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Abstract: Porcine circovirus type 3 (PCV3) contains two major open reading frames (ORFs) and
the ORF2 gene encodes the major structural capsid protein. In this study, nuclear localization
of ORF2 was demonstrated by fluorescence observation and subcellular fractionation assays in
ORF2-transfected PK-15 cells. The subcellular localization of truncated ORF2 indicated that the
38 N-terminal amino acids were responsible for the nuclear localization of ORF2. The truncated and
site-directed mutagenesis of this domain were constructed, and the results demonstrated that the
basic amino acid residues at positions 8–32 were essential for the strict nuclear localization. The basic
motifs 8RRR-R-RRR16 and 16RRRHRRR22 were further shown to be the key functional nucleolar
localization signals that guide PCV3 ORF2 into nucleoli. Furthermore, sequence analysis showed
that the amino acids of PCV3 nuclear localization signals were highly conserved. Overall, this study
provides insight into the biological and functional characteristics of the PCV3 ORF2 protein.
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1. Introduction

Porcine circoviruses (PCVs) are members of the family Circoviridae and the smallest DNA
viruses [1]. Before 2015, porcine circovirus 1 (PCV1) and PCV2 were considered to be the only porcine
circoviruses [2]. PCV1 is a cell-culture-derived virus and is nonpathogenic for swine. PCV2 is the
primary etiological agent of porcine circovirus-associated diseases (PCVAD) that cause severe losses
in the swine industry worldwide [3]. Recently, a novel circovirus was identified by next-generation
sequence (NGS) analysis of aborted fetuses of sows and named PCV3. PCV3 was first reported in the
USA in 2016 [4]. Since then, PCV3 has been detected in many countries, and it is associated with porcine
dermatitis and nephropathy syndrome, congenital tremors, reproductive failure, and multi-systemic
inflammation [5–8].

Circoviruses are the smallest autonomously replicating DNA viruses, and they show a typical
ambisense genomic structure [9,10]. Circoviruses have a non-enveloped, circular, single-stranded
DNA genome consisting of two major open reading frames, ORF1 and ORF2, which code the replicase
(Rep) and the capsid protein (Cap), respectively [11,12]. As in PCV1 and PCV2, PCV3 ORF2 encodes
the only structural capsid protein, which contains the dominant immunological regions [11,13].
Circoviruses lack an autonomous DNA polymerase and are dependent on the replication machinery of
the host cell for de novo DNA synthesis. As DNA synthesis occurs exclusively in the nucleus, the active
nuclear import of DNA molecules might require the involvement of karyophilic proteins [14]. In the
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case of PCVs, the N-terminus of ORF2 is rich in basic amino acids and displays nuclear localization
signals (NLSs) [14–16]. The NLS is a short stretch of amino acids that mediates the transport of nuclear
proteins into the nucleus. NLS motifs play a key role in this mechanism. NLS sequences are often
composed of basic amino acids and can be classified as either monopartite or bipartite motifs [17,18].
The nuclear targeting of PCV2 ORF2 is directed by the bipartite motifs situated at the N-terminus of the
proteins [14,15]. NLSs of PCV1 ORF2 show high homologies to classical monopartite or bipartite NLS,
which is essential for the complete nuclear import of PCV1 ORF2. The N-terminus of PCV1 and PCV2
ORF2 contain several conserved basic amino acid stretches [15,19], and shares 70.7% in nucleotide
identity and 82.9% in amino acid similarity.

Verification of NLS and demonstration of intracellular distribution facilitate understanding of
viral protein function. The amino acids of PCV3 ORF2 are markedly different from those of the other
PCVs. This led us to study the functional motifs in nuclear targeting of PCV3 ORF2. In this study,
a series of recombinant plasmids expressing PCV3 ORF2 fused to EGFP were constructed, and we
identified the main motifs of the NLSs mediating nuclear localization of PCV3 ORF2.

2. Materials and Methods

2.1. Plasmids

The PCV3 GD-HZ (GenBank accession number: MK454953.1) ORF2 gene and its truncated
fragments were amplified using the High-Fidelity PCR System (TaKaRa). Primer annealing was used to
obtain ORF2-1-1–16 fragments, and ORF2-∆NLS 2,3, ORF2-∆NLS 1,2, ORF2-∆NLS 1,3, and ORF2-∆NLS
1,2,3 fragments were amplified using PCR. Then, all fragments were inserted into pEGFP-C3 (Clontech,
Takara Bio, Kusatsu, Japan) to get recombinant plasmids. All primers and oligonucleotides used are
shown in Table 1.

