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Abstract
 is a harmless commensal bacterium finely adapted toNeisseria meningitidis

humans. Unfortunately, under “privileged” conditions, it adopts a “devious”
lifestyle leading to uncontrolled behavior characterized by the unleashing of
molecular weapons causing potentially lethal disease such as sepsis and acute
meningitis. Indeed, despite the lack of a classic repertoire of virulence genes in 

 separating commensal from invasive strains, molecularN. meningitidis
epidemiology and functional genomics studies suggest that carriage and
invasive strains belong to genetically distinct populations characterized by an
exclusive pathogenic potential. In the last few years, “omics” technologies have
helped scientists to unwrap the framework drawn by   duringN. meningitidis
different stages of colonization and disease. However, this scenario is still
incomplete and would benefit from the implementation of physiological tissue
models for the reproduction of mucosal and systemic interactions  .in vitro
These emerging technologies supported by recent advances in the world of
stem cell biology hold the promise for a further understanding of N. meningitidis
pathogenesis.
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Introduction
Neisseria meningitidis is a versatile organism capable of  
adapting to the different environments it encounters during coloni-
zation and invasive disease. Like many other bacterial pathogens, 
it finds it beneficial to keep the host alive to allow transmission. 
However, it is a fact that in crowded settings such as military camps, 
universities, and schools, N. meningitidis tends to become more 
virulent1. Whether this is related to the chance to encounter more 
appropriate environmental conditions (for example, weakened 
immunity, affordable nutrients, and reduced niche competition) or to 
the fact that, under low population density, selection pressure would 
keep the host alive until transmission is possible is still indefinite. 
Nevertheless, household contacts of patients with meningococcal 
disease have been shown to be at increased risk of meningococcal 
carriage and disease. From a genomic perspective, N. meningitidis 
is a highly diverse species, undergoing frequent recombination 
characterized by horizontal gene transfer2. However, phyloge-
netic and genealogical analyses have revealed the presence of a  
limited number of clonal complexes associated with invasive  
disease (often referred to as “hyper-invasive lineages”)2. These lin-
eages show a recurrent antigenic and disease phenotype and have 
been an important paradigm for designing intervention strategies. 
The advent of “next-generation” sequencing has revolutionized 
the molecular epidemiology field by offering the opportunity of a  
complete picture of N. meningitidis genotypes and improving our 
understanding of meningococcal pathogenesis (for an in depth 
review on recent advances in population genomics, see 3). In 
this context, initiatives such as the Meningitis Research Founda-
tion meningococcus genome library (http://www.meningitis.org/
research/genome) are expected to facilitate not only population 
genomics approaches but also functional genomics by guiding 
the selection of the most appropriate isolates and reduce the use 
of often irrelevant laboratory strains. An interesting application of 
this tool has been in the vaccine field, where this library has been 
instrumental in establishing that a recent rise in serogroup W cases 
since 2009 belongs to ST-11, a particularly virulent sequence type 
with a high case fatality rate4.

For years, the specificity of N. meningitidis for humans has been 
the main bottleneck in unravelling the mechanisms beyond its 
invasive behavior. In particular, the lack of appropriate animal 
models resembling the clinical presentations of the human disease 
has affected the capacity to develop efficacious preventive inter-
ventions. In the last decade, molecular and structural evidence has 
highlighted a number of surface molecules with a strong specificity 
for human serum factors. In particular, factor H-binding protein 
(fHbp) has been at the center of great interest not only for its role 
in N. meningitidis pathogenesis5 but also for its capacity to gener-
ate strong bactericidal antibodies after immunization in humans6.  
fHbp is currently one of the components of the recently approved 
vaccines against type B meningococcus and likely to contribute to 
the extraordinary data on the efficacy of serogroup B meningococ-
cal vaccine in the UK7. Serogroup B is now the most common cause 
of outbreak-associated disease, and the fact that the novel, multi- 
component, protein-based Bexsero™ vaccine turned out to be 
82.9% effective after two doses in preventing serogroup B N. men-
ingitidis disease in British infants younger than 12 months of age7 
turns a promise into reality. However, the success of the strategy, as 
for that of all vaccines, will depend on the breadth of implementa-
tion and the promptness of the pathogen to epidemiologically adapt 

