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Abstract: Two finite element level-set (FE-LS) formulations are compared for the modeling of grain
growth of 316L stainless steel in terms of grain size, mean values, and histograms. Two kinds of
microstructures are considered: some are generated statistically from EBSD maps, and the others
are generated by the immersion of EBSD data in the FE formulation. Grain boundary (GB) mobility
is heterogeneously defined as a function of the GB disorientation. On the other hand, GB energy
is considered as heterogeneous or anisotropic, which are, respectively, defined as a function of the
disorientation and both the GB misorientation and the GB inclination. In terms of mean grain size
value and grain size distribution (GSD), both formulations provide similar responses. However, the
anisotropic formulation better respects the experimental disorientation distribution function (DDF)
and predicts more realistic grain morphologies. It was also found that the heterogeneous GB mobility
described with a sigmoidal function only affects the DDF and the morphology of grains. Thus, a
slower evolution of twin boundaries (TBs) is perceived.

Keywords: heterogeneous grain growth; anisotropic grain growth; grain boundary energy; grain
boundary mobility; finite element method; level-set method; 316L; stainless steel; heterogeneous
mobility; anisotropic energy

1. Introduction

As most metallic materials exist in the form of polycrystals, determining the kinetics
of metallurgical mechanisms such as recovery, grain growth (GG), and recrystallization is
crucial, since they determine the final microstructure and properties [1]. Grain boundary
(GB) engineering refers to the control of GBs with the aim of obtaining high-performance
materials. Thus, numerical models have emerged to help us predict the evolution of
microstructures submitted to different thermomechanical loads and the microstructure–
property relationship.

The migration of GBs is classically described at the polycrystalline scale by the well-
known equation

v = µP, where v is the GB velocity, µ is the GB mobility, and P is the driving pressure.
During GG, the evolution of GBs is driven by the reduction of interfacial energy, and
the driving pressure is classically defined as a curvature flow driving pressure P = −γκ,
where γ is the GB energy and κ is the mean curvature (i.e., the trace of the curvature
tensor in 3D). At the polycrystalline scale, this kinematic equation is widely accepted while
largely questioned [2,3]. Moreover, a definition of the reduced mobility (µγ) within the
misorientation and inclination 5D space is not straightforward [4–7].

GG has been widely studied at the polycrystalline scale with various numerical ap-
proaches such as Phase-Field [8–10], Monte Carlo [11,12], Molecular Dynamics [13], Orien-
tated Tessellation Updating Method [14], Vertex [15], Front-Tracking Lagrangian or Eulerian
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formulations in a Finite Element (FE) context [16–18], Level-Set (LS) [19–22], and Kobayashi–
Warren–Carter models [23], to cite some examples. GB energy and mobility have been
widely studied since they were reported as being anisotropic by Smith [24] and Kohara [25].
The simplest models use constant values for the GB energy γ and a temperature-dependent
mobility, µ(T), which are referred to as isotropic models [8,11,19,26,27]. Heterogeneous
models were also proposed, in which each boundary has its own energy and
mobility [12,20,21,28–35] trying to reproduce more complex microstructures with local
heterogeneity, such as twin boundaries. Each grain has its own crystal orientation, and the
GB energy and mobility depend on the disorientation angle between two grains [9,21], but
the effect of the misorientation axis and GB inclination is frequently omitted. Thus, general
frameworks were proposed, including the GB properties’ dependence on misorientation
and inclination [36–38], which are categorized as anisotropic models. It must be high-
lighted that the difference between three-parameter (heterogeneous) and five-parameter
(anisotropic) full-field formulations is often unclear in the literature, heterogeneous GB
properties being often categorized as anisotropic.

The main reason why most of the studies are carried out using heterogeneous GB prop-
erties is the lack of data of GB properties. The early measurements of GB properties (mainly
GB reduced mobility) were carried out on bicrystals [39–44] leading to the well-known
Sigmoidal model [1]. As experimental and computational technologies are improved, new
experimental and computational 3D techniques allow studying GG and recrystallization
using, for instance, X-ray [45–48] or molecular dynamics [4,5,49]. Hence, at the mesoscopic
scale, few studies have been carried out in 2D using anisotropic GB properties designed by
mathematical models [36,37] or by fitting data from molecular dynamics [38]. Nevertheless,
these 2D models neglect a part of the 3D space; i.e., the GB inclination is measured in the
sample plane, and GB properties are simplified. Finally, regarding the study of GG in
3D, one frequently finds heterogeneous GB properties based on mathematical descriptors
of GB properties [33,50–52] or based on databases of GB energy values [53,54]. Based on
this, two open questions arise: can GB properties be described in 2D using the classical
Read–Shockley [55] and Sigmoidal [56] model? Is the effect of anisotropy stronger in 3D?
The latter implies carrying out 3D simulations instead of 2D, thus using a better description
of GB properties in the 5D GB space.

In a preceding paper [22], four different formulations using an FE-LS approach have been
compared. The first is an isotropic formulation used to model different annealing phenomena,
such as GG, recrystallization, and GG in the presence of second-phase particles [19,57–60].
The second is an extension of the isotropic formulation considering heterogeneous values of
GB energy and mobility [22]. The third formulation was proposed for triple junctions in [30]
and extended to model GG using heterogeneous GB energy in [21] and both heterogeneous
GB energy and mobility in [22]. The last one is an anisotropic formulation based on
thermodynamics and differential geometry; it was first applied to bicrystals [37] and
extended to polycrystals with heterogeneous GB energy and mobility in [22]. In [22],
academic cases of triple junctions and polycrystalline microstructures were presented. The
main conclusion was that the isotropic formulation can reproduce grain size, mean values,
and distributions when the anisotropy level is moderated. However, when the anisotropy
level increases, the anisotropic formulation leads to more physical predictions in terms of
grain morphology, global surface energy evolution, and multiple junction equilibrium.