2.2. Cells and Antibodies

PK-15 cells free of PCV (ATCC CCL33; American Type Culture Collection, Rockville, MD, USA)
were cultured, at 37 ◦C and 5% CO2, in DMEM (Gibco, Carlsbad, CA, USA) supplemented with 10%
fetal bovine serum. Anti-GFP antibody and anti-GAPDH antibody were obtained from Bioss (Beijing,
China). Horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG antibody was purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA).

2.3. Transfection and Fluorescence Analysis

PK-15 cells were grown on tissue culture plates for 24 h, and 70–80% confluent cells were transfected
with the recombinant plasmids using the Lipofectamine 3000 transfection reagent (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions. To analyze the localization of the expressed
proteins, PK-15 cells were fixed with 4% paraformaldehyde for 30 min at 4 ◦C, then washed with PBS,
and the nucleus was stained with 4′,6′-diamidino-2-phenylindole (DAPI). Fluorescence was examined
under a laser confocal scanning microscope.

2.4. Nuclear and Cytoplasmic Protein Extraction

PK-15 cells grown into six well plates, were transfected with the recombinant plasmids and
incubated at 37 ◦C for 24 h. The nuclear and cytoplasmic protein were extracted using the Nuclear and
Cytoplasmic Protein Extraction Kit (Sangon Biotech, Shanghai, China) following the manufacturer’s
protocol. The cells were then washed gently with PBS and collected. The cell pellets were resuspended
in 100 µL cytoplasmic protein extraction buffer A, incubated on ice for 3 min, and then the preparation
was spun at 1500× g for 4 min. The supernatants were transferred as cytoplasmic protein, and the
nuclear pellets were resuspended using 50 µL nuclear protein extraction buffer B. We then incubated
the mixture on ice for 10 min, and it was swirled to resuspend the pellets. The nuclear protein extraction
was centrifuged at 12,000× g for 10 min, and the supernatants were collected as the nuclear protein.
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Table 1. Oligonucleotides.

Name Oligonucleotide Sequence in 5′–3′ Direction Restriction Site

pEGFP-ORF2 F CTCAAGCTTATGAGACACAGAGCTATATT HindIII
pEGFP-ORF2 R GGTGGATCCTTAGAGAACGGACTTGTAAC BamHI

pEGFP-ORF2-1 R GGTGGATCCGTATGTGCCAGCTGTGGGCC BamHI
pEGFP-ORF2-2 F CTCAAGCTTTACACAAAGAAATACTCCAC HindIII
pEGFP-ORF2-2 R GGTGGATCCAAAGCTAATGGCAGTTTCCC BamHI
pEGFP-ORF2-3 F CTCAAGCTTGAATATTATAAGATACTAAA HindIII
pEGFP-ORF2-3 R GGTGGATCCGTTGAGCCATGGGGTGGGTC BamHI
pEGFP-ORF2-4 F CTCAAGCTTACATATGACCCCACCGTTCA HindIII