to the evolutionary pressure introduced by vaccination campaigns. 
Therefore, whatever would be the most optimistic scenario, it is 
important to continue to monitor, investigate, and consider all of the 
subtle strategies beyond the peculiar habit of this “smart” microor-
ganism disguised as a commensal but with the license to kill. Several 
scientists refer to these events as an “accidental lethality” or “patho-
genic commensalism”. In this commentary, we will go through the 
salient steps of N. meningitidis pathogenesis that, thanks to the sup-
port of “omics” technologies and advanced infection models, have 
been fully unraveled in the last decade.

Disclosure of Neisseria meningitides pathogenesis 
by “omics” and experimental models
N. meningitidis usually resides in the human nasopharynx 
where it spends most of its life as a commensal microorganism  
by exploiting nutrients present on the mucosae8,9. Notably, 
Veyrier et al.10 recently postulated that cell shape evolution of  
N. meningitidis (from bacillus to coccus) has allowed an increased 
adaptation to the nasopharynx by reducing the cell surface sensi-
ble to immune attacks through the modification of the peptidog-
lycan and by redistributing surface determinants such as pili10.  
The initial steps of colonization and pathogenesis are graphically 
summarized in Figure 1, in which the emphasis is on the factors that 
have been identified so far as essential for N. meningitidis “sojourn” 
in the host.

Crossing of the epithelial cell layer of the nasopharynx is a rare 
event but, when it occurs, leads to invasion of the bloodstream, 
where bacteria are capable of eluding the immune system and of 
reaching the meninges. The ability of N. meningitidis to bind to lig-
ands present on the surface of host cells allows the bacterium to eas-
ily enter in contact with the endothelial cell layer of the brain ves-
sels and to form microcolonies11. This interaction, mediated mainly 
by the type IV pili, modulates the endothelial cytoskeleton leading 
to the formation of docking structures similar to the ones elicited 
by leukocytes during extravasation and the consequent opening of 
the intercellular junctions12. The sterility of the cerebrospinal fluid 
of the subarachnoidal space and its low serum protein content but 
richness in nutrients (including glucose, sodium chloride, and urea) 
greatly favor the replication of N. meningitidis and its dissemina-
tion throughout the meninges13. Another phenomenon linked to 
N. meningitidis invasive disease is a generalized sepsis, in which 
bacteria associated with microvessels induce extensive thrombosis, 
coagulation, congestion, and vascular leak, leading to an extensive 
necrosis of the skin and surrounding tissues14.

Many of the characters playing a pivotal role in this drama have 
recently been disclosed by the application of “omics” technolo-
gies to a number of experimental models mimicking different steps  
of N. meningitidis pathogenesis. Functional genomics, by link-
ing genotype to phenotype, have allowed study of the correlation 
between gene transcript abundance or deficiency and the capac-
ity of N. meningitidis to behave under various physiological  
conditions of the host. The first example of functional genomics in 
N. meningitidis was reported by Tang’s group almost 20 years ago15. 
By genome-wide signature-tagged mutagenesis (STM), 73 genes 
essential to bacteremia were identified in an infant rat model15.  
A few years later, with the advent of the microarray technology, 
new studies focused on the transcriptional events occurring dur-
ing the interaction of N. meningitidis with host cells16–19. Then  
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comparative genomics20–23, in vitro24,25 and ex vivo26,27 transcriptom-
ics, proteomics28,29, and further STM30,31 completed the picture.

The scenario derived by these studies (intuitively represented in 
Figure 1) offers a number of considerations. As expected, adhesion 
molecules (such as type IV pili) and serum resistance factors (like 
the lipooligosaccharide and genes involved in the synthesis of the 
polysialic acid capsule) turned out to be essential to preserve the 
fitness of the bacterium under stress conditions or only to main-
tain its “colonizer” status. These molecules, by sensing the external 
milieu, need to rapidly respond to changes, whether this means the 
proximity to host cell ligands, the interaction with serum factors, 
or the availability of nutrients. This substantial surface remodeling 
has been exploited to identify putative vaccine candidates, as the 
augmented expression of surface antigens under physiological 
conditions has been considered a discriminating factor for selec-
tion16,17,19. However, the dynamics ongoing during the adaptation 
of N. meningitidis to the host are far more complex and pivotal to 
maintain bacterial fitness. Indeed, the most intriguing results gener-
ated from functional genomics studies were relative to the modula-
tion of genes involved in regulatory functions and metabolism. (For 
in-depth reviews, see 32 and 33, respectively.) It is not by chance 