The goal of this work is to criticize the capacity of the isotropic and anisotropic
formulations to model GG in a real material, which is here a 316L austenitic stainless
steel, in terms of mean grain size, grain size distributions, and mean GB properties. We
compare the effect of the initial microstructure using statistically representative Laguerre–
Voronoï tessellation [61] and digital twin microstructures from EBSD data. The effect of
the GB energy definition is illustrated with two different frameworks: a one-parameter,
well-known as the Read–Shockley formulation [55]; and a five-parameter one using the the
GB5DOF code proposed in [6]. The effect of the GB mobility description using an isotropic
and a Sigmoidal model [56] is also discussed. The paper is organized as follows. First, in
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Section 2, crystallographic definitions, LS treatments, and FE-LS formulations are presented
briefly. The methodology to estimate the GB reduced mobility from experimental data is
presented in Section 3. Finally, the results using the isotropic and anisotropic formulations
are compared using statistically representative Laguerre–Voronoï tessellations (Section 4),
immersed microstructures with heterogeneous GB properties (Section 5), and immersed
microstructures with anisotropic GB energy using the GB5DOF code [6] (Section 6).

2. The Numerical Formulation

The LS method was firstly proposed in [62] to describe curvature flow problems, and it
was enhanced later for evolving multiple junctions [63,64] and applied to recrystallization
and grain growth in [19,57]. The principle for modeling polycrystals is the following: grains
are defined by LS functions φ in the space Ω{

φ(X) = ±d(X, Γ), X ∈ Ω, Γ = ∂G
φ(X ∈ Ω) = 0 
 X ∈ Γ,

(1)

More precisely, the grain interface Γ is described by the zero-isovalue of the corre-
sponding φ function. In Equation (1), d is the signed Euclidean distance to Γ and φ is
classically chosen as positive inside the grain and negative outside. The dynamics of the
interface is studied by following the evolution of the LS field. When the interface evolution
is characterized by a velocity field ~v, its movement can be obtained through the resolution
of the following transport equation [62]:

∂φ

∂t
+~v · ~∇φ = 0. (2)

Classically, one LS function is used to describe one grain and Equation (2) is solved for
each grain to describe the grain boundary network evolution. However, when the number
of grains, NG, increases, one may use a graph coloring/recoloring strategy [59] in order to
limit drastically the number of involved LS functions Φ = {φi, i = 1, . . . , N} with N � NG.
Two more treatments are necessary. Firstly, the LS functions are generally reinitialized at
each time step in order to keep their initial metric property when they are initially built as
distance functions to the grain interface, as proposed in Equation (1):

‖∇φ‖ = 1. (3)

In the proposed numerical framework, the algorithm developed in [65] is used. Sec-
ondly, the LS evolutions may not preserve the impenetrability/overlapping constraints
leading to potential overlaps/voids between grain interfaces at multiple junctions. The
solution proposed in [63] and largely used in an LS context [19] is adopted.

The main interest of this global numerical front-capturing framework lies in its ability
to define different physical phenomena when they are encapsulated in the velocity field
and to deal easily with topological events such as grain disappearance. In the next section,
different formulations of the GB velocity and the subsequent FE resolution are presented.

GB Velocity Formulation

The isotropic formulation uses a homogeneous GB energy and mobility [19]; thus, the
velocity field is defined as

~v = −µγκ~n, (4)

where κ is the mean curvature of the boundary in 2D and the trace of the curvature tensor
in 3D, and n is the outward unit normal to the boundary. By verifying Equation (3) and
assuming the LS function to be positive inside the corresponding grains and negative
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outside, the unitary normal and so the mean curvature may be defined as~n = −~∇φ and
κ = ~∇ ·~n = −∆φ, and then, the velocity in Equation (4) may be written:

~v = −µγ∆φ~∇φ. (5)

At the mesoscopic scale, a GB, Bij, between grains Gi and Gj, is characterized by its
morphology and its crystallographic properties, which may be summarized by a tuple
Bij = (Mij, nij) with two shape parameters describing the interfaces through the unitary-
outward normal direction nij and three crystallographic parameters describing the orien-
tation relationship between the two adjacent grains known as the misorientation tensor
Mij (see Figure 1). The misorientation is frequently defined with the axis-angle parameter-
ization, i.e., Mij(ai, θ), where ai is the misorientation axis and θ is the disorientation [66].
Then, the two quantities of interest, the GB energy γ and GB mobility µ, must be seen as
functions from the GB space B to R+.

Figure 1. Scheme depicting one GB and its parameters. Image available online at Flickr (https:
//flic.kr/p/2m5JQkz, accessed on 15 June 2021) licensed under CC BY 2.0 (https://creativecommons.
org/licenses/by/2.0/, accessed on 15 June 2021). Title: 10GGBParam. Author: Brayan Murgas.

The anisotropic formulation was initially developed using thermodynamics and dif-
ferential geometry in [37] and was improved in [22] in order to consider heterogeneous GB
mobility. Both the GB normal and misorientation are taken into account, and an intrinsic
torque term is present:

v = µ(M)
(
P~∇γ(M, n) · ~∇φ−

(
~∇~n~∇~nγ(M, n) + γ(M, n)I

)
: K
)
~∇φ (6)

where I is the unitary matrix, P = I −~n ⊗~n is the tangential projection tensor, ~∇~n is
the surface gradient, and K = ~∇~n = ~∇~∇φ is the curvature tensor. The term Γ(M, n) =
~∇~n~∇~nγ + γI is a tensorial diffusion term known as GB stiffness tensor [67,68]. The term
P~∇γ · ~∇φ in Equation (6) should be null in the grain interfaces. However, the front-
capturing nature of the LS approach, which involves solving Equation (2) at the GB network
and in its vicinity, requires considering this term, which could be non-null around the
interfaces. Then, this stabilization term is totally correlated to the front-capturing nature of
the LS approach. The term Γ(M, n) is the subject of recent studies for twin boundaries (TBs)
Σ3, Σ5, Σ7, Σ9 and Σ11 [67,69]. In the present work, the torque term ~∇~n~∇~nγ is neglected,
but the GB energy still depends on the GB misorientation and inclination, and the kinetic
equation could be simplified as:

v = µ(M)(P~∇γ(M, n) · ~∇φ− γ(M, n)∆φ)~∇φ. (7)

Inserting the kinetic Equations (5) and (7) into Equation (2) leads to the weak formula-
tion of the isotropic (Iso) and anisotropic (Aniso) formulation [22]∫