pEGFP-ORF2-1-1 F AGCTTATGAGACACAGAGCTATATTCAGAAGAAGAG HindIII
pEGFP-ORF2-1-1 R GATCCTCTTCTTCTGAATATAGCTCTGTGTCTCATA BamHI
pEGFP-ORF2-1-2 F AGCTTAGAAGAAGACCCCGCCCAAGGAGGCGACGACGCCACAGAAGGCGCG HindIII
pEGFP-ORF2-1-2 R GATCCGCGCCTTCTGTGGCGTCGTCGCCTCCTTGGGCGGGGTCTTCTTCTA BamHI
pEGFP-ORF2-1-3 F AGCTTTATGTCAGAAGAAAACTATTCATTAGGAGGCCCACAGCTGGCACATACG HindIII
pEGFP-ORF2-1-3 R GATCCGTATGTGCCAGCTGTGGGCCTCCTAATGAATAGTTTTCTTCTGACATAA BamHI
pEGFP-ORF2-1-4 F AGCTTAGAAGAAGACCCCGCCCAAGGAGGCGAG HindIII
pEGFP-ORF2-1-4 R GATCCTCGCCTCCTTGGGCGGGGTCTTCTTCTA BamHI
pEGFP-ORF2-1-5 F AGCTTAGAAGAAGACCCCGCCCAAGGAGGG HindIII
pEGFP-ORF2-1-5 R GATCCCCTCCTTGGGCGGGGTCTTCTTCTA BamHI
pEGFP-ORF2-1-6 F AGCTTGCAGCAGCACCCGCACCAAGGAGGCGACGAG HindIII
pEGFP-ORF2-1-6 R GATCCTCGTCGCCTCCTTGGTGCGGGTGCTGCTGCA BamHI
pEGFP-ORF2-1-7 F AGCTTAGAAGAAGACCCCGCGCAGCAGCAGCAGCAG HindIII
pEGFP-ORF2-1-7 R GATCCTGCTGCTGCTGCTGCGCGGGGTCTTCTTCTA BamHI
pEGFP-ORF2-1-8 F AGCTTCGACGACGCCACAGAAGGCGCG HindIII
pEGFP-ORF2-1-8 R GATCCGCGCCTTCTGTGGCGTCGTCGA BamHI
pEGFP-ORF2-1-9 F AGCTTCGACGCCACAGAAGGCGCG HindIII
pEGFP-ORF2-1-9 R GATCCGCGCCTTCTGTGGCGTCGA BamHI
pEGFP-ORF2-1-10 F AGCTTCGACGACGCCACAGAAGGGCAG HindIII
pEGFP-ORF2-1-10 R GATCCTGCCCTTCTGTGGCGTCGTCGA BamHI
pEGFP-ORF2-1-11 F AGCTTGCACGACGCCACAGAAGGCGCG HindIII
pEGFP-ORF2-1-11 R GATCCGCGCCTTCTGTGGCGTCGTGCA BamHI
pEGFP-ORF2-1-12 F AGCTTCGACGAGCAGCAGCAAGGCGCG HindIII
pEGFP-ORF2-1-12 R GATCCGCGCCTTGCTGCTGCTCGTCGA BamHI
pEGFP-ORF2-1-13 F AGCTTAGAAGAAAACTATTCATTAGGAGGCCCG HindIII
pEGFP-ORF2-1-13 R GATCCGGGCCTCCTAATGAATAGTTTTCTTCTA BamHI
pEGFP-ORF2-1-14 F AGCTTAGGCGCTATGTCAGAAGAAAACTAG HindIII
pEGFP-ORF2-1-14 R GATCCTAGTTTTCTTCTGACATAGCGCCTA BamHI
pEGFP-ORF2-1-15 F AGCTTAGAAAACTATTCATTAGGAGGCCCACAGCTGGCACATACG HindIII
pEGFP-ORF2-1-15 R GATCCGTATGTGCCAGCTGTGGGCCTCCTAATGAATAGTTTTCTA BamHI
pEGFP-ORF2-1-16 F AGCTTAGGCGCTATGTCGCAGCAGCACTATTCATTAGGAGGG HindIII
pEGFP-ORF2-1-16 R GATCCCCTCCTAATGAATAGTGCTGCTGCGACATAGCGCCTA BamHI

pEGFP-ORF2-∆NLS 2,3 F1 AAGACCCCGCCCAAGCCCACAGCTGGCACATAC
pEGFP-ORF2-∆NLS 2,3 F2 GAGACACAGAGCTATATTCAGAAGAAGACCCCGCCCAAG
pEGFP-ORF2-∆NLS 1,3 F1 CGACGACGCCACAGAAGGCGCCCCACAGCTGGCACATAC
pEGFP-ORF2-∆NLS 1,3 F2 CACAGAGCTATATTCCGACGACGCCACAGA
pEGFP-ORF2-∆NLS 1,2 F CACAGAGCTATATTCAGGCGCTATGTCAGA

pEGFP-ORF2-∆NLS 1,2,3 F CACAGAGCTATATTCCCCACAGCTGGCACATAC

The nucleotides of restriction sites are underlined and mutants are bolded.

