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RNA family models describe classes of functionally related, non-coding RNAs based on sequence and structure
conservation. The most important method for modeling RNA families is the use of covariance models, which are
stochastic models that serve in the discovery of yet unknown, homologous RNAs. However, the performance of
covariance models in finding remote homologs is poor for RNA families with high sequence conservation, while for
families with high structure but low sequence conservation, these models are difficult to built in the first place. A
complementary approach to RNA family modeling involves the use of thermodynamic matchers. Thermodynamic
matchers are RNA folding programs, based on the established thermodynamic model, but tailored to a specific
structural motif. As thermodynamic matchers focus on structure and folding energy, they unfold their potential in
discovering homologs, when high structure conservation is paired with low sequence conservation. In contrast to
covariance models, construction of thermodynamic matchers does not require an input alignment, but requires human
design decisions and experimentation, and hence, model construction is more laborious. Here we report a case study
on an RNA family that was constructed by means of thermodynamic matchers. It starts from a set of known but
structurally different members of the same RNA family. The consensus secondary structure of this family consists of 2 to
4 adjacent hairpins. Each hairpin loop carries the same motif, CCUCCUCCC, while the stems show high variability in
their nucleotide content. The present study describes (1) a novel approach for the integration of the structurally varying
family into a single RNA family model by means of the thermodynamic matcher methodology, and (2) provides the
results of homology searches that were conducted with this model in a wide spectrum of bacterial species.

Introduction

Modeling RNA families
Recent interest in the non-coding part of the genome has cre-

ated a wealth of new results about the functional repertoire of
RNA. RNA-seq experiments based on next-generation sequenc-
ing technology have become common practice in discovering
novel small non-coding RNAs (sRNAs).1,2 The advantage of
homology searches for sRNAs that employ the results of RNA-
seq experiments, compared to in-silico de novo sRNA prediction,
is that one starts from an experimentally verified transcript, and
often, the exact length of the hypothetical RNA gene is known.3

Even when a function of a newly detected transcript is not yet
suspected, its conservation in sequence and/or structure in a
number of related species can be taken as first evidence that the
transcript is a bona-fide RNA gene. As a result of RNA gene
hunting efforts, the Rfam database4 has grown from 400 RNA

family models (RFMs) in 2004 to 2,208 at the time of this
writing.

The Rfam effort has established the creation of covariance
models (CMs)5 as the de-facto standard for modeling structural
RNA families. A covariance model starts from a sequence align-
ment that supports a conserved consensus structure, and creates a
stochastic model.4,6 It can be used to test individual transcripts
for family membership, or to scan complete genomes for RNA
gene prediction.

CMs are implemented as stochastic context free grammars, a
generalization of profile hidden Markov models (HMMs)7 to
incorporate conserved structural information. When sequence
conservation is high and structure conservation is weak in a family,
CMs behave much like profile HMMs. In contrast, when struc-
ture is strongly conserved, but sequence is diverged, CMs general-
ize better, i.e. they are more successful in finding family members
also in remotely related species. However, when creating such a
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model, we face a chicken-and-egg problem: How do we find a
group of sequences in the first place, which are diverged in
sequence but not in structure? Even when there are some sequence
motifs with high conservation, these may not allow for a BLAST
search of high specificity. In this situation, an alternative or com-
plementary route to construct an RFM is desirable. One such
strategy is the construction of thermodynamic matchers (TDMs).
It is worked out in this study for the “cuckoo” RNA family.

Biology background: the cuckoo family
In recent years, high-throughput sequencing studies of the

transcriptome (RNA-seq) in bacteria revealed a multitude of
novel sRNAs. In 2009, Berghoff et al.8 used differential RNA
sequencing (dRNA-seq) for the identification of sRNAs in the
photosynthetic alphaproteobacterium Rhodobacter sphaeroides,
which are induced under photooxidative stress. Among other
sRNAs, a cluster of 4 paralogous sRNAs, named RSs0680a-d,
was discovered and verified by Northern blot experiments.
Berghoff et al.8 showed that RSs0680a-d are co-transcribed with
an upstream located, so far uncharacterized hypothetical gene,
RSP_6037, and expressed under the control of an RpoHI/Rpo-
HII dependent promoter. Besides, a terminator-like hairpin was
found downstream of the sRNA cluster. In two complementing
studies it could be demonstrated that RSs0680a is induced under
heat stress as well, and is directly bound by Hfq.9,10 Despite the
characterization efforts, the precise function of the RSs0680 fam-
ily remains to be elucidated.

Derived from the RS0680a-d sRNAs, the RSs0680 RNA fam-
ily features a modular secondary structure, which is composed of
2 adjacent stem loops of similar size and a conserved loop motif
CCUCCUCCC, resembling an anti Shine-Dalgarno sequence
(aSD). Comparative analysis in selected alphaproteobacteria led
to the identification of 17 RSs0680a homologs in the orders of

the Rhodobacterales and the Rhizobiales.8 For 14 of these
sRNAs, a preserved genomic context was observed.