Ω

∂φ

∂t
ϕdΩ +

∫
Ω
µγ~∇ϕ · ~∇φdΩ−

∫
∂Ω

µγϕ~∇φ ·~nd(∂Ω) = 0, (8)

https://flic.kr/p/2m5JQkz
https://flic.kr/p/2m5JQkz
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
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and ∫
Ω

∂φ

∂t
ϕdΩ +

∫
Ω
µ(M)γ(M)~∇ϕ · ~∇φdΩ−

∫
∂Ω

µ(M)γ(M)ϕ~∇φ ·~nd(∂Ω)+∫
Ω
µ(M)(P · ~∇γ(M) + ~∇γ(M))ϕ~∇φdΩ +

∫
Ω

γ(M)~∇µ(M) · ~∇φϕdΩ = 0,
(9)

respectively.
If the properties are homogeneous, then both formulations are equivalent. The main

question is the capability of these two numerical models to reproduce experimental evo-
lution assessed through EBSD data. The next section is dedicated to the parameters
identification.

3. Parameters Identification
3.1. Material Characterisation

The chemical composition of the 316L stainless steel is reported in Table 1. The samples
were machined in the form of rectangular parallelepipeds of 8.5 mm × 8.5 mm × 12 mm.
Then, the samples were annealed at 1050 ◦C during 30 min, 1 h, and 2 h. Afterwards, the
samples were prepared for EBSD characterization. The preparation consisted of mechanical
polishing followed by fine polishing and finally electrolitic polishing; the details of the
polishing are listed in Table 2.

Table 1. Chemical composition of the 316L stainless steel (weight percent).

Elem. Wgt% Fe Si P S Cr Mn Ni Mo N

Min bal. - - - 16.0 - 10.0 2.0 -
Real 65.85 0.65 0.01 0.14 18.02 1.13 11.65 2.55
Max bal. 0.75 0.045 0.03 18.0 2.0 14.0 3.0 0.1

Table 2. Polishing procedure applied to the 316L stainless steel samples. Plate and tower rate are the
parameter of the used automatic polisher.

Abrasive Time [s] Plate [rpm] Tower [rpm] Force [dN]

320 SiC paper 60 250 150 2.5
600 SiC paper 60 250 150 2.5

1200 SiC paper 60 250 150 2.5
2400 SiC paper 60 150 100 1

HSV-3 µm Diamond 120 150 100 2
solution 0.12 mL/8 s

electrolytic polishing 30 s 30 V Electrolyte A2 (Struers)

Microstructures were analyzed at the center of the sample using a TESCAN FERA
3 Field Emission Gun Scanning Electron Microscope (FEGSEM). It is equipped with several
detectors including Symmetry and C-Nano EBSD detectors from the Oxford company. In
this work, the Symmetry EBSD detector was used. Post-processing was conducted using
the MTEX toolbox in a MATLAB environment [70]. The EBSD map at t = 0 h has a size
of 1.138 mm× 0.856 mm and was acquired with a constant step size of 1.5 µm. The other
three EBSD maps at t = 30 min, 1 h, and 2 h have a size of 1.518 mm× 1.142 mm and
were acquired with a constant step size of 2 µm. Grain boundaries have a disorientation
above 5 degrees (θ > 5◦) and Σ3 twin boundaries have a misorientation axis <111> ±5◦

and θ = 60± 5◦.
The main properties of the initial microstructure are reported in Figure 2. Figure 2b

illustrates the grain size and disorientation distribution ignoring Σ3 TBs. The grain size is
defined as an equivalent radius, R =

√
S/π, where S is the grain area. The microstructure

consists of equiaxed grains with an arithmetic mean radius of 15 µm, and few bigger grains
with a radius around 60 µm. Additionally, the microstructure presents a Mackenzie-like
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DDF typical of random grain orientations [71]. On the other hand, if Σ3 TBs are considered,
the DDF presents an additional sharp peak at a disorientation angle θ = 60◦, which comes
from the TBs and then constitutes a strong source of anisotropy with regard to GB properties
(see Figure 2c).

(a)

200µm

(c)

(b)

(d)

Figure 2. Initial microstructure properties determined by EBSD measurements. (a) IPF-z map.
(b) Grain size distribution and DDF of grain boundaries excluding Σ3 TBs. (c) Grain size distribution
as measured in 2D sections and DDF of grain boundaries including Σ3 TBs; the sharp peak on the
DDF at 60◦ corresponds to Σ3 TBs. (d) Standard triangle used to color the orientation maps IPF-Z
(indicating which crystallographic direction is lying parallel to the direction perpendicular to the
scanned section).

Figures 3–5 show the band contrast maps and the grain size distributions at t = 0 s,
30 min, 1 h, and 2 h. Based on Figures 3 and 4, the evolution of the microstructure seems
to mostly proceed by normal grain growth (NGG), but the surface grain size distribution
shows that the microstrucuture has a bimodal population of grains (see Figure 5). However,
some of the grains can reach an equivalent diameter above 0.1 mm, which is much larger
than the average grain size.

Figure 3. Annealing at 1050 ◦C: band contrast map of the microstructure of 316L steel at (a) t = 0 s,
(b) t = 30 min, (c) t = 1 h, and (d) t = 2 h. Grain boundaries are depicted in white and Σ3 TBs are
predicted in red.
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Figure 4. From left to right: evolution of the grain size histograms (in number) at t = 0 s, t = 30 min,
t = 1 h, and t = 2 h. (Top): All boundaries are considered. (Bottom): Σ3 twin boundaries are excluded.

Figure 5. From left to right: evolution of the grain size histograms (in surface) at t = 0 s, t = 30 min,
t = 1 h, and t = 2 h. (Top): All boundaries are considered. (Bottom): Σ3 twin boundaries are excluded.