that genomic regions coding for metabolic functions exhibit high 
rates of recombination22,23, a feature shared with genes contributing 
to pathogenicity. On the other hand, 35 of the 73 genes reported by 
Sun et al. as “essential” to in vivo bacteremia encode for enzymes 
involved in metabolism and transport of nutrients15. This trend was 
further corroborated by ex vivo transcriptomic data showing that 
N. meningitidis grown in human blood differentially expresses sev-
eral genes involved in nutrient transport and central metabolism26,27. 
Overall, transcriptomic studies have highlighted that differential 
expressions of genes involved in metabolism of lactate, oxida-
tive stress response, glutathione metabolism, and denitrification  
pathways are among the most frequent examples of adap-
tive response during pathogenesis. In particular, the capacity of  
N. meningitidis to promptly catabolize lactate has been considered 
fundamental to bacterial survival. Lactate is broadly present in the 
human body at considerable concentrations (approximately 0.3 
to 1.3 mM). Being a substrate for the synthesis of N-acetyl-neu-
raminic acids via the N-acetyl-neuraminic acid synthase (NeuB) 
synthetic enzyme, lactate contributes to enhanced serum resist-
ance34–36 and nasopharyngeal colonization37,38. The evidence that, 
in human blood, lactate permease was significantly upregulated26  
further confirmed the importance of this sugar in immune  

Figure 1. From colonization to dissemination: graphical representation of Neisseria meningitidis pathogenesis. (A) N. meningitidis is 
spread by exchanging respiratory and throat secretions during close contacts between individuals. (B) It then gets access to the nasopharynx, 
where it adheres to the mucosae of the mucociliary epithelium and resides as a commensal microorganism until environmental conditions 
are suitable for dissemination. (C) Crossing of the mucosal epithelial barrier occurs by intra- or inter-cellular routes allowing entry into the 
bloodstream, where it quickly proliferates. This event causes sepsis and eventually (after translocation of a further physiological barrier 
such as the blood-brain barrier) meningitis. The right bottom panel is a list of factors/pathways defined by functional genomics studies to 
be determinant during various steps of N. meningitidis pathogenesis such as colonization of the nasopharynx and survival in blood. App, 
adhesion and penetration protein; fHbp, factor H-binding protein; FNR, fumarate and nitrate reductase regulator protein; Fur, ferric uptake 
regulation protein; Hfq, cofactor RNA-binding protein; LPS, lipopolysaccharide; MIP, macrophage infectivity potentiator MspA, meningococcal 
serine protease A; NadA, Neisseria adhesin A; NalP, Neisseria autotransporter lipoprotein; NhhA, Neisseria hia homologue A; NspA, Neisserial 
surface protein A; Opa, opacity protein; Opc, opacity protein C; sRNA, small non-coding RNA.
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evasion. However, whether the reported phenotypic behavior may 
act as a paradigm for N. meningitidis increased colonization of the 
nasopharynx is not clear. Indeed, an increased synthesis of sialic 
acid by enhancing capsule levels and lipopolysaccharide sialylation 
may result in an impaired ability to bind to mucosal surface. There-
fore, the balance between carriage and invasive attitude is quite 
arguable, and more data are needed to understand the contribution 
of metabolic and virulence factors to N. meningitidis pathogenesis. 
The evolutionary success of N. meningitidis relies on an efficient 
replication within the bloodstream because of not only an effica-
cious uptake of nutrients but also the concomitant ability to evade 
the innate and acquired immune defenses by exploiting the ben-
efits of an appropriate sugar decoration39. Iron metabolism is also 
central to the fitness and ability of N. meningitidis to out-compete 
neighborhood bacteria and host defenses. Although iron is pivotal 
for DNA replication, electron transfer in the respiratory chain, and 
oxidative metabolism, free iron is scarcely available in the host and 
meningococci possess several iron uptake systems40. Acquisition  
of iron from host complexes is mediated by surface-located receptors: 
two hemoglobin receptors (HmbR and the heterodimeric HpuAB 
complex) and TbpBA and LbpBA reported to bind iron-loaded 
transferrin and lactoferrin, respectively. However, although iron 
uptake is essential to N. meningitidis immune evasion, HmbR was  
recently suggested not to be required during the early stages of 
disease, calling into question the importance of hemoglobin in 
meningococcal pathogenesis41. Microarray analysis of the effect  
of iron addition to N. meningitidis culture revealed a large modu-
lation of genes involved in energy metabolism, protein synthesis,  
and cell envelope assembly42. These events appear to be largely 
under the control of the ferric uptake regulation protein (Fur) 
regulator that, in response to iron, affects the expression of  
target genes42–44. For example, since the mucosal surface is rich 
in lactoferrin and the bloodstream contains high amounts of  
hemoglobin, these proteins were suggested to serve as niche indi-
cators for N. meningitidis, leading to specific changes in gene  
expression42,45.