Besides, several studies using computational and experimental
approaches identified sRNAs in Sinorhizobium meliloti, which
represent structural variants of RSs0680. The first structural var-
iants, C14 and A6, were described by del Val et al.11 who pre-
dicted a total set of 32 S. meliloti sRNAs by means of eQRNA12

and RNAz.13 C14 was further confirmed by Northern analysis
under various conditions except for the stationary growth phase.
Different from RSs0680, the secondary structures of C14 and A6
harbor 3 and 4 adjacent stem loops, respectively, each carrying
again the sequence motif CCUCCUCCC. Based on sRNAPre-
dictHT, Valverde et al.14 rediscovered C14 and predicted the
sm7 sRNA, which is structurally similar to C14. In addition, it
could be demonstrated in a microarray experiment that C14 is
induced under salt stress. The dRNA-Seq study of Schl€uter
et al.15 revealed numerous sRNAs in S. meliloti. In addition to
the previously known sRNAs, A6 (SmelA099), C14 (SmelC397),
and sm7 (SmelC398), they identified 3 new sRNAs, SmelA075,
SmelB161, and SmelC025, which consist of 3 CCUCCUCCC-
modules. Experimentally determined transcription start sites by
50-RACE and RNA-seq for the 6 S. meliloti sRNAs are in good
agreement, differing by only a few nucleotides.11,15,16 A first
attempt to identify homologs of C14, as part of a study that
aimed at kingdom-wide predictions and annotations of trans-
encoded sRNA genes, yielded 9 predictions in closely related
Rhizobiales.17 Recently, 52 trans-encoded sRNAs of Schl€uter
et al.15 including SmelA075 and SmelA099, served as the basis
for the construction of 39 RNA family models.18 While we
mainly used CMs for the compilation of RFMs, in case of
SmelA075 and SmelA099 we constructed the respective RFMs,
RFMSmelA075 and RFMSmelA099, by means of TDMs. Relatives of
SmelA075 and SmelA099 are highly abundant and have been
found in multiple copies in the Rhizobiaceae, Phyllobacteriaceae

and Brucellaceae. As an example, S. meli-
loti encodes 5 copies of RFMSmelA075,
which are located not only on the chro-
mosome (SmelC025, SmelC397,
SmelC398) but are also present on the
megaplasmids pSymA (SmelA075) and
pSymB (SmelB161). Northern hybrid-
ization showed that SmelA075, similar
to RSs0680a, is induced under heat
stress.15 In total, both families comprise
121 sRNAs (RFMSmelA075 83 sRNAs,
RFMSmelA099 38 sRNAs). Due to the
presumably paralogous copies on differ-
ent replicons, fragmented microsynteny
was observed for both models. Neverthe-
less, subsets of homologous RNAs
showed a preserved genomic context.
Additionally, 3 members of
RFMSmelA075 and RFMSmelA099 have
been confirmed by RNA-seq studies in
Rhizobium etli and Agrobacterium
tumefaciens.19,20

Figure 1. RNA structures of experimentally validated cuckoo RNAs obtained by TDM folding. (A)
RSs0680a RNA (position 692386-692458, Rhodobacter sphaeroides 2.4.1), (B) ReC11 RNA (462572-
462689, Rhizobium etli CFN 42), (C) L5 RNA (1831446-1831604, Agrobacterium tumefaciens str. C58).
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Table 1. Distribution of cuckoo RNAs. The table summarizes the number of cuckoo RNAs and their distribution across CINs for each species. The occurrences
of cuckoo RNAs divided into structural variants are displayed in columns HP2 to HP4 Columns CIN1–CIN6 show the distribution of cuckoo RNAs within the 6
CINs. Each digit represents a cuckoo RNA within a CIN, while the digit’s value reflects the number of modules. Unless denoted by a leading character (c D
secondary chromosome, p D plasmid) a CIN and therefore the corresponding cuckoo RNA is located on the primary chromosome of the respective bacte-
rium. The first row, for example, reads in words as follows: “In Brucella abortus A13334, we find 4 cuckoo RNAs, one with 2 hairpins, 2 with 3 hairpins, and
one with 4 hairpins. The 4HP cuckoo is found on the main chromosome in neighborhood CIN1; in the same neighborhood, but on the secondary chromo-
some, we find a 2HP cuckoo. The 3HP cuckoos are found on the main chromosome in neighborhood CIN5, and on the secondary chromosome in neighbor-
hood CIN6.” See Table S1 for complete sequences and detailed results.

