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Radiological assessment of the head is a routine part of the management of traumatic 
brain injury. This assessment can help to determine the requirement for invasive intra-
cranial pressure (ICP) monitoring. The radiological correlates of elevated ICP have been 
widely studied in adults but far fewer specific pediatric studies have been conducted. 
There is, however, growing evidence that there are important differences in the radio-
logical presentations of elevated ICP between children and adults; a reflection of the 
anatomical and physiological differences, as well as a difference in the pathophysiology 
of brain injury in children. Here in, we review the radiological parameters that corre-
spond with increased ICP in children that have been described in the literature. We then 
describe the future directions of this work and our recommendations in order to develop 
non-invasive and radiological markers of raised ICP in children.
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inTRODUCTiOn

Traumatic brain injury (TBI) in children remains a UK and worldwide public health concern. 
Early management of TBI aims to prevent secondary brain injury and invasive monitoring of 
intracranial pressure (ICP) plays an important role of the management of pediatric neurocritical 
patients (1).

The gold-standard for ICP measurement requires an invasive intraparenchymal monitor. 
Although generally regarded as safe, this procedure carries a small risk of hemorrhage, infection, 
and seizures (2–5). In patients with coagulopathies, invasive monitoring may be contra-indicated. 
Furthermore, in the global context of neurosurgery, a requirement for the expertise to insert such 
a device can result in delays in the implementation of guided medical therapy: some areas of the 
world are served by 1 neurosurgeon per 9 million patients (compared with the 1 per 80,000 in 
developed countries) (6). These issues have been brought to the fore by the results of a recent 
randomized-control trial in adults, which questioned the ostensible positive effect that invasive 
monitoring has on outcomes, stimulating debate as to whether invasive monitoring is over-utilized 
in current practice (7).

As such, an accurate and reproducible methodology for assessing raised ICP would be highly 
beneficial and allow for stratification of which patients would benefit from invasive monitoring. 
While radiological features are already recognized and used in clinical practice to alert to raised ICP 
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FigURe 1 | Multimodal monitoring during plateau waves in intracranial pressure (ICP) after traumatic brain injury (TBI). This is a pediatric patient who sustained 
severe TBI with moderate diffuse axonal injury (Marshall grade 3) on initial computed tomography scan. During the monitoring on the pediatric intensive care unit the 
patient developed rapid and short-lived increases in ICP (blue) in a pattern known as intracranial plateau waves. This corresponds with a reduction in cerebral 
perfusion pressure (CPP, gold) and a deranged cerebrovascular autoregulation (PRx, green). PRx—pressure reactivity index—is a measure of the capacity of the 
cerebral vasculature to alter its resistance in response to changes in CPP. A negative PRx indicates intact pressure reactivity whereas a positive PRx indicates 
impaired pressure reactivity.
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(for example: midline shift, ventricular effacement, sulcal efface-
ment, cistern effacement, and herniation), these features have not 
been extensively validated in a pediatric cohort.

Here in, we review the radiological parameters that corre-
spond with increased ICP in children that have been described 
in the literature. We then describe the future directions of this 
work and our recommendations in order to develop non-invasive 
and radiological markers of raised ICP in children.

STUDYing iCP in CHiLDRen

The anatomical, physiological, and pathophysiological differ-
ences between children and adults mean that specific pediatric 
studies are essential in validating proposed radiological correlates 
of raised ICP.

In adults, intracranial hypertension (IH) is defined as an 
ICP that is persistently raised above 20 mm Hg (8). In children, 
normal values are age dependent. While there is continued debate 
on age directed strategies, the consensus is that brief increases 
in ICP that return to normal in <5  min may be insignificant; 
however, sustained increases of ≥20 mm Hg for ≥5 min should 
likely warrant treatment (9) (Figure 1).

Compared with adults, children may be more likely to develop 
diffuse brain swelling after TBI (10). This has been postulated to 
be because of immature or impaired autoregulation of cerebral 
perfusion pressure, an enhanced inflammatory response, and 
increased blood–brain barrier permeability in the developing 
brain (11, 12).

Children have a lower mean arterial blood pressure. This 
means that if a child does develop intracranial hypertension, they 
may be more likely to have a critically decreased cerebral blood 
flow (CBF) and thus sustain a secondary ischemic injury (13). 
There is extensive debate on whether management of acute brain 

injury should be targeted by ICP thresholds, by CPP thresholds 
or both. Only a small number of pediatric studies have demon-
strated CPP-directed intervention. In two studies, the lower limit 
of the scale that was used was 40 mm Hg (14, 15), and in two other 
studies, it was 45 mm Hg (16, 17).

