administration and dependent on CRHR1 signaling to regulate amygdala AEA content but not 2-AG.162 Therefore, the 
relationship between CRH, AEA and HPA axis is not completely linear, indicating a potential crosstalk that requires 
further exploration.

Promotion of Neurogenesis and Plasticity
Impaired neurogenesis as well as altered neuroplasticity are commonly seen in anxiety disorders caused by chronic stress. 
Studies have shown that neural progenitor cell division is affected by eCB signaling163 and enhanced neurogenesis is 
always associated with elevated eCBs.164 Repeated injections of cannabidiol, an exogenous cannabinoid, attenuated 
anxiety-like behavior by inhibiting FAAH activity and also promoted hippocampal neurogenesis and dendritic 
remodeling.165 Moreover, HIV-1 Gp120-mediated impaired neurogenesis was rescued by FAAH gene deletion.166 

URB597 increased neuroplasticity by modulating long-term potentiation in the hippocampal CA1 region and the 
amygdala, attenuating fear memory.167 JNJ5003 significantly reversed chronic restraint stress-induced dendritic expan
sion and increased spine density in BLA, promoting synaptic remodeling and reducing anxiety-like behavior.114,168 

URB532 and URB597 similarly prevented the reduction in AEA, the dendritic hypertrophy of the BLA, and the increase 
in anxiety-like behavior induced by stress.168 The above studies illustrate that the use of FAAH inhibitors enhances brain 
neurogenesis as well as interneuronal transmission.

mTOR and neuropeptide Y (NPY) signaling may be associated with enhanced neurogenesis and neuroplasticity by 
FAAH inhibitors. mTOR signaling is essential for maintaining hippocampal neurogenesis and protecting against stress- 
induced impairment of neuroplasticity, and inhibition of this signaling increased anxiety-like behaviors in mice.169 Recent 
studies have found that URB597 has an inverted U-shaped anxiolytic quantity-effect relationship in mice exposed to social 
defeat stress, and that its anxiolytic effect can be blocked by rapamycin (an mTOR antagonist), while its anxiogenic dose 
reduces the number of newborn neurons.122 NPY is widely distributed in the nervous system and is particularly highly 
expressed in NAc and BLA.170 Numerous studies have demonstrated that NPY levels are negatively correlated with 
anxiety,171 which may be related to neuroprotective effects by promoting neurogenesis and neuroplasticity,172 and decreasing 
amygdala excitability.173 NPY has been reported to be involved in the neuroplastic protective effects of AEA, and inhibition 
of its expression antagonizes the effects of URB597 in suppressing PTSD behavior.174

Novel FAAH Inhibitors and Natural Product Development
Unlike the urgent need to find reversible inhibitors of MAGL, irreversible FAAH inhibitors, such as URB597, 
PF3845, and PF04457845, do not exhibit significant toxic side effects and are well tolerated clinically. Therefore, 
the structural modification and optimization of FAAH inhibitors are more directed towards improving the drug- 
forming properties like solubility and central permeability for better bioavailability. ARN14633 and ARN14280 
are novel analogues of URB597 with improved solubility and bioavailability effectively alleviating anxiety-like 
behavior in rats exposed to predator-evoked fear models.175,176 Structural modifications based on lead compounds, 
as well as extractions from natural products, are equally pivotal in the development of novel FAAH inhibitors.

Structural Modifications Based on Lead Compounds
In recent years, the development of novel FAAH inhibitors is mainly based on the skeletons of piperazine, isatin, oxazole 
and carbamate for structural modification and performance optimisation. Among them, piperazine-based FAAH inhibi
tors account for a relatively large proportion. Compound 4i (IC50= 0.12 μM) developed on the basis of indole-2-carbonyl 
piperazinourea derivatives possessed desirable antidepressant, analgesic and anti-inflammatory effects.177 Among the 
piperazinourea derivatives with thiadiazole portion, the compounds with 4-chlorobenzyl (19) and 4-fluorobenzyl (20) 
tails on the piperazine side were found to be the most effective in inhibiting FAAH, with IC50 of 0.13 and 0.22 µM, 
respectively.178 Heteroaryl ureas with a thickened bicyclic diamine core exhibited better FAAH inhibitory activity 
compared to compounds constructed with a piperazine core.179