Species HP2 HP3 HP4 CIN1 CIN2 CIN3 CIN4 CIN5 CIN6

Polymorphum gilvum SL003B-26A1 0 1 1
Brucellaceae
Brucella abortus A13334 1 2 1 4;c2 3 c3
Brucella abortus S19 1 2 1 4;c2 3 c3
Brucella abortus bv. 1 str. 9-941 1 1 1 4;c2 3
Brucella canis ATCC 23365 1 1 1 4 3 c2
Brucella canis HSK A52141 1 1 1 4 3 c2
Brucella melitensis ATCC 23457 1 1 1 4;c2 3
Brucella melitensis M28 1 1 1 4;c2 3
Brucella melitensis M5-90 1 1 1 4;c2 3
Brucella melitensis NI 1 1 1 4;c2 3
Brucella melitensis biovar Abortus 2308 2 1 1 4;c2 3 c2
Brucella melitensis bv. 1 str. 16M 2 1 1 4 3 c2
Brucella microti CCM 4915 2 1 1 4;c2 3 c2
Brucella ovis ATCC 25840 1 1 1 4;c2
Brucella pinnipedialis B2/94 1 2 1 4;c2 3 c3
Brucella suis 1330 1 2 1 4;c2 3 c3
Brucella suis ATCC 23445 1 2 1 4;c2
Brucella suis VBI22 1 2 1 4;c2 3 c3
Ochrobactrum anthropi ATCC 49188 0 4 1 4;c3
Hyphomicrobiaceae
Pelagibacterium halotolerans B2 0 2 0
Phyllobacteriaceae
Chelativorans sp. BNC1 2 4 0 3
Mesorhizobium australicum WSM2073 0 5 0 333
Mesorhizobium ciceri biovar biserrulae WSM1271 0 6 0 333
Mesorhizobium loti MAFF303099 0 6 0
Mesorhizobium opportunistum WSM2075 0 5 0 333
Rhizobiaceae
Agrobacterium tumefaciens str. C58 0 1 2
Agrobacterium radiobacter K84 0 3 3 3 3 3
Agrobacterium sp H13-3 0 2 2 l4
Agrobacterium vitis S4 0 3 3 c4
Rhizobium etli CFN 42 0 4 2 p4 3 3
Rhizobium etli CIAT 652 1 3 3 p4 3
Rhizobium etli bv. mimosae str. Mim1 0 4 1 p4 3 3
Rhizobium leguminosarum bv. trifolii WSM1325 0 4 4 3;p4;p4 3 3
Rhizobium leguminosarum bv. trifolii WSM2304 1 4 2 3;p4 3 3
Rhizobium leguminosarum bv. viciae 3841 0 4 1 p4 3
Rhizobium tropici CIAT 899 0 3 1 p4 3 3
Sinorhizobium fredii HH103 0 6 0 33 p3
Sinorhizobium fredii NGR234 0 4 0 33 p3
Sinorhizobium fredii USDA 257 0 6 0 33 3
Sinorhizobium medicae WSM419 1 4 2 33;p4 p3
Sinorhizobium meliloti 1021 0 5 1
Sinorhizobium meliloti 2011 0 5 1 3 p3
Sinorhizobium meliloti AK83 0 5 1 3 3 c3
Sinorhizobium meliloti BL225C 0 4 1 33 3 p3
Sinorhizobium meliloti GR4 0 4 1 33 3 p3
Sinorhizobium meliloti Rm41 0 5 1 3 p3
Sinorhizobium meliloti SM11 0 4 1 33 3 p3
Rhodobacteraceae
Parvibaculum lavamentivorans DS-1 1 0 0

(Continued on next page)
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In a comparative analysis, del Val et al.21 applied CMs to
build RFMs for C14, termed ar14, and 5 other S. meliloti RNAs.
The ar14 RFM includes 101 sRNAs. ar14 and RFMSmelA075,
which describe the same family of 3 hairpin forming sRNAs, are
generally in good agreement, aside from single members that
exist exclusively in either of the families. However, as we know
today, 33 members of the ar14 family exhibit 4 instead of the 3
annotated stem loops, and thus belong to RFMSmelA099. This is
not the only example for misclassification, several sequences that
were defined as homologs of RSs0680 actually belong to either
RFMSmelA075 or RFMSmelA099.

8,18

Regarding the RNA secondary structures and the conserved
sequence motif within the loop sequences of the 3 RNA families
RSs0680, RFMSmelA075, and RFMSmelA099, it is reasonable to
conclude that they all represent structural variants of the same
family and that hairpins are the building blocks of their modular
RNA architecture (Fig. 1).

In summary, as of 2013, 145 members belonging to one of
the 3 structural variants of this RNA family had been identified
by various means, but a general model for the family was lacking
(Table S5).

In this study we (1) present a novel approach to integrate the
structurally varying RFMs RSs0680, RFMSmelA075, and
RFMSmelA099 into a single RFM by means of the thermodynamic
matcher methodology, (2) use the novel family model to conduct
extensive homology searches and provide an updated list of fam-
ily members. In the following we refer to the joint family as the
cuckoo family. Our name for the family is derived from this
sequence motif CCUCCUCCC, which in German is phoneti-
cally the same as "Kuckuck" (cuckoo).

Results

Our study has 2 results: One is the considerably extended
cuckoo family, and the other one is the TDM developed for its
construction and to be used for its maintenance as new bacterial
genome sequences become available. The former result is
described in this paragraph, the latter in the methods section.

Our new cuckoo RNA family model was used to perform
comprehensive screens for cuckoo RNAs on 2,680 prokaryotic
genomes downloaded from NCBI’s RefSeq database and 9

Table 1. Distribution of cuckoo RNAs. The table summarizes the number of cuckoo RNAs and their distribution across CINs for each species. The occurrences
of cuckoo RNAs divided into structural variants are displayed in columns HP2 to HP4 Columns CIN1–CIN6 show the distribution of cuckoo RNAs within the 6
CINs. Each digit represents a cuckoo RNA within a CIN, while the digit’s value reflects the number of modules. Unless denoted by a leading character (c D
secondary chromosome, p D plasmid) a CIN and therefore the corresponding cuckoo RNA is located on the primary chromosome of the respective bacte-
rium. The first row, for example, reads in words as follows: “In Brucella abortus A13334, we find 4 cuckoo RNAs, one with 2 hairpins, 2 with 3 hairpins, and
one with 4 hairpins. The 4HP cuckoo is found on the main chromosome in neighborhood CIN1; in the same neighborhood, but on the secondary chromo-
some, we find a 2HP cuckoo. The 3HP cuckoos are found on the main chromosome in neighborhood CIN5, and on the secondary chromosome in neighbor-
hood CIN6.” See Table S1 for complete sequences and detailed results.

