
micromachines

Article

Lossless Decompression Accelerator for Embedded Processor
with GUI

Gwan Beom Hwang, Kwon Neung Cho, Chang Yeop Han, Hyun Woo Oh, Young Hyun Yoon and Seung Eun Lee *

����������
�������

Citation: Hwang, G.B.; Cho, K.N.;

Han, C.Y.; Oh, H.W.; Yoon, Y.H.; Lee,

S.E. Lossless Decompression

Accelerator for Embedded Processor

with GUI. Micromachines 2021, 12, 145.

https://doi.org/10.3390/mi12020145

Academic Editor: Piero Malcovati

Received: 24 December 2020

Accepted: 28 January 2021

Published: 31 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electronic Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
hwanggwanbeom@seoultech.ac.kr (G.B.H.); chokwonneung@seoultech.ac.kr (K.N.C.);
hanchangyeop@seoultech.ac.kr (C.Y.H.); ohhyunwoo@seoultech.ac.kr (H.W.O.);
yoonyounghyun@seoultech.ac.kr (Y.H.Y.)
* Correspondence: seung.lee@seoultech.ac.kr; Tel.: +82-2-970-9021

Abstract: The development of the mobile industry brings about the demand for high-performance
embedded systems in order to meet the requirement of user-centered application. Because of the
limitation of memory resource, employing compressed data is efficient for an embedded system.
However, the workload for data decompression causes an extreme bottleneck to the embedded
processor. One of the ways to alleviate the bottleneck is to integrate a hardware accelerator along
with the processor, constructing a system-on-chip (SoC) for the embedded system. In this paper,
we propose a lossless decompression accelerator for an embedded processor, which supports LZ77
decompression and static Huffman decoding for an inflate algorithm. The accelerator is implemented
on a field programmable gate array (FPGA) to verify the functional suitability and fabricated in a
Samsung 65 nm complementary metal oxide semiconductor (CMOS) process. The performance of
the accelerator is evaluated by the Canterbury corpus benchmark and achieved throughput up to
20.7 MB/s at 50 MHz system clock frequency.

Keywords: lossless compression; inflate algorithm; hardware accelerator; graphical user interface;
embedded processor; system-on-chip

1. Introduction

With the development of the mobile industry, the user-centered application market has
increased significantly and, as a result, the embedded system has become high-performance
to meet advanced users’ requirements [1]. In particular, the embedded system is equipped
with a display in order to provide a visible environment to a user interface and attempts
to achieve a high-performance graphical user interface (GUI) in the embedded system
have appeared [2]. As a result, not only the connection between the embedded system
and the user, but also the provision of various types of sources is extended through the
GUI [3,4]. Traditionally, the most essential elements to provide a GUI are the advancement
of the memory capacity and processing time to store the source. However, the embedded
system with the limited memory area has an essential challenge of storing the image data
for GUI in minimum condition. Most systems that utilize large amounts of data exploit
various data compression algorithms to overcome this problem [5,6]. However, in the case
of an embedded processor, the workload that is demanded for the data compression and
decompression causes an extreme bottleneck [5].

The way to alleviate this problem is to integrate the hardware accelerator, which
is strong on the specific workload, as a part of the peripheral [7,8]. The embedded pro-
cessor requests the decompression operation which occurs in the process of decoding to
the specially designed hardware accelerator. As a result, the processor has a benefit of
containing the resource to execute other commands continuously. Through the advantage
acquired by employing the accelerator, the embedded processor maintains the system
frequency with high performance and reaches the low-power consumption design [9,10].

Micromachines 2021, 12, 145. https://doi.org/10.3390/mi12020145 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi12020145
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12020145
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/12/2/145?type=check_update&version=3


Micromachines 2021, 12, 145 2 of 11

In addition, an optimized system design is possible because of the area benefit generated
by utilizing compressed data. Several compression algorithms have been researched to
apply a compression accelerator on the embedded system [1,11]. The lossy compression
algorithm has been dominant owing to the relatively high compression ratio [8]. However,
in the case of image compression for constructing a GUI, a lossless compression can achieve
a high compression ratio, as similar as to the lossy compression, while maintaining image
quality [12,13].

In a GUI, the elements that are artificially produced to deliver clear information to
users such as figures, Arabic numerals, icons, and symbols account for a large proportion.
Although the natural image such as photograph or landscape may have an infinite number
of embedded palettes, depending on the environment and object, the artificially produced
images tend to select specific colors in order to eliminate ambiguity. This means that the
probability of repetitive character strings is increased. The property makes it possible to
obtain a high compression ratio through the window look-ahead buffer conventionally
utilized in lossless compression [14,15]. Therefore, a hardware accelerator for lossless
decompression is essential in order to utilize the lossless compressed data in an embedded
system where the image quality deterioration is not allowed.

In this paper, we propose a lossless decompression accelerator (LDA) optimized for an
embedded system with a GUI. The LDA is designed based on the inflate algorithm, which
is a decompression algorithm of deflate compression known to be used in gzip or portable
network graphics (PNGs). The accelerator supports the static Huffman method and LZ77
decoding in parallel, considering the embedded system to reduce processing time and
minimize memory capacity. The checksum module based on Adler32 is designed to enable
extensible input as the zlib compressed data format. Moreover, the LDA receives commands
with the memory-mapped I/O method from the embedded processor through the system
bus and fetches compressed data through direct memory access (DMA) to reduce the
burden of the main processor. The LDA fetches the zlib format data that are compressed
with up to 32 k window buffer without a separating preprocess. The fetched data are
decompressed with the six-stage pipeline to minimize bottleneck. Finally, the decompressed
raw data are transferred to the pre-assigned address by burst write to avoid long wait
times for memory access. The embedded system including the LDA is implemented on a
field programmable gate array (FPGA) to verify the functional suitability and is fabricated
with Samsung 65 nm complementary metal oxide semiconductor (CMOS) process. The
performance of the accelerator is evaluated by the Canterbury corpus benchmark, which is
mainly used to test lossless data compression algorithms.