2.5. Western Blot

After transfection, cells were lysed with 5× SDS sample buffer and boiled for 10 min before
loading onto a 12% SDS-PAGE gel. Proteins were transferred to membranes, followed by incubation
with mouse anti-GFP antibody (1:2000) and anti-GAPDH antibody (1:5000). Membranes were then
incubated with HRP-conjugated goat anti-mouse IgG antibody at 1:5000 dilution. Blots were visualized
using Image-Pro software.

2.6. Statistical Analysis

GraphPad Prism software (GraphPad Software, San Diego, CA, USA) was used for data analysis.
Data from three independent experiments were shown as the mean± standard error (SE). The differences
between groups were determined by one-way ANOVA.

3. Results

3.1. Localization of NLSs in ORF2

To confirm the NLS activity of PCV3 ORF2, the ORF2 gene was inserted into pEGFP-C3.
EGFP-ORF2 was completely located in the nucleus of PK-15 cells, and EGFP alone displayed a
diffuse cytoplasmic distribution (Figure 1B). To determine the important motifs of the ORF2 in its
nuclear localization function, recombinant plasmids (pEGFP-ORF2-1, pEGFP-ORF2-2, pEGFP-ORF2-3,
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and pEGFP-ORF2-4) were generated and transferred into PK-15 cells. The mutants are shown
in Figure 1A. EGFP-ORF2-1 could accumulate in the nucleus and EGFP-ORF2-2, EGFP-ORF2-3,
and EGFP-ORF2-4 were located in cytoplasm (Figure 1B–D). This implied that the N-terminal residues
(1–38 aa) of ORF2 play a role in nuclear localization. Three truncation mutants were constructed from
ORF2-1 (Figure 2A). Figure 2B–D shows that EGFP-ORF2-1-2 is located in the nucleus and mostly in
the nucleoli. EGFP-ORF2-1-3 was present in both the nucleus and the cytoplasm.
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Figure 1. The localization of nuclear localization signals (NLSs) in ORF2. (A) Recombinant plasmids 
containing ORF2 or truncated ORF2 fragments with EGFP in the N-terminus were constructed. The 
Figure 1. The localization of nuclear localization signals (NLSs) in ORF2. (A) Recombinant plasmids
containing ORF2 or truncated ORF2 fragments with EGFP in the N-terminus were constructed.
The subcellular localization of fusion proteins is indicated by N (nuclear) or C (cytoplasmic).
(B) The localization of fusion proteins in transfected cells was observed by confocal microscopy.
Scale bars = 20 µm. (C) and (D) Transfected cells were subjected to nuclear and cytoplasmic extraction.
The abundance of expressed proteins in the nuclear and cytoplasmic extracts were detected by
western blot. Nuclear/cytoplasmic distribution of the expressed proteins was further analyzed through
densitometric quantification using Image-Pro software, data from three independent experiments are
shown on the graph as the average ± standard error. One-way ANOVA; ** p < 0.01.
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Figure 2. The NLS motifs in ORF2-1. (A) pEGFP-ORF2-1-1 (1–10 aa), pEGFP-ORF2-1-2 (8–22 aa),
pEGFP-ORF2-1-3 (23–38 aa) were constructed and predicted NLSs were listed. (B) PK-15 cells
were transfected with recombinant plasmids and observed by confocal microscopy after 24 h.
Scale bars = 20 µm. (C) and (D) The nucleus and cytoplasm were extracted from the transfected PK-15
cells, and the abundance of expressed proteins in the extracts were detected by western blot after
nuclear and cytoplasmic extraction, nuclear/cytoplasmic distribution of the expressed proteins was
analyzed through densitometric quantification using Image-Pro software, data from three independent
experiments are shown on the graph as the average ± standard error. One-way ANOVA; ** p < 0.01.

3.2. Key Residues of NLSs in ORF2

To study the vital basic amino acids of the ORF2-1-2 (8–22 aa) motif in its nucleolar localization
function, truncated versions of the ORF2-1-2 fragment were cloned using pEGFP-C3 (Figure 3A).
EGFP-ORF2-1-4 (8–16 aa) and EGFP-ORF2-1-8 (16–22 aa) were mostly localized in the nucleoli,
while EGFP-ORF2-1-5 (8–15 aa) and EGFP-ORF2-1-9 (17–22 aa) were located in the nucleus (Figure 3B).
Single and multi-nucleotide alanine (A) substitution mutants of the ORF2-1-2 fragment were constructed
using pEGFP-C3 (Figure 3A). The results showed ORF2-1-6, ORF2-1-7, ORF2-1-10, ORF2-1-11,
and ORF2-1-12 mutants completely limited the function of nucleoli localization, suggesting that