Species HP2 HP3 HP4 CIN1 CIN2 CIN3 CIN4 CIN5 CIN6

Dinoroseobacter shibae DFL 12 1 0 0
Jannaschia sp. CCS1 3 0 0 222
Ketogulonicigenium vulgare WSH-001 0 1 0
Ketogulonicigenium vulgare Y25 0 1 0
Loktanella vestfoldensis DSM 16212 2 1 0
Loktanella vestfoldensis SKA53 2 1 0 223
Oceanicola batsensis HTCC2597 2 0 1 24
Oceanicola granulosus HTCC2516 4 1 0 22223
Octadecabacter antarcticus 307 2 0 4
Octadecabacter arcticus 238 3 1 3
Paracoccus aminophilus JCM 7686 0 0 2 44
Paracoccus denitrificans PD1222 4 0 1 22224
Phaeobacter gallaeciensis 2.10 2 0 0 22
Phaeobacter gallaeciensis DSM 17395 2 0 0 22
Phaeobacter gallaeciensis DSM 26640 2 0 0
Pseudovibrio sp FO-BEG1 0 0 1
Rhodobacter capsulatus SB 1003 4 0 0 2222
Rhodobacter sphaeroides 2.4.1 7 0 0 2222222
Rhodobacter sphaeroides ATCC 17025 4 0 0 2222
Rhodobacter sphaeroides ATCC 17029 9 0 0 222222222
Rhodobacter sphaeroides KD131 7 0 0 2222222
Roseobacter denitrificans OCh 114 2 0 0 22
Roseobacter litoralis OCh 149 2 0 0 22
Roseovarius nubinhibens ISM 2 0 0 2
Roseovarius sp. 217 2 0 0 22
Ruegeria pomeroyi DSS-3 3 0 0 222
Ruegeria sp TM1040 2 0 0 22
Sagittula stellata E-37 3 1 0 2223
Sulfitobacter sp. EE-36 1 0 1 24
Sulfitobacter sp NAS-14.1 2 0 1 24
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additional rhodobacterial genomes that were part of the compar-
ative study of Berghoff et al.8 A list of all included bacterial
genomes is provided in Table S6. Our approach revealed in total
321 cuckoo RNAs, which were distributed on 156 replicons of
78 alphaproteobacteria (Table 1, Tables S1-S5). 176 of the 321
cuckoo RNAs were previously unknown. Within the alphapro-
teobacteria, cuckoo RNAs were found in the genomes of 31 Rho-
dobacteraceae; and in the families of Rhizobiaceae, Brucellaceae,
Hyphomicrobiaceae, and Phyllobacteriaceae of the order of the
Rhizobiales, cuckoo RNAs occur in 22, 18, 1, and 5 genomes,
respectively. Besides, members of the cuckoo family were recov-
ered in the unclassified alphaproteobacterium Polymorphum
gilvum.

Regarding the distribution of the different structures which
cuckoo RNAs exhibit, the group of 150 cuckoo members with 3
hairpins (HP3) represents the most abundant structural variant,
followed by 105 cuckoo RNAs exhibiting 2 hairpins (HP2) and
66 RNAs that form 4 stem loops (HP4). Despite their high
abundance, HP3 cuckoo RNAs are limited mainly to the Rhizo-
biales and are additionally present as a single copy only in few
Rhodobacteraceae. The distribution of HP4 cuckoo RNAs is sim-
ilar except for the genera of Paracoccus and Octadecabacter, which
harbor 2 to 4 RNAs of this structural variant. In contrast, HP2

cuckoo RNAs were identified in all families of the Rhizobiales but
are predominant in the Rhodobacteraceae where they are found in
clusters with highly variable numbers of up to 9 copies.

Synteny
The analysis of the genomic context of cuckoo RNA loci indi-

cated several conserved intergenic neighborhoods (CIN). A CIN
refers to a conserved genomic segment containing a cuckoo RNA
or a cluster of cuckoo RNAs which is furthermore flanked at least
on one side by an orthologous group of genes (OG).22 See Meth-
ods for a detailed definition of CIN. The most prominent CIN,
CIN1, harbors nearly half of all cuckoo RNAs (148) and is pres-
ent in 63 out of 78 bacteria, representing almost the entire taxo-
nomic range of cuckoo RNAs (Table 1, Fig. 2, Table S2). CIN1
is characterized by its association with an orthologous gene of
unknown function (OG1) and is the only CIN that was discov-
ered in the Rhodobacteraceae and the Phyllobacteriaceae. On the
other end, CIN1 is flanked either by genes for which no orthol-
ogy could be determined or by OGs, which are conserved among
specific taxa. For example, 27 cuckoo RNAs in the Rhodobacter-
aceae were identified between a benzoate transporter gene
(OG18) and OG1 while 14 cuckoo RNAs associated with OG1
and a leucine tRNA gene were found in members of the