Jaiswal et al designed a series of isatin derivatives using the contemporary scaffold hopping approach in which 
compound 8c possessed antidepressant and anxiolytic effects without any neurotoxicity180 and used the Dihydroindole- 
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2,3-dione derivatives as lead compounds to further search for FAAH inhibitors with good pharmacological properties.181 

JZP327A (IC50 = 11 nM), synthesized using 1,3,4-oxadiazol-2-ones as a scaffold, is a highly selective, slowly reversible 
FAAH inhibitor182 with good analgesic effects.183 FAAH inhibitors developed on the basis of carbamates also exhibit 
good selectivity, reversibility, water solubility and some neuroprotective effects.184

Three-dimensional quantitative structure-activity relationship (3D-QSAR) model, which can better represent the 
structure-activity relationship of ligand-enzyme interaction and help to develop more effective compounds, has 
been widely used in FAAH inhibitor development. Zięba et al constructed two 3D-QSAR models based on 31 
FAAH inhibitors containing the 1,3,4-oxadiazol-2-one structure, which contribute to the design of novel, more 
potent, and more indicative FAAH inhibitors.185 Lorca et al also constructed a similar model based on piperazine- 
carboxamide scaffold and designed 10 new compounds with highly predicted FAAH inhibitory activity.186 

Application of QSAR model and molecular docking technology to screen potential FAAH inhibitors in current 
clinical drugs also deserves attention. Montelukast, Repaglinide, Refenacin, Raloxifene and Buclizine are con
sidered to have potential FAAH inhibitory activity, but further in vivo and in vitro validation is required.187

Dual-Target FAAH Inhibitors
Dual-target FAAH inhibition increases disease specificity. For example, Ibu-AM68188 and Flu-AM4189 both have dual 
FAAH and COX-2 inhibition, which circumvents the gastrointestinal response to NSAIDs, and have anti-inflammatory or 
analgesic effects. Development of dual FAAH/ChE inhibitors targeting the neuroprotective effects of FAAH inhibitors as 
promising candidates for the treatment of Alzheimer’s disease.190,191 Dual FAAH/sEH inhibitors with the piperidinyl
sulfonamide portion as the pharmacophore have been shown to have good inhibitory effects on neuropathic pain and 
inflammation.192 In addition to dual inhibition, inhibition/excitation can also exist simultaneously. UCM1341 inhibits 
FAAH while activating melatonin receptors, producing anti-inflammatory effects to provide neuroprotection.193 

Compounds designed to target FAAH inhibition/activation of CB2R also have potent neuroinflammatory inhibitory 
effects.194

Furthermore, FAAH inhibitors also have central and peripheral inhibition selectivity. For example, ASP3652, which 
entered clinical trials, is a well-tolerated peripheral reversible FAAH inhibitor that reduces lower urinary tract symptoms 
but no efficacy in the improvement of patients’ pain symptoms, possibly related to its lack of central inhibition.195 

Surprisingly, URB937, a peripherally restricted FAAH inhibitor, was unable to cross the blood-brain barrier but also 
possessed central activities such as anxiolysis128 and analgesia.196 This result suggests the presence of peripheral and 
central crosstalk, with anxiolysis possibly related to sympathetic efferents and analgesia possibly related to reduced 
afferents for injurious pain, requiring further experimental verification.