8RRR-R-RRR16 and 16RRRHRRR22 were the two main nucleolar localization motifs in ORF2-1-2.
We studied the vital basic amino acids of ORF2-1-3 (23–38 aa) by constructing variants using truncation
and site-directed mutagenesis (Figure 4A). EGFP-ORF2-1-13, and EGFP-ORF2-1-14 displayed similar
nucleo-cytoplasmic distribution (Figure 4B–D). However, EGFP-ORF2-1-15 and EGFP-ORF2-1-16 were
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exclusively localized in the cytoplasm. These results demonstrated that 21RR22, 25RRK27, and 31RR32

in ORF2 (23–38 aa) were the key residues of nuclear localization in ORF2-1-3.
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Figure 3. The main nucleolar localization signal motifs in ORF2-1-2. (A) Mutants of ORF2-1-2 gene were
inserted into pEGFP-C3 and predicted nucleolar localization signal motifs are underlined. (B) PK-15
cells were transfected with plasmids, after 24 h, the cells were fixed and the localization of fusion
proteins was observed by confocal microscopy. Scale bars = 20 µm.
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Figure 4. The key amino acids of NLS in ORF2-1-3. (A) Mutants of ORF2-1-3 gene were inserted into
pEGFP-C3, and the key amino acids predicted in ORF2-1-3 are listed by underline. (B) PK-15 cells were
transfected with mutant plasmids, and the localization of fusion proteins was observed by confocal
microscopy. Scale bars = 20 µm. (C) and (D) After 24 h, the nucleus and cytoplasm in transfected cells
were extracted and the expressed proteins were determined by western blot. Nuclear/cytoplasmic
distribution of the expressed proteins was further analyzed through densitometric quantification using
Image-Pro software, data from three independent experiments are shown on the graph as the average
± standard error. One-way ANOVA; ** p < 0.01.

3.3. Map of NLSs in ORF2

There were three NLS motifs in PCV3-ORF2: NLS1 (8–16 aa), NLS2 (16–22 aa), and NLS3
(21–32 aa), and the key residues are shown in bold in Figure 5A. To define the contribution
of each NLS motif in its nuclear localization function, individual NLS motifs or all of them
were deleted (Figure 5B). EGFP-ORF2-∆NLS2,3 and EGFP-ORF2-∆NLS1,3 could be localized
in the nucleoli, EGFP-ORF2-∆NLS1,2 displayed almost equal nucleo-cytoplasmic distribution,
and EGFP-ORF2-∆NLS1,2,3 was localized in the cytoplasm (Figure 5C). These data indicated that NLS1
(8–16 aa) and NLS2 (16–22 aa) were critical for the nuclear localization of ORF2, and NLS3 (21–32 aa)
could not lead strict nucleus localization.
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Figure 5. The map of NLSs in ORF2. (A) The main motifs of the NLSs in the N-terminal
ORF2 (1–38 aa) are bold and the three NLSs are listed. (B) A sketch of the ORF2 indicating
putative NLSs motifs by red boxes is shown, and the mutated fragments of the ORF2 are shown.
(C) PK-15 cells were transfected with plasmids carrying mutated ORF2 gene (pEGFP-ORF2-∆NLS
2,3, pEGFP-ORF2-∆NLS 1,2, pEGFP-ORF2-∆NLS 1,3, and pEGFP-ORF2-∆NLS 1,2,3) to analyze their
subcellular location. Subcellular localization of green fusion proteins was analyzed by confocal
microscopy. Scale bars = 20 µm.