The rest of this paper is organized as follows. In Section 2, we describe the de-
flate/inflate algorithm in detail. Section 3 discusses some related works for the lossless
compression system. Section 4 explains the optimized architecture of the LDA for the
embedded system. In Section 5, we present the implementation and system-on-chip realiza-
tion of the embedded system with the LDA and analyze the experimental results. Finally,
we give a conclusion in Section 6.

2. Inflate Algorithm

As inflate algorithm is a decompression algorithm for deflate compression; back-
ground knowledge of deflate algorithms is required. A deflate algorithm has processes
for compressing repetitive string and assigning bits to the repetitive string in accordance
with the frequency. For those processes, LZ77 and Huffman encoding are applied [16]. In
LZ77 compression, a look-ahead buffer and window buffer are utilized. The data to be
compressed are aligned in the look-ahead buffer and slide to the window buffer as the
compression proceeds. The window buffer is scanned to find duplicated string starting on
the front of the look-ahead buffer. Figure 1 shows the compression sequence of the LZ77
algorithm. In Figure 1a, string data from 0A to 0C are stored in the look-ahead buffer. As
shown in Figure 1b, the character data are sequentially shifted to the window buffer until
the duplicated strings are detected between the window buffer and the look-ahead buffer.



Micromachines 2021, 12, 145 3 of 11

In Figure 1c, the string data from 0A to 90 in the look-ahead buffer are duplicated with the
string data in the window buffer. The length and distance of the duplicated string data
are extracted as the length–distance pair, which is an output of the LZ77 compression [17].
Therefore, 0A to 90 characters are stored as (3,5), which refers to the number of duplicated
character and distance. As LZ77 stores the duplicated string with two characters, LZ77
compression has an advantage when the compressed data are over three characters. When
the length–distance pair is generated, the duplicated string and next character in the look-
ahead buffer are shifted to the window buffer, as shown in Figure 1d. The length of buffers
affects the compression ratio of LZ77 encoding because it represents the length of string
data to be scanned. As the deflate format supports the window size up to 32 k-byte, a
window buffer with identical size is required for optimal performance.

Micromachines 2021, 12, 145 3 of 11 
 

 

LZ77 algorithm. In Figure 1a, string data from 0A to 0C are stored in the look-ahead buffer. 
As shown in Figure 1b, the character data are sequentially shifted to the window buffer 
until the duplicated strings are detected between the window buffer and the look-ahead 
buffer. In Figure 1c, the string data from 0A to 90 in the look-ahead buffer are duplicated 
with the string data in the window buffer. The length and distance of the duplicated string 
data are extracted as the length–distance pair, which is an output of the LZ77 compression 
[17]. Therefore, 0A to 90 characters are stored as (3,5), which refers to the number of du-
plicated character and distance. As LZ77 stores the duplicated string with two characters, 
LZ77 compression has an advantage when the compressed data are over three characters. 
When the length–distance pair is generated, the duplicated string and next character in 
the look-ahead buffer are shifted to the window buffer, as shown in Figure 1d. The length 
of buffers affects the compression ratio of LZ77 encoding because it represents the length 
of string data to be scanned. As the deflate format supports the window size up to 32 k-
byte, a window buffer with identical size is required for optimal performance. 

 
Figure 1. Process for LZ77. (a) String data to be decompressed; (b) Shifting data to Window buffer; 
(c) String data compres-sion with distance and length; (d) Shifting duplicated string data. 

In deflate format, the LZ77 compressed data are additionally encoded with Huffman 
code. Huffman encoding is divided into static and dynamic encoding. Static Huffman en-
coding utilizes predefined code tables that allocate serial bits to the literal, length, and 
distance outputs of LZ77 compression, which are called symbols [16]. On the contrary, 
dynamic Huffman encoding constructs a Huffman tree according to the frequency of sym-
bols [18]. By assigning a short-length code to the repeated symbols, dynamic Huffman 
encoding has an advantage of compression ratio [19]. As a result, static Huffman encoding 
shows a relatively low compression ratio compared with the dynamic Huffman encoding. 
On the other hand, less computation is required because the static Huffman encoding does 
not need to generate a Huffman tree. 

In order to decompress deflate data, Huffman and LZ77 decoding need to be per-
formed sequentially. A Huffman code is decoded by matching the compressed data with 
Huffman code tables in bit level. In the case of dynamic Huffman decoding, analyzing 
Huffman tree information that is included in the deflate header is required to construct 
the Huffman code tables. As the deflate algorithm use two Huffman code tables for the 
literal-length symbol and distance symbol, it needs to identified whether the matched 
Huffman code is the literal or length symbol by the predefined range of the symbols. 
When the decoded symbol is a literal, the literal itself is an output of inflate algorithm and 

Figure 1. Process for LZ77. (a) String data to be decompressed; (b) Shifting data to Window buffer;
(c) String data compression with distance and length; (d) Shifting duplicated string data.