Off-Target Effects of FAAH Inhibitors
However, although FAAH inhibitors show relatively excellent pharmacological activity, their off-target effects should not 
be overlooked. FAAH is a serine hydrolase that uses highly conserved serine residues in its active site as nucleophilic 
reagents to catalyse the hydrolysis of its substrate. Most FAAH inhibitors exert their inhibitory effects by binding and 
modifying catalytic serine residues, which can also inhibit other serine hydrolases.197 For example, URB597, BMS-1, 
OL-135 and LY2077855 all have low selectivity and show a variety of off-target effects, the main off-target being 
carboxylesterases.197 Unfortunately, the off-target effects of FAAH inhibitors have been disregarded and even carried 
over into clinical trials, resulting in a tragic lesson. BIA 10–2474, an irreversible FAAH inhibitor entered Phase I clinical 
trials in 2016, was urgently called off due to resulting in the death of one volunteer and mild to severe neurological 
symptoms in four volunteers.198 Subsequent studies showed that the cause of the clinical incident of BIA 10–2474 may 
be that its off-target protein PNPLA6 is strongly associated with organophosphorus neurotoxicity.199 Another irreversible 
FAAH inhibitor, PF04457845, has entered a Phase 2 trial with no serious adverse events.120 Therefore, the off-target 
effects must be evaluated to ensure clinical safety when developing novel FAAH inhibitors.

As mentioned above, ABPP technology can also be used to screen FAAH enzyme inhibitors. Otrubova et al assessed 
the FAAH inhibition performance of a series of N-acyl pyrazole derivatives by ABPP, minimizing off-target activity.200 

Lamani et al demonstrated that FAAH inhibitors 9 and 31 were highly selective for brain FAAH and protective against 
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kainic acid-induced excitotoxicity by ABPP method.201 JZP-327A, a slowly reversible FAAH inhibitor with over 900- 
fold selectivity for MAGL and COX isozymes, was shown by ABPP to have higher FAAH selectivity compared to other 
serine hydrolases.182 Generally, evaluating the potential pharmacological activity of novel inhibitors by ABPP technol
ogy enables timely circumvention of off-target effects and minimization of compound side effects.

Natural Product Development
Various active ingredients with FAAH inhibitory activity were also found in natural products (Table 4). Among them, 
flavonoids inhibited the activity of FAAH significantly. Daidzein, silybin and chickpea bractein A showed high FAAH 
inhibitory activity both in vivo and in vitro.202 Kaempferol inhibited FAAH activity in a concentration-dependent manner 
in vitro, while in vivo experiments further confirmed that acting on FAAH reduced anxiety-like behavior.203 In addition, 
isoflavonoids are thought to target the ECS by modulating eCB metabolism. Three isoflavonoids, 7-hydroxyflavone, 
biochanin-A, and genistein, all bind to the FAAH active site and dose-dependently inhibit FAAH activity, increasing 
AEA levels in the PFC and decreasing blood corticosterone concentrations.204

Terpenoids and phenolic compounds also showed positive FAAH inhibitory activity. All 17 triterpenoids 
isolated from Ganoderma lucidum exhibited some inhibitory activity against FAAH without cytotoxicity, and 
FAAH may be a potential target for anti-neuroinflammation.209,220 β-stigmasterol and eugenol extracted from 
Harpagophytum procumbens, a sesquiterpene and monopostane constituent, respectively, exerted an anti-arthritic 
effects by inhibiting FAAH expression,214 with β-stigmasterol also being a selective CB2R agonist.221,222 Some 
phenolic compounds, such as cannabidiol extracted from Cannabis sativa L. and 5′-methoxylicarin A extracted 
from Myristica fragrans Houtt., have also been reported to inhibit FAAH activity and have anxiolytic efficacy.216

Some other types of natural products also have FAAH inhibition effects. Macamides, a unique series of non-polar 
long-chain fatty acids N-benzamide isolated from Maca, are mainly alkaloids with neuroprotective properties,223 of 
which N-Benzyloctadeca-9Z,12Z-dienamide exhibits the best FAAH inhibitory activity and attenuates ischaemic stroke 
injury,224 but this inhibition is an irreversible inhibitor that exhibits time-dependent inhibition.205 Lavender essential oil, 
an over-The-counter herbal medicine approved by the European Medicines Agency for the relief of anxiety, displayed 

Table 4 Summary of FAAH Inhibitors Derived from Natural Products

Compounds Category Source Pharmacological Effects Experiment 
Type

References

Macamides Alkaloid Lepidium meyenii Walp Relief of ischemic injury, analgesic, anti-inflammatory, 
neuroprotective

In vitro [205, 206]

Silybin, isosilybin Flavonolignans Silybum marianum Alleviate peripheral neuropathy In vitro [207]

– – Ashwagandha Antioxidant In vivo [208]

– Lanostane 
triterpenoids

Ganoderma lucidum Suppress neuroinflammation In vitro [209, 210]

7-Hydroxyflavone, 
biochanin A, genistein

Isoflavone Glycine max Merrill. germ, 
Trifolium pratense L.