3.2. Estimation of the Average Grain Boundary Mobility Based on the Burke and Turnbull
GG Method

In order to compute the average mobility necessary to run full-field simulations, the
evolution of the arithmetic mean grain radius R̄Nb must be known. Figure 6 shows the
evolution of R̄Nb as a function of the annealing time. Using the methodology discussed
in [72,73], one can obtain an average reduced mobility µγ using the Burke and Turnbull
model [74]. This model, where topological and neighboring effects are neglected, is based
on five main assumptions: the driving pressure is proportional to the mean curvature,
grains are equixaed, the GB mobility and energy are isotropic, the annealing temperature is
constant, and no second-phase particles are present in the material. In this context, one can
obtain a simplified equation describing the mean radius evolution:

R̄Nb(t)2 − R̄Nb(t = 0)2 =
1
2
µγt. (10)

This methodology has been used in [72,73,75–77] assuming general grain boundaries
with homogeneous GB energy and mobility. From the evolution of R̄Nb in Figure 6 (exclud-
ing the Σ3 TBs), one can then obtain a first approximation of the product µγ for the general
boundaries at 1050 ◦C. This approximation will be used for the µγ definition in isotropic
simulations. Nevertheless, as illustrated by the second orange curve in Figure 6, when Σ3
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TBs are considered in the analysis, grains are of course smaller, but they also grow much
slower, with a direct impact on the apparent reduced mobility. This slow evolution can be
produced by the strong anisotropy brought by special GBs in the global grain boundary
network migration. Different ways to improve the description of the reduced mobility and
their impacts in the results are discussed in the following.

0 1000 2000 3000 4000 5000 6000 7000

time[sec]

0.01

0.02

0.03

0.04

0.05
R̄
N
b[

%
][m

m
]

’woS3’

’All’

Figure 6. Mean grain radius evolution at 1050 ◦C from experimental data measured in 2D sections by
taking into account all boundaries (in orange) and without TBs (in green). The outer grains that share
a boundary with the image borders are not taken into account in the analysis.

In the following sections, general boundaries make reference to the case without Σ3 TBs,
and the case with Σ3 is referred to as all boundaries.

4. Statistical Cases

In this section, the 2D GB network is created from the initial experimental grain size
distribution shown in Figure 7. The square domain has a length L = 2.0 mm, and grains are
generated using a Laguerre–Voronoi tessellation [61] based on an optimized sphere packing
algorithm [78]. Anisotropic remeshing is used with a refinement close to the interfaces,
the mesh size in the tangential direction (and far from the interface) is set to hmax = 5 µm
and in the normal direction hmin = 1 µm, with transition distances set to φmin = 1.2 µm
and φmax = 5 µm (see [22,58,79] for more details concerning the remeshing procedure and
parameters). The time step is set to ∆t = 10 s. The orientation field was generated randomly
from the grain orientations measured by EBSD in the initial microstructure (Figure 2a). The
first part studies grain boundaries without Σ3 TB, (Section 4.1). In the second part, Σ3 TBs
are included in the analysis (Section 4.2).

(a) Excluding TBs (b) Including TBs
Figure 7. Initial grain size distributions (a) excluding TBs and (b) all grain boundaries obtained from
the initial EBSD map shown in Figure 2.

The interfacial energy and average GB properties are computed as

EΓ =
1
2 ∑

i
∑

e∈T
le(φi)γe and x̄ =

1
2LΓ

∑
i

∑
e∈T

le(φi)xe, (11)
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where T is the set of elements in the FE mesh, le is the length of the LS zero iso-values
existing in the element e, i refers to the number of LS functions, LΓ is the total length of the
GB network Γ, and xe is the GB property of the element e.

4.1. Statistical Case with General Boundaries

The first case with general boundaries is composed of NG = 4397 initial grains.
Figures 8a,b show the initial GB disorientation and the initial DDF distribution. Most
of the interfaces have a disorientation higher than 15◦ due to the random generation of
orientations that leads to a Mackenzie-like DDF [71]; see Figure 8b.

(a) Microstructure disorientation

0 10 20 30 40 50 60

Disorientation[◦]

0

2

4

6

8

10

12

L
en
g
th

[%
]

t = 0.0

’Numeric’

’EBSD’

(b) DDF

Figure 8. Initial (a) microstructure disorientation with a cyan circle that represents the zone shown
on the right and (b) the disorientation distribution.

Then, the GB energy and mobility are defined as being disorientation dependent,
using a Read–Shockley (RS) [55] and a Sigmoidal (S) function [56], respectively: γ(θ) = γmax

θ

θ0

(
1− ln

(
θ

θ0

))
, θ < θ0

γmax, θ ≥ θ0

(12)

and

µ(θ) = µmax

(
1− exp

(
−5
(

θ

θ0

)4
))

, (13)

where θ is the disorientation, µmax and γmax are the GB mobility and energy of general
high-angle grain boundaries (HAGBs). θ0 = 15◦ is the disorientation defining the transition
from a low-angle grain boundary (LAGB) to a HAGB. The maximal value of GB energy
is set to γmax = 6× 10−7 J·mm−2, which is typical for stainless steel [72,80]. The value of
general HAGB mobility was computed using the methodology presented in Section 3.2
and is fixed at µmax = 0.476 mm 4·J−1·s−1 for both isotropic and anisotropic formulations.

The simulations carried out using the anisotropic formulation consider heterogeneous
GB energy defined by Equation (12) and two descriptions of the mobility. If GB mobility
is isotropic, the formulation is referred as “Aniso(µ:Iso)”, and in the cases where GB
mobility is heterogeneous (i.e., defined by Equation (13), the formulation is referred to
as “Aniso(µ:S)”. Figure 9 shows the evolution of average quantities: normalized total GB
energy EΓ/EΓ(t = 0), normalized number of grains NG/NG(t = 0), arithmetic mean grain
radius R̄Nb, and normalized average GB disorientation θ̄/θ̄(t = 0). One can see that the
mean grain radius evolution agrees with the experimental data and that the evolution
of the other mean values are close to each other when using the different formulations
and present reasonable variations from the experimental data. As stated in [22], the
effect of a heterogeneous GB mobility does not affect the evolution of the mean values
and distributions when orientations are generated randomly, and the DDF is similar to a
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Mackenzie distribution. One can see that the only mean value affected by the GB mobility
is the average GB disorientation θ̄, being the “Aniso(µ:S)” formulation the one that is closer
to the experimental evolution.