In deflate format, the LZ77 compressed data are additionally encoded with Huffman
code. Huffman encoding is divided into static and dynamic encoding. Static Huffman
encoding utilizes predefined code tables that allocate serial bits to the literal, length, and
distance outputs of LZ77 compression, which are called symbols [16]. On the contrary,
dynamic Huffman encoding constructs a Huffman tree according to the frequency of
symbols [18]. By assigning a short-length code to the repeated symbols, dynamic Huffman
encoding has an advantage of compression ratio [19]. As a result, static Huffman encoding
shows a relatively low compression ratio compared with the dynamic Huffman encoding.
On the other hand, less computation is required because the static Huffman encoding does
not need to generate a Huffman tree.

In order to decompress deflate data, Huffman and LZ77 decoding need to be per-
formed sequentially. A Huffman code is decoded by matching the compressed data with
Huffman code tables in bit level. In the case of dynamic Huffman decoding, analyzing
Huffman tree information that is included in the deflate header is required to construct
the Huffman code tables. As the deflate algorithm use two Huffman code tables for the
literal-length symbol and distance symbol, it needs to identified whether the matched
Huffman code is the literal or length symbol by the predefined range of the symbols. When
the decoded symbol is a literal, the literal itself is an output of inflate algorithm and shifted
to the window buffer of LZ77. When the decoded symbol is a length, the distance to
the next symbol to decode is determined due to the order of LZ77 compression outputs.
Therefore, the decoded length–distance pair is utilized to extract the duplicated data.



Micromachines 2021, 12, 145 4 of 11

3. Related Work

The deflate compression can be processed in parallel and the research for accelerating
compression is performed [20–23]. In the case of decompression, there are several chal-
lenges for accelerating owing to the serial nature of deflate format [24]. The deflate data
are compressed with the LZ77 compression and Huffman encoding. The deflate format
includes multiple number of compressed data blocks and each block has a various length
that continues until the end-of-block (EOB) code. When the type of the Huffman code is
static, the length of the literal-length code and distance code are 7- to 9-bit and 5-bit long,
respectively [7]. In dynamic Huffman code, the literal-length and distance code bits vary
from 1 to 15 bits including extra bits. Moreover, the back-reference between the deflate
blocks for decoding LZ77 implies the dependency of compressed data. Because of the
various length of the deflate data block and Huffman code with data dependency, the
inflate operation need to be processed serially, and it causes challenges for accelerating [18].

In order to address the limitation of decompression accelerating, the technique for
parallel decoding has been researched [24–27]. Jang et al. [25] proposed speculative par-
allelization for deflate decompression. By identifying the boundaries of the deflate block
by scanning the EOB code, each compressed block is decoded independently. However,
the challenge of LZ77 decoding remains owing to the back-reference. Sitaridi et al. [26]
proposed an alternate deflate format for massively parallel decompression on a graphics
processing unit (GPU). The compressed data block includes starting offset values in the file
header and the dependencies between the data blocks are eliminated in order to decode
the Huffman and LZ77 compression in parallel. By applying the parallel decoding to both
LZ77 and Huffman code, the authors achieved the increase of decompression throughputs
over 13 GB/s on the GPU. Weißenberger et al. [27] presented a GPU-based parallel decoder
for Huffman code, which is compatible with the original deflate data format. The authors
utilized the self-synchronization property that the decoding process is synchronized after
the block boundary. Yamamoto et al. [24] proposed a gap-array data structure, which is an
array of the gaps of segments in the Huffman encoding process. The gap array is attached
to the Huffman encoded data for accelerating Huffman decoding. Although the generation
of the gap array requires additional operation in the Huffman encoding process, parallel
decoding is enabled to achieve 1.26 to 2.63 times performance increase.

In [11,28–30], the designs of hardware accelerators for decompression were proposed.
Koch et al. [11] presented hardware decompression techniques for embedded systems. The
authors modified the compression algorithms such as run length compression, Lempel–Ziv,
and Huffman encoding in order to apply the algorithms to hardware efficiently. They
implemented the hardware accelerators of each algorithm on FPGA and compared the
compression ratio. Lazaro et al. [28] designed a hardware decoder that applies dual
core architecture in order to support static Huffman and LZ77 decoding. The decoder is
implemented on FPGA with an embedded microprocessor. Satpathy et al. [29] presented a
decompression accelerator that applies a dual-arithmetic logic unit (ALU) architecture and
block-adaptive Huffman decoder. The dual-ALU is utilized to improve the serial bottleneck
of Huffman decoding by matching the Huffman code with two additional arrays. Moreover,
the block-adaptive technique, which skips a missing length code region, reduces wasteful
computations, resulting in an additional 13% performance increase. The decoder was
fabricated in 14 nm tri-gate CMOS. Ledwon et al. [30] designed the FPGA-based hardware
accelerators for deflate compression and decompression using high-level synthesis (HLS).
The decompressor supports static and dynamic Huffman decoding with the technique of
joint length-distance decoding. The design achieved average throughputs of 196.61 MB/s
and 97.40 MB/s at the static and dynamic decoding, respectively.

The contribution of this paper is that we propose a lossless decompression accelerator
(LDA), which supports both the LZ77 decompression and static Huffman decoding in
original deflate data format. The LDA is designed with Verilog hardware description
language (HDL) and synthesized on both FPGA and Samsung 65 nm CMOS process. The
techniques such as first-in, first-out (FIFO) control and DMA are applied to the design in



Micromachines 2021, 12, 145 5 of 11

order to optimize the design for the embedded system that has restrictions of area and
performance. The throughput of the design is evaluated by Canterbury corpus benchmark
in condition of system-on-chip (SoC) for embedded system. We constructed the SoC
design by employing a Cortex-m0 processor with the LDA and achieved the throughput
up to 20.7 MB/s. Moreover, we compared the design with another FPGA-based inflate
accelerator in terms of area and throughput.