Environmental oxygen levels represent another important stress 
event encountered by N. meningitidis during pathogenesis. An 
in-depth analysis of the importance of FNR (fumarate and nitrate 
reductase regulator protein) in sensing oxygen concentrations was 
reported by Bartolini et al.46, who elucidated a number of metabolic 
pathways modulated under limited oxygen conditions, as faced in 
the brain microcirculation.

As mentioned previously, regulatory functions are currently the hot 
topic in functional genomics, especially after the discovery of small 
non-coding RNAs (sRNAs)47,48. In N. meningitidis, a great deal of 
importance has been given to Hfq, an RNA binding protein contrib-
uting to base pairing between sRNA and mRNA49,50, found to be 
modulated in blood26 and essential for serum resistance15. A number 
of transcriptomic and proteomic studies confirmed the relevance of 
Hfq in Neisseria response to stress conditions49,51–53 and its capacity 
to modulate sRNAs54. Of importance, Capel et al., by exploiting a 
Tn-seq strategy coupled to high-throughput DNA sequencing tech-
nologies, reported a comprehensive analysis of sRNAs essential to 
colonize epithelial cells and primary brain endothelial cells, provid-
ing a new tool to further investigate meningococcal pathogenesis in 
different environments55.

Unfortunately, our understanding of the pathways activated by  
N. meninigitidis in response to environmental changes is limited by 
the relevant number of functionally unknown open reading frames 
that have often been reported among the most modulated targets. To 
this end, Exley et al. found that six out of eight mutants attenuated 
for their capacity to adhere to nasopharyngeal explants had transpo-
son insertions in genes of unknown function30. Currently, this major 
gap still keeps the whole picture incomplete. It is important to notice 
that much of the reported evidence on the contribution of meningo-
coccal “armaments” to adaptation and virulence was obtained by 
employing laboratory isolates often belonging to rare genotypes or 
not relevant to N. meningitidis pathogenesis. This is to highlight 
that we may still underestimate the impact of “hidden” pathways 
relevant to hyper-virulent lineages associated with outbreaks.