Figure 2. Conserved intergenic neighborhoods of cuckoo RNAs. CINs are drawn as graphs. Nodes and edges depict conserved flanking features of
cuckoo RNAs and represent single and combinations of OGs, respectively. Nodes and edges are annotated with the number of involved cuckoo. Each
node is a pie chart to display the phylogenetic distribution. The area of the nodes is proportional to the number of flanked cuckoo RNAs. The colors
green, yellow, purple and red correspond to the taxa Brucellaceae, Rhizobiaceae, Phyllobacteriaceae, and Rhodobacterales.
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Rhizobiaceae. The association of OG1 and a tRNA-methyltrans-
ferase (OG7) was observed for 28 cuckoo RNA across the fami-
lies Brucellaceae, Phyllobacteriaceae, and Rhizobiaceae. All kinds
of structural variants of cuckoo RNAs were found in CIN1 and
it is the only CIN that harbors clusters of cuckoo RNAs. While
the Brucellaceae lack cuckoo RNA clusters, CIN1 in Rhizobia-
ceae and Phyllobacteriaceae species often exhibit 2 and 3 HP3
cuckoo RNAs, respectively. A different picture is found for
CIN1 in the Rhodobacteraceae. Here, the HP2 cuckoo RNA
constitutes the most common variant within cuckoo clusters that
are located in CIN1. Besides, next to a small number of species
that have pure HP4 cuckoo RNA clusters, clusters in CIN1 exist
that start with a series of HP2 cuckoo RNAs and end with differ-
ent structural variants.

Interestingly, no other CIN could be identified among
cuckoo RNAs in the Rhodobacteraceae and the Phyllobacter-
iaceae. However, we discovered 5 CINs within the Rhizobia-
ceae (CIN2, CIN3, CIN4), the Brucellaceae (CIN6) or
within both families (CIN5). CIN2, CIN3, and CIN5 reside
only on primary chromosomes while CIN6 is located on the
secondary chromosome of the Brucellaceae. CIN4, in con-
trast, represents a cuckoo RNA locus which is located on the
plasmids of Sinorhizobium species with 2 exceptions with
CIN4 residing on a chromosome and a secondary chromo-
some, respectively. Nearly all cuckoo RNAs associated with
CIN2 to CIN6 consist of 3 hairpins. An exception is CIN6,
which harbors HP3 as well as HP2 cuckoo RNAs.

The analysis of the genomic neighborhoods of cuckoo RNAs
shows an occurrence pattern that is biased toward a primary con-
served neighborhood (CIN1) accompanied by several smaller
CINs, with respect to the number of associated cuckoo RNAs
that are limited to smaller taxa within the Rhizobiales. In sum-
mary, we developed a unifying model of structurally varying
cuckoo RNAs and using our approach, we discovered 176 previ-
ously unknown cuckoo RNAs, thereby extending the cuckoo
family to 321 members.

Conclusions

In this study we have built an integrative model of the
cuckoo RNA family based on TDMs, which is capable to dis-
tinguish between different cuckoo RNA structure variants.
Applying the cuckoo family model, we have performed sys-
tematic homology searches and have identified 321 cuckoo
RNAs, 176 of which were previously undescribed. According
to our data, cuckoo RNAs are distributed across the Rhodo-
bacteraceae, Phyllobacteriaceae, Brucellaceae, and the Rhizo-
biaceae. The primary locus of cuckoo RNAs is found in an
intergenic region next to a protein homolog of unknown
function (OG1) and is present in almost all prokaryotes that
harbor cuckoo RNAs.

Homology search for cuckoo RNAs is difficult not only
because of the modular nature of the family’s secondary struc-
ture, which leads to different variants in structure and size, but
also of the lack of sequence conservation (beyond the genus

level). This is caused by a high number of compensatory muta-
tions, which dominate the stem-loops. The only conserved
sequence pattern is the cuckoo loop motif CCUCCUCCC,
which in part represents an aSD motif. In such a scenario TDMs
prove their strengths, as TDMs can be tailored to multiple com-
peting consensus structures and can emphasize single motifs.

The posttranscriptional regulation mechanism that represses
the translation of target mRNAs by occluding the ribosome bind-
ing site (RBS) is widespread among sRNA.23 Consistently, C-
rich loop sequences are a common feature among sRNAs and it
was postulated that these motifs generally are signatures of
sRNAs that repress the translation of target mRNAs by pairing
with the RBS.24 An example is RNAIII, a sRNA which is pre-
dominant in Staphylococcus species. RNAIII harbors a conserved
motif, UCCC, in 3 of its hairpin loops. In Staphylococcus aureus
these hairpins are suggested to facilitate the initial binding
between RNAIII and the RBS of the target mRNAs of several vir-
ulence factor mRNAs and the mRNA of the transcriptional regu-
lator rot.25 Moreover, in a comparative study in S. aureus strains,
several distinct sRNAs were identified that carry the identical C-
rich loop motif.24 The authors hypothesized that these sRNAs
are the product of convergent evolution. A similar picture is
found in S. meliloti where several representatives of RNA families
occur which are either similar to cuckoo HP2 (RFMSmelA003),
cuckoo HP3 (RFMSmelB008, RFMSmelC416, RFMSmelC601) or
cuckoo HP4 (RFMSmelC023) RNAs.18 Pairwise alignment of
these sRNAs in our study (data not shown) with cuckoo mem-
bers of S. meliloti revealed their sequence dissimilarity and there-
fore they likely do not share a common history but might act on
their target mRNAs in an analogous way. Furthermore, sRNAs
with sequence motifs reminding of the cuckoo motif are sX13
RNA and RepG RNA, which are highly conserved in the Xan-
thomonadaceae family and in Helicobacter pylori strains,
respectively.26,27