4. Lossless Decompression Accelerator

The decompression process consists of data import, Huffman decoding, LZ77 de-
coding, window buffer read/write, and data export. Data import and export operations
are performed through memory devices with high-density storage such as synchronous
dynamic random-access memory (RAM) in order to decrease the memory-area. Because
the relatively slow memory speed and large data size make it hard to process with the
embedded processor alone, the bus bottleneck is caused regardless of the decoding pro-
cess. Besides, in the case wherein the decompression accelerator requires input data
pre-processing, the main processor periodically implements the instructions to generate
the input frame. The operating time for generating input frame is similar to the access
time for memory. For this reason, the decompression accelerator must be an optimized
design that minimizes the wait time by identifying the degree of bottleneck of each process
in the target system. Figure 2 shows the block diagram of the LDA, which performs opti-
mized operations for the embedded systems to reduce the workload of the main processor,
as mentioned above. They are largely composed of four domains, and each domain is
controlled through a main finite state machine in the controller. The description of each
domain is as follows.

Micromachines 2021, 12, x FOR PEER REVIEW 5 of 11 
 

 

throughputs of 196.61 MB/s and 97.40 MB/s at the static and dynamic decoding, respec-
tively. 

The contribution of this paper is that we propose a lossless decompression accelera-
tor (LDA), which supports both the LZ77 decompression and static Huffman decoding in 
original deflate data format. The LDA is designed with Verilog hardware description lan-
guage (HDL) and synthesized on both FPGA and Samsung 65 nm CMOS process. The 
techniques such as first-in, first-out (FIFO) control and DMA are applied to the design in 
order to optimize the design for the embedded system that has restrictions of area and 
performance. The throughput of the design is evaluated by Canterbury corpus benchmark 
in condition of system-on-chip (SoC) for embedded system. We constructed the SoC de-
sign by employing a Cortex-m0 processor with the LDA and achieved the throughput up 
to 20.7 MB/s. Moreover, we compared the design with another FPGA-based inflate accel-
erator in terms of area and throughput. 

4. Lossless Decompression Accelerator 
The decompression process consists of data import, Huffman decoding, LZ77 decod-

ing, window buffer read/write, and data export. Data import and export operations are 
performed through memory devices with high-density storage such as synchronous dy-
namic random-access memory (RAM) in order to decrease the memory-area. Because the 
relatively slow memory speed and large data size make it hard to process with the em-
bedded processor alone, the bus bottleneck is caused regardless of the decoding process. 
Besides, in the case wherein the decompression accelerator requires input data pre-pro-
cessing, the main processor periodically implements the instructions to generate the input 
frame. The operating time for generating input frame is similar to the access time for 
memory. For this reason, the decompression accelerator must be an optimized design that 
minimizes the wait time by identifying the degree of bottleneck of each process in the 
target system. Figure 2 shows the block diagram of the LDA, which performs optimized 
operations for the embedded systems to reduce the workload of the main processor, as 
mentioned above. They are largely composed of four domains, and each domain is con-
trolled through a main finite state machine in the controller. The description of each do-
main is as follows. 

 
Figure 2. Block diagram of lossless decompression accelerator (LDA). Figure 2. Block diagram of lossless decompression accelerator (LDA).

4.1. Configuration

The configuration domain supports the 32-bit system bus protocol that enables the
interconnection with the main processor. The LDA includes seven registers that store
control, error status, length, start address of compression data and raw data, and checksum
result. Both big endian and little endian are supported and the LDA is configured with
two input modes about the compression data, system bus, or direct memory access.



Micromachines 2021, 12, 145 6 of 11

4.2. Pre-Processing

The data format structure that is compressed through the deflate algorithm has endian
switch points because of the Huffman coding. For this reason, in the decoding process, the
Huffman coding boundary must be detected and aligned by analyzing it in bit unit. As the
LDA receives the data with 32-bit unit, the boundaries of the code appear randomly and the
function for aligning them is required. This operation is performed in the pre-processing
domain. First, the zlib frame module checks the header data of zlib format in order to
identify the format validation. The data are transmitted to the parser module through the
FIFO. The FIFO has 32-bit data width and 16 data depth in order to optimize area-time of
the applied system. The parser module operates repetitive sort-flush function that performs
shift operation by checking the length of processed bits according to the operation result of
the decompression domain.

4.3. Decompression

In the decompression domain, the inflate algorithm is performed by receiving input
data from the parser module with a nine-bit unit. The LDA always receives the compressed
input data of static-Huffman code and extracts the symbol code only at one clock cycle
through the pre-defined Huffman table. When the extracted symbol code is a literal code,
the Huffman decoder module transmits the literal data to the post-processing domain.
When the symbol code is a duplicated string, composed of the length and distance, the
symbol code is transmitted to the LZ77 decoder module. The LZ77 decoder module
sequentially extracts the length and distance through the symbol code and transmits
decoding results to the post-processing domain. As the post-processing domain affects
the memory bandwidth when the length–distance pair is transmitted, the LZ77 decoder
module checks the status of post controller module in the post-processing domain before a
result is transmitted.

The LDA performs the static-Huffman decoding to be optimized for the embedded
system. In the case of dynamic-Huffman decoding, the decompression time is increased
because additional workloads are required to create a Huffman tree. In order to analyze
the efficiency of compression ratios for an artificially produced image, we compare the
compression ratios of static and dynamic-Huffman encoding by employing the sample
images, which have a size of 128 by 128. Table 1 shows the compression ratio results. The
compression ratio is calculated as the following equation.