Antidepressant, analgesic In vivo and 
in vitro

[204, 211]

Isorhamnetin, kaempferol, 
quercetin

Flavonoid Moricandia sinaica aerial 
parts

Analgesic, antipyretic, anti-inflammatory In vivo and 
in vitro

[212, 213]

Kaempferol Flavonoid – Anxiolytic In vivo and 
in vitro

[203]

Eugenol, β-caryophyllene Terpenoid Harpagophytum 
procumbens root

Anti-arthritic In vitro [214]

Citral Monoterpene Cymbopogon citratus Anti-inflammatory, analgesic In vivo and 
in vitro

[215]

Licarin A, 5′-methoxylicarin 
A, malabaricone C

Phenol Myristica fragrans Houtt. Anxiolytic In vivo and 
in vitro

[216]

Linalool, Linalyl acetate Essential oil Lavandula angustifolia Mill. Relief of neuropathic pain, anxiolytic, antidepressant In vivo and 
in vitro

[217]

Cannabidiol, 
tetrahydrocannabinol, 
cannabigerol

Phenol Cannabis sativa L. Antioxidant, inhibition of inflammatory bowel 
disease-associated hypermobility, anxiolytic

In vivo and 
in vitro

[218, 219]
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FAAH inhibitory activity in vitro and produced effects comparable to diazepam in mice.217 In addition, Xiaoyao Pills, 
a proprietary Chinese medicine widely used in China for the treatment of depression, was shown to alleviate depression- 
like behavior in rats by inhibiting FAAH levels in the brain.225

Techniques such as fluorescent probes and molecular docking have been used in recent years to screen potential FAAH 
inhibitors from natural products. Ginkgolide, the main active ingredient in Ginkgo biloba, was confirmed to bind well to FAAH 
by molecular docking.226 The aqueous extracts and fatty oils of Platycladi Semen are also predicted to exert anxiolytic effects 
through FAAH.227 The FAAH-activated fluorescent probe named THPO developed by Tian et al identified a natural inhibitor, 
neobavaisoflavone, from 68 traditional herbs.228 Similarly, DAND, a FAAH-activated near-infrared fluorescent probe, screened 
piperine as a novel inhibitor of FAAH and presented excellent anti-inflammatory activity in the vitro experiments.229

Summary and Prospect
The high prevalence of anxiety disorders and socio-economic burden highlights the pressing need for effective 
treatments, as current options remain limited. Although named with a plant possessing psychoactive properties, ECS 
is actually one of the crucial regulatory systems of the organism. In recent years, the idea of targeting the ECS for the 
treatment of anxiety disorders has received increasing attention. Inhibition of hydrolase activity, particularly targeting the 
dominant enzymes MAGL and FAAH, offers a promising avenue by indirectly increasing eCB levels, thereby avoiding 
the addictive properties and adverse effects linked to direct exogenous cannabinoid supplementation.

The anxiolytic efficacy of FAAH and MAGL inhibitors has been supported by both clinical and preclinical studies, 
indicating their potential as promising treatments for anxiety disorders. The pharmacological mechanisms of these 
inhibitors are primarily associated with maintaining Glutamate/GABA balance, suppressing neuroinflammation, mod
ulating the HPA axis, and promoting neurogenesis. Given the crucial role of neuronal excitatory/inhibitory (E/I) 
imbalance in the pathology of anxiety disorders, the maintenance of Glutamate/GABA homeostasis is particularly 
vital. CB1R, the primary mediator of the biological effects of 2-AG and AEA, is extensively expressed in glutamatergic 
and GABAergic terminals, offering the potential to reverse this imbalance. The clarification of the above mechanisms is 
not only crucial for drug development and clinical application of endocannabinoid hydrolase inhibitors, but also aids in 
achieving precision treatment for anxiety disorders. Similarly, more research is necessary to support or further clarify the 
precise mechanisms of FAAH and MAGL inhibitors in treating anxiety disorders.