3.4. Variability of PCV3 ORF2 NLSs

To study the variability of NLSs, the logo of the N-terminal region in all PCV3 ORF2 sequences
was created through http://weblogo.threeplusone.com/create.cgi. The NLS region sequence alignment
logo showed that only lysine 27 was substituted by the basic amino acid arginine in some strains
(Figure 6A). The NLSs sequence alignment between PCV3 ORF2 and other PCVs was created through
https://www.ebi.ac.uk/Tools/msa/clustalo/. The result showed that the NLSs motifs identified in PCVs
were similar, especially, the amino acids of nucleolar localization signals (Figure 6B).
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4. Discussion

Since 2016, PCV3 has been reported in at least seven countries [4]. PCV3 is associated with porcine
dermatitis and nephropathy syndrome, congenital tremors, reproductive failure, and multi-systemic
inflammation. PCV3 infection in piglets triggers inflammatory lesions in various tissues and organs
followed by lymphocytic dysplasia and necrosis, and disruption of the immune system [20]. However,
the exact pathogenesis of PCV3 remains unclear [21–23]. The genome of PCV3 contains two major
open reading frames (ORFs): ORF1 encoding replicase and ORF2 encoding capsid [24]. The capsid
protein is a karyophilic protein located in the nucleus [14,16]. We found that PCV3 ORF2 could also
target the nucleus. Sequence analysis indicated that the N-terminus of PCV3 ORF2 contained many
conserved basic amino acids. Investigation of subcellular localization of truncated PCV3 ORF2 fused
with EGFP showed that the 38 amino acids at the N-terminus were necessary and sufficient to direct
the accumulation of protein in nucleus. This is similar to PCV1 and PCV2 ORF2 [15,19].

Even though there is no strict consensus on NLS, other NLS sequences are generally divided
into classical monopartite NLS and classical bipartite NLS [25]. To study the essential NLS motifs
at the N-terminal of PCV3 ORF2, truncations or substitutions of basic amino acids were introduced
into these stretches. Three NLS motifs in PCV3-ORF2 (NLS1, NLS2, and NLS3) were identified.
NLS1 (8RRR-R-RRR16) and NLS2 (16RRRHRRR22) were two contiguous motifs. These stretches
showed homology to the “pat4” motif consisting of four continuous basic residues, or the “bipartite”
motif that contains two stretches of basic amino acids segregated by non-conserved residues [26].
The similar motifs were also identified in PCV1 ORF2 (4PRRR-RRRR-RPR-H18) and PCV2 ORF2
(4PRRR-RRRRHRPR18) [15,19]. The subcellular fractionation results showed that NLS1 and NLS2
could direct strict nucleus localization, which was similar to the full-length PCV3 ORF2. The other
“pat4” motif NLS3 fused with EGFP displayed almost equal nucleo-cytoplasmic distribution. These data
suggest that NLS1 and NLS2 are the key NLSs in the nuclear localization of PCV3 ORF2 and that NLS3
plays an auxiliary role.

DNA synthesis of circoviruses occurs exclusively in the nucleus of host cells, but the active
nuclear import of DNA molecules might require karyophilic proteins [14]. In the case of circoviruses,
such as PCVs and beak and feather disease virus (BFDV), the NLS region of is important for ssDNA
accumulation [14,16]. The N-terminal of PCV2 ORF2 can interact with the nuclear membrane receptor
(gC1qR) to regulate DNA [27]. This suggests that the NLS region of PCV3 ORF2 may be involved
in DNA binding. In addition, PONDR analysis predicted that the N-terminal of PCV2 ORF2 was a
disordered peptidic region lacking a well-defined 3D structure under physiological conditions [27].
This arginine-rich region has a high probability of being exposed to solvent and then interacting with
surrounding proteins [28]. The NLS region may contain some dominant epitopes, and these epitopes
may influence the antigenicity of Cap. Further study is needed to verify whether there are dominant
epitopes in the NLS region of PCV3 ORF2.

Nucleolar localization has been described for the proteins of many DNA and RNA
viruses [29]. These viral proteins play multifunctional roles in regulating cellular transcription [30,31],
virus transcription [32], virus translation [33], and cell division [34]. For example, hepatitis delta virus
(HDV) was studied for nucleolar localization and it was found that interacting with nucleolin promoted
viral replication [35]. PCV1 ORF2 was localized in the nucleoli during PCV1 early infection, followed by
co-localization with Rep in the nucleoplasm [36]. In addition, the PCV1 and PCV2 ORF2 might help
regulate viral replication by interacting with Rep [37]. These suggest that the nucleolar localization
signals in PCV3 ORF2 might be involved in the regulation of viral replication. Further studies will be
needed to detail the function of nucleolar localization signals. The findings will clarify the function of
PCV3 ORF2 in the viral replication and pathogenicity.
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