Compression ratio (CR) = {1 − (compression data bytes/raw data bytes)} × 100(%) (1)

As the produced image has a single background pixel characteristic in order to elimi-
nate ambiguity, the difference in compression ratio is not different by even 1% owing to the
LZ77 compression. As a result, the LDA gains a fast processing time and memory benefit
through a slight decrease the compression ratio.

4.4. Post-Processing

The post-processing domain performs the window memory read/write operation
according to the literal, length, and distance code of the previous domain and outputs raw
data to the external memory in 32-byte unit. In this domain, the operations of Adler32
calculation, window memory access, and raw data transmission are executed in parallel.
Therefore, the two FIFOs are embedded to minimize the waiting time by analyzing the
workload for each operation. Because the range of distance value that affects the number
of memory access is up to 32,768, the processing time is changed according to the length of
the frame unit processed by the post controller module. We analyze the processing time
according to the frame length for 1 byte and 4 bytes, which correspond to the literal symbol
length and system bus width, respectively. The result is described in Section 5.



Micromachines 2021, 12, 145 7 of 11

Table 1. Compression ratio between the dynamic-Huffman and the static-Huffman. CR, compres-
sion ratio.

No Raw Data (Bytes) CR of Dynamic (%) CR of Static (%) Gap (%)

1 65,664 92.2 91.7 0.52
2 16,512 88.5 88.2 0.25
3 16,512 95.0 94.4 0.61
4 16,512 94.9 94.3 0.54
5 16,512 93.6 93.0 0.55
6 16,512 94.8 94.2 0.53
7 16,512 94.1 93.4 0.67
8 16,512 88.6 88.1 0.66
9 16,512 95.2 94.5 0.71

10 16,512 92.0 90.9 1.18
11 65,664 93.8 93.4 0.44

Average - 93.0 92.4 0.61

5. Realization
5.1. Chip Fabrication

Figure 3 shows the block diagram for the embedded system with the LDA. We utilize
a Cortex-M0 processor as a main processor and the program data are stored in the phase-
change random access memory (PRAM) through the boot module. The LDA is controlled
by the instruction of the main processor via the system bus. The PRAM and static-random-
access-memory modules (SRAM) of the SoC are single port memory. The window memory
has 8-bit data width and 32 k depth with a dual port. The LDA directly reads and writes
data to the window memory in accordance with the instructions of the main processor.

Micromachines 2021, 12, 145 7 of 11 
 

 

workload for each operation. Because the range of distance value that affects the number 
of memory access is up to 32,768, the processing time is changed according to the length 
of the frame unit processed by the post controller module. We analyze the processing time 
according to the frame length for 1 byte and 4 bytes, which correspond to the literal sym-
bol length and system bus width, respectively. The result is described in Section 5. 

Table 1. Compression ratio between the dynamic-Huffman and the static-Huffman. CR, compres-
sion ratio. 

No Raw Data (bytes) CR of Dynamic 
(%) CR of Static (%) Gap (%) 

1 65,664 92.2 91.7 0.52 
2 16,512 88.5 88.2 0.25 
3 16,512 95.0 94.4 0.61 
4 16,512 94.9 94.3 0.54 
5 16,512 93.6 93.0 0.55 
6 16,512 94.8 94.2 0.53 
7 16,512 94.1 93.4 0.67 
8 16,512 88.6 88.1 0.66 
9 16,512 95.2 94.5 0.71 
10 16,512 92.0 90.9 1.18 
11 65,664 93.8 93.4 0.44 

Average - 93.0 92.4 0.61 

5. Realization 
5.1. Chip Fabrication 

Figure 3 shows the block diagram for the embedded system with the LDA. We utilize 
a Cortex-M0 processor as a main processor and the program data are stored in the phase-
change random access memory (PRAM) through the boot module. The LDA is controlled 
by the instruction of the main processor via the system bus. The PRAM and static-random-
access-memory modules (SRAM) of the SoC are single port memory. The window 
memory has 8-bit data width and 32 k depth with a dual port. The LDA directly reads and 
writes data to the window memory in accordance with the instructions of the main pro-
cessor. 

 
Figure 3. Block diagram of system-on-chip (SoC) with LDA. PRAM, phase-change random access 
memory: SRAM, static-random-access-memory modules. 

Figure 3. Block diagram of system-on-chip (SoC) with LDA. PRAM, phase-change random access
memory: SRAM, static-random-access-memory modules.

We fabricated the SoC design as a Samsung 65 nm process. Figure 4 is a layout of the
SoC design. The gate count of the proposed LDA is about 40.4 k based on the size of the
two-input NAND gate in accordance with Synopsys Design Compiler. The SoC design is
validated using Cadence NCsim and the layout is validated using Synopsys IC compiler
and Cadence virtuoso.



Micromachines 2021, 12, 145 8 of 11

Micromachines 2021, 12, 145 8 of 11 
 

 

We fabricated the SoC design as a Samsung 65 nm process. Figure 4 is a layout of the 
SoC design. The gate count of the proposed LDA is about 40.4 k based on the size of the 
two-input NAND gate in accordance with Synopsys Design Compiler. The SoC design is 
validated using Cadence NCsim and the layout is validated using Synopsys IC compiler 
and Cadence virtuoso. 

 
Figure 4. Layout of SoC with LDA. 