So far homologs of neither family could be discovered in
other species that would establish a phylogenetic connection
between the above mentioned RNA families and thus no
homology seems to exists. This is in concordance with obser-
vations that only a small proportion of RNA families are
widely distributed.28

Concerning the aSD pattern of the cuckoo RNAs, the ques-
tion arises, if cuckoo RNAs act as global translational repressors
or if they occlude specific RBS more effectively thus repressing
the respective genes. A comparative target analysis conducted to
investigate this question could start from our compilation of
cuckoo RNAs.

Note added in revision: In the most recent release of Rfam, a
RNA family model RF02344 has been added. Its members over-
lap with the ones of our cuckoo family. As is current practice in
Rfam, the family RF02344 is described as a covariance model,
which is inherently limited to a fixed consensus structure. It
assumes exactly 3 hairpins, and as a consequence, many family
members of type HP2 and HP4 are wrongly annotated and some
missing. This supports the use of a new, more flexible method (as
presented herein) for model construction in the case of significant
structural variation.
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Methods

Thermodynamic matchers
Let x be an RNA sequence, and F(x) its folding space, i.e., the

set of secondary structures it can fold into. The thermodynamic
model29 assigns a free energy state E(s) to a secondary structure s.
A structure prediction algorithm, such as RNAfold,30 uses this
energy model to predict the structure of minimum free energy
(MFE),

mfe xð ÞD argmin
s

E sð Þ j s2F xð Þf g:

A thermodynamic matcher31 (see footnote1) (TDM) solves the
same minimization problem on a specific subset of F xð Þ. Let M
be a function that, given sequence x, yields a subset of the folding
space, M xð ÞF xð Þ. Our intention is that M somehow captures a
class of structures that contains a consensus structure for a family of
sequences. Then, a thermodynamic matcher forM computes

tdmM xð ÞD argmin
s

E sð Þ j s2M xð Þf g:

This is mathematically strict, with no heuristics involved. The
matcher folds the given RNA sequence into the prescribed struc-
ture class as good as it – the RNA – can. Should mfe xð Þ2M xð Þ,
we find tdmM xð ÞDmfe xð Þ: Therefore, it makes sense to compare
E tdmM xð Þð Þ to E mfe xð Þð Þ. This allows to evaluate whether the
matching structure comes close enough to minimal free energy to
be plausible from the thermodynamic point of view.

Although notations are quite different, a TDM is similar to a
descriptive motif matcher as provided e.g. with RNAMotif.33

However, its implementation is different. It uses dynamic pro-
gramming during the matching phase, rather than constructing
combinatorial matches and evaluating them afterwards. Thus,
only the best possible match (if any) for a sequence window is
returned. Even with a loosely defined motif, the output is
bounded by O(N), where N is the sequence size.

Heretofore, the idea of TDMs has found a variety of applica-
tions, but not in RFM construction. A TDM, tuned to a subset
of the folding space, is a nontrivial program to construct, similar
but with specialized recurrences compared to a standard structure
prediction algorithm. In fact, a TDM typically requires more
recurrences and dynamic programming tables than a standard
RNA folding algorithm. Hand-programming such a matcher,
possibly modifying its design several times and debugging the
implemented dynamic programming algorithm, would be pro-
hibitive in practice. Fortunately, there is some automated
support.

� The program RapidShapes34 generates TDMs from abstract
shape35 specifications, such as "[[][][]]" for the cloverleaf
shape. This allows one to directly compute this shape’s contri-
bution to the partition function of x in O(n3), which otherwise
requires computing all shapes and has exponential runtime.

� The tool Locomotif36 generates TDMs from structure
graphics, which a non-programmer can compile from pre-
defined building blocks (stems, bulges, multiloops, simple
pseudoknots, . . .). These building blocks can be specialized
and decorated with sequence motifs in various ways. But in
principle, Locomotif’s fixed set of blocks is a restriction of the
TDM concept.

� The recent Bellman’s GAP system37 provides the declarative
language GAP-L, which allows to describe TDMs by (tree)
grammars and evaluation algebras, and comes with a reposi-
tory of re-usable components for RNA folding algorithms. In
particular, there is an algebra for MFE calculation, which can
be used off-the-shelf, and the TDM designer does not have to
worry about the intricacies of the energy model. It implements
the TDM grammar with the best asymptotic efficiency and a
minimal number of dynamic programming tables.38

In this study, we chose to first produce a shape matcher with
Locomotif, obtain it’s GAP-L source code, and then to further
refine the GAP-L program according to our design decisions.

General overview of TDM construction
The TDM construction process, like other descriptor based

approaches for modeling RNA families, is neither standardized
nor fully automated, but driven by human design decisions. Nev-
ertheless, the steps that are involved in TDM construction follow
a general scheme:

1. parameter derivation from an input RNA or a set of related
RNAs,

2. creation of a graphical description using Locomotif,
3. compilation of the underlying folding grammar into a TDM,
4. screening for sequences applying the TDM,
5. assessment of new candidates.