0 1000 2000 3000 4000 5000 6000 7000

time[sec]

0.2

0.4

0.6

0.8

1.0

1.2

E
Γ
/E

Γ
(t

=
0)

’Iso’

’Aniso(µ:Iso)’

’Aniso(µ:S)’

’EBSD’

(a) EΓ/EΓ(t = 0) = f (t)

0 1000 2000 3000 4000 5000 6000 7000

time[sec]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
G
/N

G
(t

=
0)

’Iso’

’Aniso(µ:Iso)’

’Aniso(µ:S)’

’EBSD’

(b) Ng/Ng(t = 0) = f (t)

0 1000 2000 3000 4000 5000 6000 7000

time[sec]

0.010

0.015

0.020
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0.030

0.035

0.040

R̄
N
b[

%
][m

m
]

’Iso’

’Aniso(µ:Iso)’

’Aniso(µ:S)’

’EBSD’

(c) R̄Nb[%] = f (t)

0 1000 2000 3000 4000 5000 6000 7000

time[sec]

0.96

0.97

0.98

0.99

1.00

1.01

θ̄/
θ̄ (
t=

0)

’Iso’

’Aniso(µ:Iso)’

’Aniso(µ:S)’

’EBSD’

(d) θ̄/θ̄(t = 0) = f (t)

Figure 9. Mean values time evolution for the isotropic (Iso) formulation, anisotropic formulations
with isotropic GB mobility (Aniso(µ:Iso)) and heterogeneous GB mobility (Aniso(µ:S)) and the
experimental data (EBSD). Numerical results obtained from the initial microstructure shown in
Figure 8a.

Figures 10 and 11 show a good match of GSD and DDF between simulation results
and experimental data after one and two hours of annealing at 1050 ◦C. One can see that
the three cases are alike. The initial Mackenzie-like DDF evolves slowly for cases with
random orientations and low anisotropy (as in [22,35,81–83]). Finally, in Figure 12, one can
see the similarity between the microstructures obtained in the different simulations with
most of the grains being equiaxed and few LAGBs.
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Figure 10. Grain size distributions obtained excluding TBs at (a) t = 1 h and (b) t = 2 h for the
isotropic (Iso) formulation, anisotropic formulations with isotropic GB mobility (Aniso(µ:Iso)) and
heterogeneous GB mobility (Aniso(µ:S)) and the experimental data (EBSD). NG refers to the number.
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Figure 11. Disorientation distribution obtained excluding TBs at (a) t = 1 h and (b) t = 2 h for the
isotropic (Iso) formulation, anisotropic formulations with isotropic GB mobility (Aniso(µ:Iso)), and
heterogeneous GB mobility (Aniso(µ:S)) and the experimental data (EBSD). The Y-axis represents the
GB length percentage.

Figure 12. Detail of the GB disorientation at t = 2 h in radians, GBs with a disorientation higher
than 0.26 radians (15◦) are colored in red: (a) isotropic framework, (b) anisotropic framework with γ

function of θ (Equation (12)) and µ constant, and (c) anisotropic framework with γ and µ functions
of θ through Equation (12) and Equation (13), respectively. Due to the few GBs with θ < 0.26, just a
square section at the top-left of the hole microstructure is shown.
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The results presented here show that the evolution of an untextured polycrystal with
an initial Mackenzie-like DDF could be simulated using an isotropic formulation or an
anisotropic formulation with heterogeneous GB energy or both heterogeneous GB mobility
and energy. This methodology has been used in different contexts under different annealing
processes [72,75–77] and with academic microstructures in [22]. In the next section, the
same analysis is performed by considering the same domain but by introducing special
grain boundaries through an update of the µ and γ fields.

4.2. Statistical Case with an Improved Description of the γ and µ Fields

The microstructure used in this section, described in Figure 13, was generated using
the same domain with L = 2.0 mm and the GSD shown in Figure 7b. The initial number
of grains is NG = 14,956 and their orientation is also generated randomly from the EBSD
orientations. The initial number of grains is more important comparatively to the previous
test case as the GSD described in Figure 2c, (left side) where Σ3 TBs are taken into account
is used to generate the Laguerre–Voronoï polycrystal.

(a) GB energy
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t = 0.0
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Figure 13. Initial (a) microstructure disorientation with a cyan circle that represents the zone shown
on the right and (b) the disorientation distribution.

The same mesh and time step as the previous simulations are used in order to be able
to fairly compare the obtained results. In order to define the behavior of special GBs with
properties close to Σ3 TBs, the µ and γ fields are updated as follows:

γ(θ) = γmax
θ

θ0

(
1− ln

(
θ

θ0

))
, θ < θ0

γ(θ) = γmax, θ0 ≤ θ < θΣ3

γ(θ) = γmax ∗ 0.1, θ ≥ θΣ3

(14)


µ(θ) = µmax

(
1− exp

(
−5
(

θ

θ0

)4
))

, θ < θΣ3

µ(θ) = µmax ∗ 0.1, θ ≥ θΣ3

(15)

with θ0 = 15◦ and θΣ3 = 60◦ and a value of GB energy and mobility set to γmax ∗ 0.1 and
µmax ∗ 0.1 for GBs with θ ≥ θΣ3. The value of µmax is estimated using the evolution of R̄Nb[%]

considering all GBs (see Figure 6). The estimated GB mobility is µmax = 0.069 mm4·J−1·s−1,
and it is one order of magnitude lower from the GB mobility estimated without Σ3 TBs.
The decrease of the GB mobility is proportional to the decrease of grain size (see Figure 6)
due to the high number of TBs.

From the results shown in Figure 14, one can see that all formulations minimize the
energy with the same efficiency (Figure 14a) and the microstructures evolve at the same
rate, leading to a good fit of mean grain size and number of grain evolutions comparatively
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to the experimental data. On the other hand, the anisotropic formulation shows a better
agreement in terms of mean disorientation evolution.
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Figure 14. Mean values time evolution for the isotropic (Iso) formulation, anisotropic formulations
with isotropic GB mobility (Aniso(µ:Iso)) and heterogeneous GB mobility (Aniso(µ:S)), and the
experimental data (EBSD). Numerical results obtained from the initial microstructure shown in
Figure 13a.