5.2. Performance Analysis 
In general, relatively slow memory is employed in the embedded system in order to 

achieve an area efficiency. Therefore, an optimized design considering the bottleneck of 
memory access is required. When the LDA accesses the window memory, reading and 
writing with 8-bit data width make it less difficult to process data because a literal output 
of deflate decompression has 1-byte data length. However, as the SoC design employs a 
32-bit system bus, accessing the window memory with 4-byte data width affects the per-
formance of the inflate operation. For this reason, we analyzed the throughput of the LDA 
according to the memory access width. Table 2 shows the difference of throughput be-
tween the access with 8-bit data width and the access with 32-bit data width. Compared 
with the throughput of 8-bit access, the throughput of 32-bit access is about 2.87 times 
higher on average and up to 3.39 times. Therefore, we applied 32-bit memory access to 
the LDA with the optimized method for window memory access. 

Table 2. Throughput between the 8-bit width access and the 32-bit width access. 

No Throughput of 8-bits (MB/s) Throughput of 32-bits (MB/s) 
1 10.9 31.7 
2 12.0 21.6 
3 12.2 37.4 
4 12.2 36.9 
5 12.2 38.3 
6 12.2 36.8 
7 12.1 33.2 
8 11.9 40.4 
9 12.2 38.0 

Figure 4. Layout of SoC with LDA.

5.2. Performance Analysis

In general, relatively slow memory is employed in the embedded system in order to
achieve an area efficiency. Therefore, an optimized design considering the bottleneck of
memory access is required. When the LDA accesses the window memory, reading and
writing with 8-bit data width make it less difficult to process data because a literal output
of deflate decompression has 1-byte data length. However, as the SoC design employs
a 32-bit system bus, accessing the window memory with 4-byte data width affects the
performance of the inflate operation. For this reason, we analyzed the throughput of the
LDA according to the memory access width. Table 2 shows the difference of throughput
between the access with 8-bit data width and the access with 32-bit data width. Compared
with the throughput of 8-bit access, the throughput of 32-bit access is about 2.87 times
higher on average and up to 3.39 times. Therefore, we applied 32-bit memory access to the
LDA with the optimized method for window memory access.

Table 2. Throughput between the 8-bit width access and the 32-bit width access.

No Throughput of 8-bit (MB/s) Throughput of 32-bit (MB/s)

1 10.9 31.7
2 12.0 21.6
3 12.2 37.4
4 12.2 36.9
5 12.2 38.3
6 12.2 36.8
7 12.1 33.2
8 11.9 40.4
9 12.2 38.0

10 12.0 28.4
11 11.2 32.6

Average 11.9 34.1

We evaluated the performance of LDA with the Canterbury corpus benchmark, which
includes several test files for lossless data compression algorithms. The functionality of
the LDA was verified with the comparison of the raw data and original test files. Table 3
represents all the information of the Canterbury corpus test file and throughput of the LDA.



Micromachines 2021, 12, 145 9 of 11

The throughput was measured in the condition of the embedded system implemented with
a Cortex-m0 processor and the LDA as explained above. As a result, the execution time for
main processor and access time for window memory are included in the decompression
time. In Table 3, the throughput was measured from 5.4 MB/s to 20.7 MB/s at a 50 MHz
system clock frequency.

Table 3. Decompression performance on the Canterbury corpus benchmark.

File Raw Data (Bytes) CR (%) Time (us) Throughput (MB/s)

alice29 152,089 57.4 24,323 6.3
Asyoulik 125,179 52.7 22,217 5.6

Cp 24,604 62.2 3524 7.0
Fields 11,150 68.0 1341 8.3

Grammar 3721 61.1 543 6.9
Kennedy 1,029,744 71.9 108,447 9.5

lcet10 426,754 59.7 64,572 6.6
plrabn12 481,861 50.2 89,945 5.4

ptt5 513,216 87.6 24,797 20.7
Sum 38,240 63.2 5275 7.2

Xargs 4227 50.5 783 5.4

In order to compare our design with others, we implemented the SoC design on
kintex7 Digilent genesys2 FPGA board and demonstrated the functionality of the LDA. The
design utilizes the FPGA resource of 3362 lookup tables (LUTs) and 1950 flip-flops (FFs).
In [11], the authors presented a deflate decompressor for FPGA-based embedded systems.
The decompressor was implemented on several FPGAs such as Cyclone or Virtex-II with
the resource utilization of about 5000 LUTs. Compared with the decompressor in [11], our
design utilizes 33% less resources. In [7], the authors designed a deflate decompression
accelerator using high-level synthesis, which supports both static and dynamic decoding.
The design was implemented on Virtex UltraScale+ class FPGA with 10,736 LUTs and
6334 FFs. The throughput was evaluated with Calgary corpus benchmark and gained
an average input throughput of 130.6 MB/s and output throughput of 386.6 MB/s in
static decoding. The authors enhanced the design in [30] by adding joint length-distance
decoding. As a result, they achieved input and output throughputs of 196.61 MB/s and
551.03 MB/s at 250 MHz clock frequency with 15,691 LUTs and 9122 FFs.

6. Conclusions

In this paper, we proposed a lossless decompression accelerator (LDA) for an em-
bedded processor that supports LZ77 decompression and static Huffman decoding. We
designed an SoC by employing a Cortex-m0 processor with the LDA. The design described
with Verilog HDL and synthesized on both kintex7 FPGA and Samsung 65 nm CMOS
process. The design utilizes 3362 LUTs and 1950 FFs of the FPGA resource and 40.4 k gate
count based on the size of the two-input NAND gate. The resource utilization is less than
that of other decompression accelerators and is efficient for an embedded system. The per-
formance of the LDA is evaluated by the Canterbury corpus benchmark and achieved the
throughput from 5.4 MB/s to 20.7 MB/s at a 50 MHz system clock frequency. A bottleneck
is caused when the LDA accesses the window buffer because of the slow memory speed.
We analyzed the delay of the decompression according to the access width of the window
memory and alleviated the bottleneck with optimized post-processing.