Steps 1 to 5 are repeated until the final model of the RNA
family is obtained. In this study, we started with a structurally
varying set of 145 known cuckoo RNAs (Table S5) and derived
structure and sequence features of the cuckoo family. We thereby
focused on the modular nature of the cuckoo RNAs. See Supple-
mentary Methods for a detailed description of how initial param-
eters were derived. In order to capture all important features of
the cuckoo family we built two complementary TDMs, the skele-
ton TDM and the cuckoo TDM, which are described in the fol-
lowing sections. The Locomotif editor was used to draw
annotated structure graphics and obtain basic grammars for both
TDMs. We manually adapted these basic grammars to match
variable numbers of consecutive cuckoo modules and introduced
restrictive structure constraints and sequence motifs according to
the parameters gathered initially. For the screening of genome
sequences, we implemented a variant aware search procedure,
which integrates the skeleton and the cuckoo TDM and separates
structural variants of cuckoo RNAs (see section below). After

1The name “thermodynamic matcher” goes back to Reeder et al.,32 but no formal definition was given there.
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assessment, in the subsequent modeling process we refined the
TDMs by relaxing constraints gradually, by adding new cuckoo
motifs, and by the integration of new constraints.

The skeleton TDM
The skeleton TDM aims at evaluating an input RNA

sequence to be a potential cuckoo RNA by focusing on two
aspects. One is the definition of sequence motifs that are consid-
ered instances of the cuckoo motif, the other is the distance
between two such motifs. The output is an unfolded RNA
sequence, annotated with the genomic coordinates and the pre-
dicted cuckoo motifs in upper case letters.

Conceptually, the underlying grammar of the skeleton TDM
defines the (valid) sequence of a cuckoo RNA as a series of two or
more basic blocks (non-terminal motif), which might be enclosed
by leading and/or trailing bases (Fig. 3A). struct, derived from
the grammars axiom, is the complete sequence of a cuckoo RNA

without a secondary structure. struct is the start point of the
grammar and defines alternative productions of leading unpaired
bases (sadd) and the first (leftmost) generation of motif, which is
concatenated with one or more instances of motif (struct_m) by
applying the algebra function cadd. struct_f might add trailing
bases before terminating the generation of the cuckoo RNA. The
nonterminal motif designates a sequence that is concatenated of
an unpaired sequence of length 12, an instance of the cuckoo
motif, and an unpaired sequence with variable length of 12 to 34
bases. motif is derived from a set of productions that stem from
the set of specified cuckoo motif variants. The sequence motifs
are described in IUPAC code.

The cuckoo TDM
The cuckoo TDM provides a single structural model that

integrates all variants of cuckoo RNAs and is able to discover also
(so far unknown) cuckoo RNAs that consist of more than four

Figure 3. Skeleton (A), cuckoo TDM grammar (B), and cuckoo sequence motif constraints (C). In both grammars struct is the axiom. Vertical bars separate
alternative productions that start at the same nonterminal. Algebra functions are colored in green and built the tree-like data structure from terminals
and nonterminals. In case of the cuckoo TDM grammar, these functions call upon the energy functions of the thermodynamic model to compute free
energies for the corresponding substructure. The following terminals (in blue) are used: e denotes the empty word, b a single base from the RNA alpha-
bet {A,C,G,U}, r a region of unpaired bases, and loc the end-position of a neighbor subword. Numbers depict thresholds for size filters. A single number
specifies the maximum size while two numbers determine a size range. dangle applies a base pair filter (in red), requiring at least six base pairs. For each
cuckoo motif in C, an alternative production of seqmotif exists, where rcm corresponds to the cuckoo motif. The IPUAC convention is used to express
cuckoo motifs.
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hairpins. Given a single RNA sequence, the cuckoo TDM pre-
dicts the energetically most stable RNA secondary structure that
forms the shape of the cuckoo RNA family structure. Basically,
the underlying grammar follows the same rules for the construc-
tion of substructures than a standard RNA folding grammar
using the thermodynamic model (Fig. 3B). dangle represents
closed substructures, which is the term for substructures that start
with a base stack. The function drem passes on the energy of the
substructure and implements the dangling-end model OverDan-
gle.39 This model handles energies of dangling bases in a simpli-
fied form, by accounting energy for dangling bases on both sides
of the helix, regardless if a base is available for dangling or not.
strong has two production rules that are repeatedly applied to
construct a substructure. sr, used in
both productions, adds a stacking base
pair and either extends a helix (strong)
or introduces one of four (allowed)
helix interrupting structural motifs
(weak) that end with a closing base
pair: internal loop (iloop), bulge (leftB,
rightB), or hairpin (hairpin). Since
cuckoo RNAs naturally do not form
multiloops, the production for multi-
loops is removed from the standard
grammar. Hence, dangle defines a single
hairpin, which is at the same time the
basic structural component of cuckoo
RNAs. The axiom struct describes a
complete cuckoo RNA folded into the
family structure. In combination with
struct_m and struct_f, different struc-
tural variants are realized, by connect-
ing variable numbers of components by
stretches of unpaired sequences.