Figure 15 shows the evolution of the grain size distribution at t = 1 h and 2 h. GSDs
present a good match (Figure 15) with small differences between the Iso and anisotropic
formulations. However the DDF predictions (Figure 16) are quite bad for all formulations
even if the anisotropic calculations tend to be better. This result can easily be explained
by the use of statistics (GSD and orientations) from EBSD data which are not sufficient to
accurately describe the real microstructure. First, the initial topology is simplified, but above
all, even if the orientation data come from the EBSD measurements, the resulting initial
DDF is not accurate, as a Mackenzie-like distribution is obtained, as illustrated in Figure 13b.
Hence, the effect of the heterogeneous GB energy and the mobility anisotropy of the real
microstructure are underestimated. A way of improvement of the proposed statistical
generation methodology will be to modify the algorithm dedicated to the assignment of
the orientation of each virtual grain by imposing also a better respect of the experimental
DDF [84].

The GB energy of the microstructure at t = 2 h is shown in Figure 17, a higher number
of blue GBs, which correspond to TBs (low value of γ), are obtained using the anisotropic
formulations, and the effect of heterogeneous GB mobility seems negligible.
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The next simulations are carried out by immersing the EBSD data in order to overcome
the limits discussed above.
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Figure 15. Grain size distributions obtained including TBs at (a) t = 1 h and (b) t = 2 h for the
isotropic (Iso) formulation, anisotropic formulations with isotropic GB mobility (Aniso(µ:Iso)) and
heterogeneous GB mobility (Aniso(µ:S)), and the experimental data (EBSD). NG refers to the number.
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Figure 16. Disorientation distribution obtained including TBs at (a) t = 1 h and (b) t = 2 h for the
isotropic (Iso) formulation, anisotropic formulations with isotropic GB mobility (Aniso(µ:Iso)) and
heterogeneous GB mobility (Aniso(µ:S)), and the experimental data (EBSD). The Y-axis represents the
GB length percentage.

Figure 17. GB energy of the microstructure obtained with the (a) isotropic and anisotropic formula-
tions using (b) isotropic GB mobility and (c) heterogeneous GB mobility at t = 2 h in the same zone
shown in Figure 13a.

5. Immersion of EBSD Data

In this section, a digital twin microstructure obtained by immersion of the EBSD
map acquired on the initial microstructure (Figure 2) is discussed. Figure 18 shows the
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band contrast map of the microstructure and its numerical twin. The dimensions of the
domain are Lx = 0.856 mm and Ly = 1.138 mm, and it contains 3472 crystallites. The time
step is fixed at ∆t= 10 s, and the domain is discretized here using an unstructured static
triangular mesh with a mesh size of h= 1 µm. This microstructure is more appropriate to
compare simulations and experimental data. The evolution of the numerical microstructure
is compared to EBSD maps obtained at three different times: t = 30 min, 1 h, and 2 h (see
Figure 3).

Figure 18. (left) EBSD band contrast map with GBs depicted in white and Σ3 TBs colored in red, and
(right) its numerical microstructure displayed with a color code related to the grain size and GBs are
colored in yellow. Here, TBs are considered to calculate grain size, i.e., crystallite size.

The GB energy and mobility are defined using Equations (14) and (15), respectively.
The maximal value of GB energy is set to γmax = 6× 10−7 J·mm−2, and the maximal
value of GB mobility is set to fit the mean grain size evolution. The maximal value of GB
mobility for the Aniso(µ:Iso) and Aniso(µ:S) formulations are µmax = 0.146 mm4·J−1·s−1

and µmax = 0.272 mm4·J−1·s−1, respectively. Regarding the isotropic formulation, the value
of GB reduced mobility remains constant µγ = 0.414× 10−7 mm2·s−1. The changes in
µmax are due to the more complex geometry and the higher quantity of special boundaries
that produce additional gradients of GB energy and GB mobility (see Equation (9)). As
stated before, the additional jump at θΣ3 is set to define special boundaries similar to Σ3
TBs. Figure 19 confirms the good match between the TBs colored in red in the EBSD band
contrast map (left side) and TBs colored in blue corresponding to a low GB energy in the
numerical twin microstructure (right side).

Figure 19. Detail of the (a) EBSD band contrast map and (b) its numerical twin showing the GB
energy field. Twin boundaries depicted in red on the left image have low energy on the right image.

With the immersed data, one can obtain a close digital twin of the real microstructure
with the initial GB distributions presented in Figure 20. The initial GB energy distribution
(GBED) is shown in Figure 20b. With this particular distribution, several junctions will
have a high anisotropy level, and as stated in [22,83], one can expect different behaviors
using the different formulations.
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Figure 20. Initial DDF and GBED of the initial immersed microstructure produced by the modified
Read–Shockley equation.

As illustrated in Figure 21, the three simulations predict similar trends concerning
the mean grain size and the grain number evolution. Comparatively to experimental
EBSD data, these predictions are very good concerning the mean grain size prediction, but
all of them tend to predict, at the beginning, a faster disappearance of the small grains.
Concerning the total energy, mean GB disorientation, and mean GB energy evolutions, the
anisotropic formulation is closer to the EBSD data. This means that the Aniso formulation
is more physical and promotes GBs with low GB energy.

Figure 22 illustrates the topology of grains at t = 2 h. One can notice the higher
quantity of GBs with low GB energy using the anisotropic formulation and its similar-
ity to the EBSD band contrast map even if one can notice from the EBSD data that the
real microstructure contains more TBs that create small grains as reflected in the GSD in
Figure 23. Another advantage of the anisotropic formulation is the better reproduction of
the DDF compared to the Iso formulation, which contains a lower percentage of GBs with
θ ≈ θΣ3 and tends to promote a Mackenzie-like DDF (see Figure 24). One can also see in
Figures 22–24 that the heterogeneous GB mobility improves the morphology of grain, the
GSD, and the DDF.