Author Contributions: Conceptualization, G.B.H. and Y.H.Y.; methodology, G.B.H.; software, G.B.H.,
H.W.O., and Y.H.Y.; validation, G.B.H., K.N.C., C.Y.H., and H.W.O.; investigation, G.B.H., K.N.C.,
and C.Y.H.; writing—original draft preparation, G.B.H.; writing—review and editing, G.B.H., K.N.C.,
C.Y.H., and S.E.L.; visualization, G.B.H. and C.Y.H.; supervision, S.E.L. All authors have read and
agreed to the published version of the manuscript.



Micromachines 2021, 12, 145 10 of 11

Funding: This research was funded by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT). No. 2019R1F1A1060044, ‘Multi-core Hardware Accelerator
for High-Performance Computing (HPC)’. This research was also funded by the Ministry of Trade,
Industry, & Energy (MOTIE, Korea) under Industrial Technology Innovation Program. No. 10076314,
‘Development of lightweight SW-SoC solution for respiratory medical device’.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yoon, S.; Jun, S.; Cho, Y.; Lee, K.; Jang, H.; Han, T.H. Optimized Lossless Embedded Compression for Mobile Multimedia

Applications. Electronics 2020, 9, 868. [CrossRef]
2. Kim, J.K.; Oh, J.H.; Yang, J.H.; Lee, S.E. 2D Line Draw Hardware Accelerator for Tiny Embedded Processor in Consumer

Electronics. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA,
11–13 January 2019; pp. 1–2.

3. Chen, C.; Su, T.; Meng, G.; Xing, Z.; Liu, Y. From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap
Mobile GUI Implementation. In Proceedings of the 40th International Conference on Software Engineering (ICSE), Gothenburg,
Sweden, 27 May–3 June 2018; pp. 665–676.

4. Lin, Y.; Chu, E.T.; Yu, S.; Lai, Y. Improving the Accuracy of Automated GUI Testing for Embedded Systems. IEEE Softw. 2014, 31,
39–45. [CrossRef]

5. Yu, F.; Li, L.; Zhao, Y.; Wang, M.; Liu, G.; Chen, G. Lossless Data Compression Based on Adaptive Linear Predictor for Embedded
System of Unmanned Vehicles. J. Atmos. Ocean. Technol. 2017, 34, 2499–2508. [CrossRef]

6. Kim, J.H.; Yeo, S.; Kim, J.W.; Kim, K.; Song, T.-K.; Yoon, C.; Sung, J. Real-Time Lossless Compression Algorithm for Ultrasound
Data Using BL Universal Code. Sensors 2018, 18, 3314. [CrossRef]

7. Ledwon, M.; Cockburn, B.F.; Han, J. Design and Evaluation of an FPGA-Based Hardware Accelerator for Deflate Data Decom-
pression. In Proceedings of the 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton,
AB, Canada, 5–8 May 2019; pp. 1–6.

8. Antonopoulos, C.P.; Voros, N.S. A Data Compression Hardware Accelerator Enabling Long-Term Biosignal Monitoring Based on
Ultra-Low Power IoT Platforms. Electronics 2017, 6, 54. [CrossRef]

9. Kim, J.K.; Oh, J.H.; Hwang, G.B.; Gwon, O.S.; Lee, S.E. Design of Low-Power SoC for Wearable Healthcare Device. J. Circuits Syst.
Comput. 2020, 29, 2050085. [CrossRef]

10. Sridhara, S.R.; DiRenzo, M.; Lingam, S.; Lee, S.; Blazquez, R.; Maxey, J.; Ghanem, S.; Lee, Y.; Abdallah, R.; Singh, P. Microwatt
Embedded Processor Platform for Medical System-on-Chip Applications. IEEE J. Solid-State Circuits 2011, 46, 721–730. [CrossRef]

11. Koch, D.; Beckhoff, C.; Teich, J. Hardware Decompression Techniques for FPGA-Based Embedded Systems. ACM TRETS 2009, 2,
1–23. [CrossRef]

12. Rahman, M.A.; Hamada, M. Lossless Image Compression Techniques: A State-of-the-Art Survey. Symmetry 2019, 11, 1274.
[CrossRef]

13. Khan, T.H.; Wahid, K.A. Design of a Lossless Image Compression System for Video Capsule Endoscopy and Its Performance in
In-Vivo Trials. Sensors 2014, 14, 20779–20799. [CrossRef] [PubMed]

14. Choi, S.; Kim, Y.; Lee, D.; Lee, S.; Park, K.; Song, Y.H.; Song, Y.H. Design of FPGA-Based LZ77 Compressor with Runtime
Configurable Compression Ratio and Throughput. IEEE Access 2019, 7, 149583–149594. [CrossRef]

15. Gao, Y.; Ye, H.; Wang, J.; Lai, J. FPGA Bitstream Compression and Decompression Based on LZ77 Algorithm and BMC Technique.
In Proceedings of the 2015 IEEE 11th International Conference on ASIC (ASICON), Chengdu, China, 3–6 November 2015; pp. 1–4.

16. DEFLATE Compressed Data Format Specification Version 1.3. Available online: https://www.w3.org/Graphics/PNG/RFC-1951
(accessed on 10 December 2020).