For tailoring the grammar to the
family structure of cuckoo RNAs, we
introduced a number of modifications,
which involve the introduction of size
restrictions, filter, and sequence pat-
terns. The overall size of hairpins is
restricted to sizes between 24 and 50
bases, while hairpin loops, represented
by motif, are allowed to range between 9
and 27 bases. For each cuckoo motif or
set of cuckoo motifs (Fig. 3C), specified
in IPUAC code, an alternative produc-
tion (seqmotif) exists that encloses a
cuckoo motif (rcm) with two flanking
unpaired regions of bases r. Helix inter-
ruptions by bulges and internal loops
are limited to six bases. The maximal
length of an unpaired sequence connect-
ing two hairpins is 10 bases. Finally, we
defined a helix length filter (hlx_len),
which defines a minimal number of six
base pairs a helix must exhibit.

Variant-aware homology search of cuckoo RNAs
The search for homologs of the cuckoo family in a single

genome sequence can be divided into three main stages. In
the first stage the skeleton TDM screens the genome in a
sliding-window mode for initial candidate homologs that
meet the primary sequence constraints. Here, a window of
120 nt size and a step size of 50 nt is used. Overlapping
matches, provided that the discovered cuckoo motifs in the
overlapping part are at identical genomic positions, are
assembled to a single candidate. The assembly step enables
the generation of candidates with variable numbers of cuckoo
motifs, corresponding to an equal number of stem-loops.
The screen in 2,689 bacterial genomes resulted in 42,312

Figure 4. Pipeline for cuckoo RNA discovery based on TDMs. Different colors correspond to structural
variants of cuckoo RNAs (HP2 in blue, HP3 in green, HP4 in red). Bacterial genome sequences from the
NCBI reference genome database were gathered and consecutively scanned by the skeleton TDM,
focusing on primary sequence conservation, and the cuckoo TDM, which incorporates structural con-
straints. Then the energy filter is applied. HP2 cuckoo candidates that pass the structural filter are proc-
essed by the HP2 cuckoo TDM which was adapted to match specifically HP2 cuckoo RNAs.
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candidates which represented 39,801 HP2, 2,233 HP3, and
278 HP4 cuckoo candidates (Fig. 4).

In the next stage, the cuckoo TDM tdmC is used to structur-
ally assess each candidate sequence by attempting to fold it into
the cuckoo family structure. Candidates that cannot fold into the
cuckoo family structure are discarded. The TDM screen reduced
the number of candidate sequences by more than 60% to
16,582, with 15,098 most of them belonging to the HP2 struc-
tural variant, followed by 1,311 HP3 and 176 HP4 cuckoo can-
didates. The purpose of the third stage is to verify that a cuckoo
candidate x obtained by tdmC truly resembles a homolog of the
cuckoo family by assessing its structure tdmC xð Þ. For this, the
structure must comply to the following two criteria.

The first criterion is the energy filter. It compares E.tdmC.x//

to E.mfe.x//in order to ensures that the candidate folds into the
family structure with a free energy similar that of its MFE struc-
ture. We apply RNAfold to calculate E.mfe.x//; Option –d2
was employed to make sure both programs use the same energy
model. Candidate x passes the energy filter if the ratio of
E tdmC xð Þð Þ=E mfe xð Þð Þ is equal or greater than 0.85.

We observed that, once the TDM had indicated the correct
sequence boundaries, the MFE structure often resembles the
cuckoo family structure. This led to the implementation of a sec-
ond filter, which tests if the candidate folds also without struc-
tural constraints into the cuckoo RNAs characteristic structure
(s). Structural similarity is assessed by using pointed shapes. A
pointed shape refers to the abstract shape representation of an
RNA structure, which is annotated by hairpin centers, e.g., „[35]
[66][82][110]."40 A hairpin center depicts the central position of
a hairpin loop and is calculated as iC jð Þ=2, where i and j are the
positions of the hairpin closing base pair. Abstract shape analysis
is performed by applying RNAshapes.35 Two pointed shapes p1
and p2 are regarded similar if they share the same shape and if
hairpin centers at the same relative order positions do not differ
by more than 2.5 nt. Only candidates with similar shapes pass

the filter. In some cases, the MFE structure of an cuckoo RNA
exhibits a small extra stem-loop between 2 cuckoo modules,
which is ignored by the structure filter as this stem-loop typically
consists of not more than 3 base pairs. The filtering process
returned 150 HP3 and 66 HP4 cuckoo RNAs. Table S3 lists the
structure properties of the final cuckoo RNAs.

The HP2 motif is statistically the least significant, and the
inspection of the remaining 973 HP2 sequences revealed a high
number of false positives, in the form of outliers or repeats.
Therefore, we built a new TDM, tdmHP2, that is specific to HP2
cuckoo RNAs, only. The parameters used for adapting tdmHP2

were derived from already known HP2 cuckoo RNAs and manu-
ally selected candidates that showed a high plausibility based on
synteny, distribution pattern, and structural properties. See
Figure S2 for details on the grammar of tdmHP2. The additional
application of tdmHP2 on the 973 HP2 candidates narrowed
down the number of cuckoo RNAs to 105.

Analysis of preserved genomic context of cuckoo RNAs
We analyzed the genomic context of cuckoo RNAs for conser-

vation. For this purpose we searched for orthologous genes that
flank cuckoo RNA loci using Proteinortho.41 Orthologous
groups of genes that had more than 5 members were retained.
We defined a conserved intergenic neighborhood as the locus of
a cuckoo RNA or a cluster of cuckoo RNAs, which is flanked at
least on one side by an orthologous group of genes.22
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