In this section, it has been shown that the immersed data give a better insight of the real
microstructure evolution. In terms of mean values, there are small differences between the
results from the Laguerre–Voronoï tesselation and the immersed microstructure. However,
the GSD and DDF distributions are better reproduced for the immersed case when the
anisotropic formalism is adopted. The heterogeneous GB mobility affects the grain topology,
the GSD, and the DDF due to its additional retarding effect. Regarding the GSD, the
Aniso(µ:S) formulation can reproduce the peak at low values of grain size and the peak
around θΣ3 for the DDF, which are due to the TBs. Nevertheless, the behavior of TBs is still
not perfectly reproduced by the proposed simulations, being the anisotropic formulation
the one that seems more physical. In the next section, this issue is addressed using the
GB5DOF code, which allows to define the GB energy in terms of misorientation and GB
inclination (in 2D) in order to better characterize the evolution of TBs.
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Figure 21. Mean values time evolution for the isotropic (Iso) formulation, anisotropic formulations
with isotropic GB mobility (Aniso(µ:Iso)) and heterogeneous GB mobility (Aniso(µ:S)), and the
experimental data (EBSD). Numerical results obtained from the initial microstructure shown in
Figure 18.
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Figure 22. GB energy of the microstructures obtained numerically using the (a) isotropic formulation
and the anisotropic formulations with (b) isotropic and (d) heterogeneous GB mobility. (c) illustrates
the corresponding experimental band contrast map at t = 2 h.
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Figure 23. Grain size distributions obtained at (a) t = 1 h and (b) t = 2 h for the isotropic (Iso)
formulation, anisotropic formulations with isotropic GB mobility (Aniso(µ:Iso)) and heterogeneous
GB mobility (Aniso(µ:S)), and the experimental data (EBSD); NG refers to the number. Numerical
results obtained from the initial immersed microstructure shown in Figure 18 and the RS and
Sigmoidal model to define GB energy and mobility.
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Figure 24. Disorientation distribution obtained at (a) t = 1 h and (b) t = 2 h for the isotropic (Iso)
formulation, anisotropic formulations with isotropic GB mobility (Aniso(µ:Iso)) and heterogeneous
GB mobility (Aniso(µ:S)), and the experimental data (EBSD). The Y-axis represents the GB length
percentage. Numerical results obtained from the initial immersed microstructure shown in Figure 18
and the RS and sigmoidal model to define GB energy and mobility.

6. Using Anisotropic GB Energy and Heterogeneous GB Mobility
6.1. Simulation Results

In this section, the immersed polycrystalline microstructure and the FE mesh presented
in Section 5 are used. Anisotropic GB energy values are defined using the GB5DOF
code [6], and the heterogeneous GB mobility is described using Equation (15). It means
that the GB energy can vary with the GB misorientation and inclination even if the torque
terms are neglected. Note that the GB inclination is measured in 2D and not 3D; in
other words, the GB is supposed to be perpendicular to the EBSD map. The GB energy
of the microstructure and its GBED are shown in Figure 25. The initial microstructure
is shown in Figure 25a, and one can see that the maximum value of GB energy is set
around γmax ≈ 7 × 10−7 J·mm−2. As discussed in [6], incoherent Σ3 TBs have a GB
energy defined as γΣ3 ≈ 0.6 ∗ γmax, meaning that the modified Read–Shockley model
described by Equation (14) seems exaggerated. In Figure 25b, the GBED is concentrated
within the values 4× 10−7 J·mm−2 ≤ γ ≤ 7× 10−7 J·mm−2, which means that the level of
heterogeneity is low and the different formulations are expected to promote similar trends,
as stated in [22]. The GB mobility was set to fit the evolution of the mean grain size, the
maximal GB mobility for the Aniso(µ:Iso) and Aniso(µ:S) formulations are, respectively, set
to µmax = 0.0767 mm4·J−1·s−1 and µmax = 0.1423 mm4·J−1·s−1. The difference between
the µmax values is generated by the higher values of GB energy produced by the GB5DOF
code; note that with the RS model, all the TBs are defined as coherent, while the GB5DOF
code can distinguish between coherent twin boundaries and incoherent twin boundaries,
as pointed out in [22,38].
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(a) GB energy of the initial microstructure
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Figure 25. (a) GB energy field and (b) GBED of the initial immersed microstructure obtained using
the GB5DOF code with the parameters εRGB = 0.763 J·mm−2 and AlCu-parameter= 0. In (a), the
blue circle shows a zone of interest with a twin boundary composed of a coherent and incoherent
part, similar to the one shown in [22].

First, the mean grain size and grain size distribution evolutions are well reproduced
by the different simulations (see Figures 26 and 27). The mean GB disorientation is not
well represented by any of the formulations, the EBSD data show a stable value around 50◦

while all numerical results exhibit a decreasing trend (see Figure 26b). This effect is due to
the TBs and illustrates the inability for the numerical formulations to preserve or generate
them. Additionally, the DDF from both formulations are similar and do not correspond to
the experimental DDF (see Figure 28). The similarity between the isotropic and anisotropic
simulations is due to the low anisotropy level, which may be produced by the lack of
information of the GB inclination (see Figure 29). As stated in [22], when the GBED is
concentrated around a specific value, both formulations can present a similar trend. This
is confirmed with Figure 30, where a zoom on the GB network is shown at four different
times, and one cannot see any obvious difference among the obtained microstructures with
the three different simulations. The main difference of these results lies in the ability of the
anisotropic formulation to keep more Σ3 TBs when the sigmoid description of µ is used.
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Figure 26. Mean values time evolution for the isotropic (Iso) formulation, anisotropic formulations
with isotropic GB mobility (Aniso(µ:Iso)) and heterogeneous GB mobility (Aniso(µ:S)), and the
experimental data (EBSD): (a) average grain radius, (b) average disorientation angle. Numerical
results obtained from the initial immersed microstructure shown in Figure 25a and the GB5DOF code
are used to define the GB energy.
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Figure 27. Grain size distributions obtained at (a) t = 1 h and (b) t = 2 h for the isotropic (Iso)
formulation, anisotropic formulations with isotropic GB mobility (Aniso(µ:Iso)) and heterogeneous
GB mobility (Aniso(µ:S)), and the experimental data (EBSD); NG refers to the number. Numerical
results obtained from the initial immersed microstructure shown in Figure 25a and the GB5DOF code
to define the GB energy.
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Figure 28. Disorientation distribution obtained at (a) t = 1 h and (b) t = 2 h for the isotropic (Iso)
formulation, anisotropic formulations with isotropic GB mobility (Aniso(µ:Iso)) and heterogeneous
GB mobility (Aniso(µ:S)), and the experimental data (EBSD). The Y-axis represents the GB length
percentage. Numerical results obtained from the initial immersed microstructure shown in Figure 25a
and the GB5DOF code to define the GB energy.
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Figure 29. (a) t = 1 h and (b) t = 2 h for the isotropic (Iso) formulation and anisotropic formulations
with isotropic GB mobility (Aniso(µ:Iso)) and heterogeneous GB mobility (Aniso(µ:S)). The Y-axis
represents the GB length percentage. Numerical results are obtained from the initial immersed
microstructure shown in Figure 25a and the GB5DOF code to define the GB energy.
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Figure 30. Microstructure evolution using the isotropic formulation and anisotropic formulation
with isotropic and heterogeneous GB mobility at t = 30 min, 1 h, and 2 h. The zone shown here is
encircled in blue in Figure 25a.