In vitro transcriptomic and mutagenesis studies were mainly car-
ried out by incubating bacteria in the presence of immortalized 
human cell lines derived from epithelial and endothelial tissues. 
Although they have been a remarkable pioneering attempt to resem-
ble human physiology of the upper respiratory tract and microcir-
culation, these in vitro studies were limited by the specificity of 
the events triggered by N. meningitidis in vivo. Recent studies on 
mucosal pathogens have revealed the fundamental contribution of 
mucosae components in triggering signals to host tissues. Never-
theless, the human specificity of this bacterium makes studying the 
pathogenesis of Neisseria infections in vivo very difficult. Seminal 
in vitro studies were characterized by the use of cell lines derived 
from organs relevant to the meningococcal disease, such as the 
respiratory epithelium and the brain endothelium56–59. Although 
the results of these studies have been pivotal to the understanding 
of N. meningitidis pathogenesis, they were limited by the lack of 
environmental attributes that contribute to the in vivo response of 
the host to pathogens. Experimental models of fulminant menin-
gococcemia in human skin-grafted immune-compromised mice 
have recently been engineered60,61. Under these conditions, N. men-
ingitidis adheres to implanted human vessels, triggering extensive 
vascular damage, similar to that observed in patients62. We expect 
that this kind of model, together with the increased accessibility to 
organoids and three-dimensional (3D) bioprinted organs, will be 
extensively exploited not only to confirm the current knowledge on  
N. meningitidis pathogenesis but to disclose the hidden pathways 
that are essential to bacterial fitness and that could be unraveled 
only by recreating a physiological environment. In this con-
text, Deosarkar et al. reported the first dynamic in vitro neonatal 
blood-brain barrier on a chip closely mimicking the in vivo micro- 
environment63. On the other hand, models for skin, bronchi, blood 
vessels, and microcirculation are widely engineered for all sorts of 
different applications from basic research to drug discovery (nicely 
reviewed in 64). We therefore foresee the adaptation of 3D cellu-
lar models in novel multi-organ systems to study N. meningitidis 
pathogenesis, as has extensively been done for intestinal and gas-
tric organoids to study enteric and Helicobacter pylori infections, 
respectively. In this context, Marrazzo et al.65 recently established an 
in vitro 3D system which recapitulates the human tracheo-bronchial 
mucosa comprehensive of the pseudostratified epithelium and the 
underlying stromal tissue. This model has been exploited to study 
initial colonization events triggered by non-typeable Haemophilus 
influenzae but could easily be adapted to any other microorganism 
colonizing the nasopharynx. Therefore, only by stemming from the 

Page 5 of 10

F1000Research 2017, 6(F1000 Faculty Rev):1228 Last updated: 26 JUL 2017



field of regenerative medicine, we could find the right approaches 
to unravel unknown signaling pathways occurring during N. men-
ingitidis pathogenesis. Researchers working in the field of cancer 
progression or environmental damage to respiratory organs are 
generating sophisticated examples of human airways that scientists 

working in the infectious disease world should start considering. 
Table 1 is a list of 3D tissue models that have mainly been devel-
oped to study organ physiology but that could be customized to 
carry out studies on the strategies used by N. meningitidis to adapt, 
colonize, and induce disease in humans.

Table 1. List of in vitro three-dimensional tissue models that could be exploited in studying Neisseria meningitidis colonization and 
pathogenesis.

Nasopharynx

Reference Synopsis 

Marrazzo et al.65, PLOS ONE, 2016 3D reconstruction of the human tracheo-bronchial mucosa comprehensive of the 
pseudostratified epithelium and the underlying stromal tissue as an experimental model to 
study upper respiratory tract infections

Kuehn et al., JOVE, 201566 Culture of the organotypic tissue bronchial and nasal culture model to study the impact of 
cigarette smoke on airway biology

Steinke et al., Biomaterials, 201467 An engineered 3D human airway mucosa model based on a small intestine submucosa to 
investigate interrelations of Bordetella pertussis with human airway mucosa

Harrington et al., Molecular 
Pharmaceutics, 201468

Exploitation of biomimetic porous electrospun scaffolds to develop an immunocompetent 3D 
model of the human respiratory tract comprised of three key cell types present in upper airway 
epithelium

Nguyen Hoang et al., Am J Physiol 
Lung Cell Mol Physiol, 201269

Development of a method to generate a 3D organotypic model of the human airway mucosa in 
which dendritic cells are implanted

Pageau et al., Biomaterials, 201170 3D in vitro model of the human airway that mimics bronchial morphology and function to study 
epithelial-mesenchymal interactions

Choe et al., Nature Protocols, 200671 Human bronchial mucosal model, including a well-differentiated epithelium with functional cilia, 
mucus secretion, and sub-epithelial fibroblasts

Paquette et al., European Cells and 
Materials, 200472

Tissue-engineered human bronchial equivalents from biopsies of asthmatic and non-asthmatic 
volunteers

Choe et al., American Journal of 
Physiology-Lung Cellular Molecular 
Physiology, 200373