17. Zaretsky, D.C.; Mittal, G.; Banerjee, P. Streaming implementation of the ZLIB decoder algorithm on an FPGA. In Proceedings of
the 2009 IEEE International Symposium on Circuits and Systems (ISCAS), Taipei, Taiwan, 24–27 May 2009; pp. 2329–2332.

18. Harnik, D.; Khaitzin, E.; Sotnikov, D.; Taharlev, S. A Fast Implementation of Deflate. In Proceedings of the 2014 Data Compression
Conference (DCC), Snowbird, UT, USA, 26–28 March 2014; pp. 223–232.

19. Satpathy, S.; Suresh, V.; Kumar, R.; Gopal, V.; Guilford, J.; Yap, K.; Anders, M.; Kaul, H.; Agarwal, A.; Hsu, S.; et al. A 220–900 mV
179 Mcode/s 36 pJ/code Canonical Huffman Encoder for DEFLATE Compression in 14 nm CMOS. In Proceedings of the 2019
IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 14–17 April 2019; pp. 1–4.

20. Fowers, J.; Kim, J.Y.; Burger, D.; Hauck, S. A Scalable High-Bandwidth Architecture for Lossless Compression on FPGAs. In
Proceedings of the 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines,
Vancouver, BC, Canada, 2–6 May 2015; pp. 52–59.

21. Abdelfattah, M.S.; Hagiescu, A.; Singh, D. Gzip on a Chip: High Performance Lossless Data Compression on FPGAs using
OpenCL. In Proceedings of the International Workshop on OpenCL (IWOCL), Bristol, UK, 12–13 May 2014; pp. 1–9.

22. Qiao, W.; Du, J.; Fang, Z.; Lo, M.; Chang, M.C.; Cong, J. High-Throughput Lossless Compression on Tightly Coupled CPU-FPGA
Platforms. In Proceedings of the 2018 International Symposium on Field-Programmable Custom Computing Machines (FCCM),
Boulder, CO, USA, 29 April–1 May 2018; pp. 37–44.

http://doi.org/10.3390/electronics9050868
http://doi.org/10.1109/MS.2013.100
http://doi.org/10.1175/JTECH-D-16-0257.1
http://doi.org/10.3390/s18103314
http://doi.org/10.3390/electronics6030054
http://doi.org/10.1142/S0218126620500851
http://doi.org/10.1109/JSSC.2011.2108910
http://doi.org/10.1145/1534916.1534919
http://doi.org/10.3390/sym11101274
http://doi.org/10.3390/s141120779
http://www.ncbi.nlm.nih.gov/pubmed/25375753
http://doi.org/10.1109/ACCESS.2019.2947273
https://www.w3.org/Graphics/PNG/RFC-1951


Micromachines 2021, 12, 145 11 of 11

23. Patel, R.A.; Zhang, Y.; Mak, J.; Davidson, A.; Owens, J.D. Parallel lossless data compression on the GPU. In Proceedings of the
2012 Innovative Parallel Computing (InPar), San Jose, CA, USA, 13–14 May 2012; pp. 1–9.

24. Yamamoto, N.; Nakano, K.; Ito, Y.; Takafuji, D.; Kasagi, A. Huffman Coding with Gap Arrays for GPU Acceleration. In
Proceedings of the 2020 International Conference on Parallel Processing (ICPP), Edmonton, AB, Canada, 17–20 August 2020; pp.
1–11.

25. Jang, H.B.; Kim, C.N.; Lee, J.W. Practical speculative parallelization of variable-length decompression algorithms. ACM SIGPLAN
Not. 2013, 48, 55–64. [CrossRef]

26. Sitaridi, E.; Mueller, R.; Kaldewey, T.; Lohman, G.; Ross, K. Massively-Parallel Lossless Data Decompression. In Proceedings of
the 2016 International Conference on Parallel Processing (ICPP), Philadelphia, PA, USA, 16–19 August 2016; pp. 242–247.

27. Weißenberger, A.; Schmidt, B. Massively Parallel Huffman Decoding on GPUs. In Proceedings of the 2018 International
Conference on Parallel Processing (ICPP), Boston, MA, USA, 29 July–3 August 2018; pp. 1–10.

28. Lazaro, J.; Arias, J.; Astarloa, A.; Bidarte, U.; Zuloaga, A. Decompression dual core for SoPC applications in high speed FPGA. In
Proceedings of the 2007 Conference of the IEEE Industrial Electronics Society (IECON), Taipei, Taiwan, 5–8 November 2007; pp.
738–743.

29. Satpathy, S.; Mathew, S.; Suresh, V.; Gopal, V.; Guilford, J.; Anders, M.; Kaul, H.; Agarwal, A.; Hsu, S.; Krisnnamurthy, K. 34.4
Mbps 1.56 Tbps/W DEFLATE Decompression Accelerator Featuring Block-Adaptive Huffman Decoder in 14 nm Tri-Gate CMOS
for IoT Platforms. In Proceedings of the European Solid State Circuits Conference (ESSCIRC), Dresden, Germany, 3–6 September
2018; pp. 90–93.

30. Ledwon, M.; Cockburn, B.F.; Han, J. High-Throughput FPGA-Based Hardware Accelerators for Deflate Compression and
Decompression Using High-Level Synthesis. IEEE Access 2020, 8, 62207–62217. [CrossRef]

http://doi.org/10.1145/2499369.2465557
http://doi.org/10.1109/ACCESS.2020.2984191

	Introduction 
	Inflate Algorithm 
	Related Work 
	Lossless Decompression Accelerator 
	Configuration 
	Pre-Processing 
	Decompression 
	Post-Processing 

	Realization 
	Chip Fabrication 
	Performance Analysis 

	Conclusions 
	References