6.2. Current State of the Modeling of 3D Anisotropic Grain Growth

A final question regarding the anisotropy of GB properties is still open: do the 3D
descriptions of GB properties affect the microstructure evolution? Until now, most of the
studies of GG in 3D have presented simulations of polycrystalline microstructures using
different textures and a mathematical description of GB properties [33,50–52] or using
databases of GB energy [53,54]. The following conclusions are pointed out:

• The effect of the heterogeneity is stronger when the material is textured or the disori-
entation transition between LAGBs and HAGBs, θ0, is high [51,52,54];

• The individual effect of GB energy and mobility is small on the GG [52].



Materials 2022, 15, 2434 23 of 27

Note that similar conclusions were presented in the first part of this work [22]. In [33,50–52],
GB properties are defined as heterogeneous and not as anisotropic. The inclination depen-
dency can have an important impact; hence, a complete description of the GB properties
is necessary; i.e., µ(M(θ,~a),~n) and γ(M(θ,~a),~n), as well as 3D non-destructive in situ
characterization [45,47,48] in order to obtain more realistic values of GB mobility, must be
considered as a key perspectives concerning the full-field modeling of GG.

In the simulations presented in this section, the GB inclination is simplified as it is
projected in the observation plane. In other words, the description of the GB properties is
simplified, and only a slice of the GB energy is considered. For instance, Figure 31 shows
the GB energy and mobility of a Σ3 TB. One can see that the 3D surface of the TB properties
has a complex geometry. On the other hand, the anisotropy of the GB mobility is simplified
to a sigmoidal model with a cusp at θΣ3. Unluckily, the GB mobility data are not available
for the complete GB space and at different temperatures.
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Figure 31. (a) GB Energy and (b) mobility of a Σ3 TB in Ni computed using the fits proposed in [67]
of the atomistic simulation data in the study by Olmsted et al. [4,5]. The minimum, maximum,
and average values of γ and µ are {1.803, 6.793, 10.064} ×10−7 J·mm−2 and {0.032, 1.518, 2.995}
×106 mm4·J−1·s−1.

7. Summary and Conclusions

Different FE-LS formulations to study the GG of 316L stainless steel were compared. The
isotropic formulation is able to reproduce, for statistically generated or immersed polycrystals,
the average grain size and grain size distribution for a wide range of anisotropy levels.

The results obtained using representative Laguerre–Voronoï polycrystals show that the
heterogeneous GB mobility values do not affect the response of the different formulations
and that the anisotropic formulation is more physical being the only formulation that
enables promoting GBs with low energy. However, the anisotropy level was largely
underestimated because of the initial Mackenzie-like DDF, which could not be controlled
during the polycrystal generation.

Two additional cases were presented with a twin numerical microstructure obtained
directly from EBSD data. The main advantage is that the initial DDF and topology are
accurately defined. First, GB energy and mobility were defined using the modified Read–
Shockley and sigmoidal models already tested for the virtual polycrystals. Then, the model
was coupled with an anisotropic model of GB energy that takes into account the GB mis-
orientation and inclination [6]. However, it is highlighted again that the GB inclination
is not well defined, as the GB is supposed to be perpendicular to the observation plane.
The proposed RS model seemed to exaggerate the anisotropy level comparatively to the
GB5DOF code. However, the predictions are clearly better with the proposed RS and sig-
moid models associated to the anisotropic formulation while not allowing to be predictive
concerning the DDF whatever the method chosen.



Materials 2022, 15, 2434 24 of 27

These results illustrate that the prediction of grain growth at the polycrystal scale
can be ambiguous depending the aimed attributes and the available data. First of all, 3D
simulations should be considered. Of course, this aspect is, firstly, essential to improve
the representation of the considered polycrystals but is also essential to describe correctly
the γ dependence on the inclination. Indeed, the proposed 2D model/data context limits
the actual use of the inclination, as this parameter is described here with one degree of
freedom and not in a 3D framework with 3D experimental data. This aspect can explain
the low anisotropy level obtained using the GB5DOF code. Finally, this objective must also
be correlated to the fact to integrate the torque effects and thus the GB stiffness tensor in
the simulations and analysis. It should be highlighted that this conclusion is common to
all existing works of the state of the art involving anisotropic 2D GG simulations and 3D
simulations where the inclination dependence, or torque terms, or both are not taken into
account. Finally, it must also be emphasized that the influence of impurities segregation
and/or oxides can be important for the considered alloy but was not discussed in the
numerical framework; therefore, this constitutes another perspective of this work.
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Aniso Anisotropic formulation
DDF Disorientation Distribution Function
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FE Finite Element
FEGSEM Field Emission Gun Scanning Electron Microscope
FE-LS Finite Element–Level-Set
GB Grain Boundary
GB5DOF Code to compute the GB energy as a function of the misorientation and normal [6]
GBED Grain Boundary Energy distribution
GG Grain Growth
GSD Grain Size Distribution
HAGB High-Angle Grain Boundary
IPF Inverse Pole Figure
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LAGB Low-Angle Grain Boundary
LS Level Set
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RS Read–Shockley
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