Numerous biochemical techniques, including ABPP, fluorescence probes, molecular docking, and 3D-QSAR, have 
been used to generate novel MAGL and FAAH inhibitors. These techniques have greatly improved the screening 
efficiency and facilitated the discovery of new compounds. Notably, most of these new compounds are mainly developed 
for anticancer, analgesic, and anti-inflammatory purposes, and their potential anxiolytic activity remains to be further 
evaluated. Meanwhile, while significantly reducing the adverse effects associated with direct supplementation of 
cannabinoids or activation of cannabinoid receptors, the potential cardiotoxicity of some MAGL inhibitors and off- 
target effects of FAAH inhibitors should not be overlooked. In addition, given the polymorphism in the FAAH C385A 
gene, the genotype of patients must be thoroughly considered when applying FAAH inhibitors for treatment to achieve 
precision medicine. In contrast, some natural products isolated from plants have been shown to exert anxiolytic activity 
by inhibiting FAAH or MAGL, mostly reversibly, which greatly improves the tolerability and safety of the drugs, and 
thus active compounds derived from natural products would be a good source of novel anxiolytic drugs.

The development of dual MAGL/FAAH inhibitors has also come into the limelight. The newly developed AKU-005 
significantly enhanced 2-AG and AEA levels and inhibited neural excitability in rat and human meninges, which is 
expected to be a new treatment for migraine.230 JZL195, a classical dual MAGL/FAAH inhibitor, embodies an 
antidepressant activity,231 potent neuroleptic activity,232 weak antihypertensive effect233 and anti-inflammatory 
activity.234 Regrettably, the anxiolytic effects of JZL195 remain a subject of controversy. Some studies suggested an 
improvement in anxiety-like behavior in EPM test in mice.35 On the contrary, other research have shown that it fails to 
reverse restraint stress-induced anxiety-like behaviors or even promotes anxiety-like behaviors.37,235 These discrepancies 
may stem from variations in experimental conditions and animal models. However, it’s crucial to acknowledge that the 
potential anxiolytic effects of MAGL/FAAH dual inhibition cannot be conclusively denied.
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Furthermore, consistent with the inhibition of hydrolase activity, the levels of synaptic interstitial 2-AG and AEA can 
also be increased by inhibiting the activity of eCB transporter proteins, and intracellular transport is necessary for eCB 
hydrolysis. Current studies focus on AEA transporter proteins, which mainly include FABP5, HSP70, and FLAT1.236,237 

Recent studies have found that the use of a FABP5 inhibitor, SBFI-103, in either the amygdala or the PFC produces 
significant anxiolytic effects.238 WOBE437, a natural product-derived inhibitor of AEA reuptake, irreversibly blocks 
2-AG, AEA membrane transport, producing anxiolytic effects.239 Similarly, AM404, also an AEA reuptake inhibitor, has 
been reported to exhibit reliable anxiolytic activity.240,241 Although the above studies demonstrated the anxiolytic 
promise of targeted transporter proteins, it should not be neglected that they are still in their infancy, and need to be 
confirmed by further experimental studies.

In summary, there exists great potential to develop a clinically effective, safe, and well-tolerated novel anxiolytic drug 
from MAGL and FAAH inhibitors compared to direct cannabinoid receptor agonists. This can be achieved by screening 
and synthesizing new hydrolase inhibitors using advanced technologies, or by exploring active ingredients with robust 
inhibitory activity from natural products. Structural optimization and modification may further enhance the selectivity 
and biological activity of these potential drugs.
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