Tissue culture model of the human airway wall that can be induced to undergo matrix 
remodeling in a relevant 3D inflammatory context

Paquette et al., In Vitro Cellular & 
Developmental Biology – Animal, 200374

Production of tissue-engineered 3D human bronchial models at the air-liquid interface

Chakir et al., Journal of Allergy and 
Clinical Immunology, 200175

To evaluate the feasibility of an engineered human bronchial mucosa as a model to study 
cellular interactions in asthma

Blood-brain barrier (BBB) 

Reference Synopsis 

Phan et al., Exp Biol Med 201776 Extensive review of microphysiological systems capturing the complexity of the blood–central 
nervous system interface and resembling the BBB

Wang et al., Biotechnol Bioeng, 201777 Development of a microfluidic BBB model by deriving brain microvascular endothelial cells 
from human-induced pluripotent stem cells and co-culturing them with rat primary astrocytes 
on the two sides of a porous membrane

Herland et al., PLOS ONE, 201678 Micro-engineering of a 3D model of the human BBB within a microfluidic chip by creating a 
cylindrical collagen gel containing a central hollow lumen inside a microchannel

Cho et al., Scientific reports, 201579 Construction of a 3D model of BBB on a microfluidic platform

Brown et al., Biomicrofluidics, 201580 Development of a microfluidic device comprised of a vascular chamber and a brain chamber 
separated by a porous membrane mimicking the BBB. This model allows cell-to-cell 
communication between endothelial cells, astrocytes, and pericytes.

Deosarkar et al., PLOS ONE, 201563 Development of a BBB on a chip comprising a tissue compartment and vascular channels 
placed side-by-side mimicking the 3D morphology, size, and flow characteristics of 
microvessels in vivo 

Vasculature 

Reference Synopsis 

Hoch et al., Eur J Cardiothorac Surg, 201481 Extensive review of bioprinting of artificial blood vessels for 3D tissue engineering

Kolesky et al., Adv Mater 201482 3D bioprinting method for fabricating engineered tissue constructs replete with vasculature, 
multiple types of cells, and extracellular matrix

Miller et al., Nat Mater, 201283 Rigid 3D filament network of carbohydrate glass used as a cyto-compatible sacrificial template 
to generate cylindrical networks that could be lined with endothelial cells and perfused with 
blood under high-pressure pulsatile flow

References are reported in chronological order and grouped by organ/tissue specificity. 3D, three-dimensional.
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Closing remarks
This commentary started with the hope of a world without  
meningococcal meningitis thanks to the implementation of cur-
rent vaccines. However, a lot is still needed to fully understand the 
pathophysiology of such a disease. The progress obtained so far 
in disclosing N. meningitidis pathogenesis reveals that the ample 
evidence for “culprits” is not sufficient to completely unravel the 
“murder scene”. Population and functional genomics have had 
a great role in defining many of the key pathways activated by  
N. meningitidis to successfully colonize our organism, but biotech-
nologies like in vitro 3D human experimental models are emerg-
ing as the new frontier to establish the appropriate environment 
to study bacterial pathogenesis. To this end, a multi-disciplinary  
approach would be vital to ensure the required progress for fighting 
human infections. In the last decade, the input of engineers, phys-
ics, mathematicians, and statisticians has been crucial to several 
biology and medicine areas (particularly in “omics” disciplines) 
and is expected to have even more relevance in the future. In the 
area of infectious diseases, they are becoming the principal inter-
locutors of molecular and cellular microbiologists by playing a 
pivotal role in designing, fabricating, miniaturizing, and validating 
in vitro tissue models to be exploited in host-pathogen interaction 
studies. Technology centers in Europe and the US (for example, 

the Francis Crick Institute, London, UK, and Wake Forest Institute, 
Winston-Salem, NC, USA) and international biotech companies 
(for example, Organovo, San Diego, CA, USA, and 3D Bioprinting 
Solutions, Moscow, Russia) are already investing in this direction 
by holding the promise of a future with curable diseases and a better 
quality of life.
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3D, three-dimensional; fHbp, factor H-binding protein; Hfq, cofac-
tor RNA-binding protein; sRNA, small non-coding RNA; STM, 
signature-tagged mutagenesis.
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