Furthermore, the biomechanical differences between adult 
and children’s skull in relation to the brain offer different levels of 
accommodation. In infants, the presence of fontanelles allows for 
buffering of raised ICP (18).

iMAging MODALiTieS

The imaging modalities that have been tested against ICP are 
computed tomography (CT), magnetic resonance imaging 
(MRI), and ultrasonography (US). CT is routinely performed 
in children with suspected IH and so parameters in this modal-
ity are of importance in terms of immediate clinical utility. 
However, the lack of ionizing radiation with MRI and US make 
these modalities attractive alternatives, given that children are 
more radiosensitive and have longer life-expectancies com-
pared with adults (19). However, MRI is rendered difficult with 
an uncooperative and distressed child due to long acquisition 
times and may be contraindicated in major trauma with poten-
tial metal foreign bodies. Furthermore, while US is available 
at the bedside, avoiding the hazards of patient transfer, and is 
radiation-free, it is not routinely used for this purpose in the 
context of TBI and there is limited, albeit growing, experience 
in this field.

RADiOLOgiCAL PARAMeTeRS

A multitude of radiological parameters have been examined in 
children within small cohorts.
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FigURe 2 | Representative images of pediatric patients with raised 
intracranial pressure (ICP). (A) A patient with acute subdural hematoma 
(ASDH), opening ICP 32 mm Hg. (B) A patient with diffuse axonal injury, 
opening ICP 25 mm Hg. (C) A patient with ASDH, opening pressure 28 mm 
Hg. All these pediatric patients demonstrate open basal cisterns, despite 
pathologically raised ICP.

FigURe 3 | Representative computed tomography image of a pediatric 
patient showing measurement of the ONSD. The ONSD is typically measured 
3 mm behind the insertion of the optic nerve into the globe, perpendicular to 
the long axis of the optic nerve.
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Basal Cisterns
The appearance of compressed or obliterated basal cisterns on 
CT images and its correlation to elevated ICP has been well 
studied in adult cohorts (20). Kouvarellis et al. have found that 
this correlation also holds true in children, with 75% of their 
cohort who had obliterated cisterns demonstrating at least one 
episode of elevated ICP on invasive monitoring (21). However, 
they also found that the presence of open cisterns does not 
necessarily correspond to normal ICP, with open cisterns hav-
ing a positive predictive value of only 59% in detecting an ICP 
below 20 mm Hg. This is an important finding: an observation 
of patent cisterns in the presence of raised ICP can have sig-
nificant implications for management of such patients. As such, 
a defined threshold of basal cistern compression in relation to 
raised ICP would be helpful to interpret this data. Moreover, the 
pathophysiology of this finding is interesting in itself. Given the 
close relationship with the pediatric brain with the inner table of 
the cranium, it is surprising that pathological ICP can be accom-
modated this efficiently, without displaying cardinal radiological 
signs of hypertension (Figure 2). Advances in understanding the 
mechanism of how the pediatric brain combats these fluctuations 
in pressure following injury may have multiple implications for 
CSF disorders.

Optic nerve Sheath Diameter
The optic nerve sheath communicates with the subarachnoid 
space of the meninges and its diameter has been shown to widen 
in the context of elevated ICP (Figure 3) (22, 23). This phenom-
enon has been demonstrated to occur within minutes of acute 
changes in ICP and thus the ONSD poses an attractive target for 
non-invasive ICP monitoring (24).

Ultrasonography measurement of widened ONSD has been 
investigated as an indicator of elevated ICP in adults (25–27). 
In children, this correlation has also been demonstrated in a 
number of studies, with the cohort of 174 children in Padayachy 
et al. (largest to date) exhibiting a sensitivity of 80% in detect-
ing ICP ≥ 20 mm Hg (28). However, the reliable use of US may 
require technical expertise that is not widely available.

Only one study has explored the viability of ONSD in rela-
tion to CT values in pediatric cohorts (29). This study achieved 
a much-improved specificity (91%) than similar studies in adult 

cohorts [42%, in one recent adult study (30)] to detect elevated 
ICP. It has been postulated that this difference may be as a result of 
children’s brain parenchyma being intimate with the cranial vault, 
without the deep sulci that develop in late adolescence—meaning 
that changes in ONSD are subject to less inter-patient variation 
(28). This highlights the importance of deliberate pediatric 
studies in this field, with a variation in anatomy manifesting as a 
clear difference in neuroimaging parameters. The effectiveness of 
ONSD in a modality that is routinely acquired in current practice 
is of significant interest, although this being a single-center, small 
sized study means validation in larger cohorts is necessary.

A comparison of MRI to CT in measuring ONSD suggest that 
measurements should be in close agreement across both modali-
ties and, indeed, Hirfanoglu et al. have recently demonstrated this 
potential correlation for children (31).

Thus, ONSD would seem a reliable parameter for evaluat-
ing ICP in children, being available in modalities of CT that is 
routinely used to diagnose TBI, and in US that reduces radiation 
exposure and minimizes time transferring patients from safety 
of the ICU. It is worth noting however, that the relationship 
between ONSD and raised ICP is dependent on establishing 
and validating threshold values above which ICP is considered 
elevated. The studies in children to date have been retrospective 
analyses that have used cutoff values that maximize the specificity 
and sensitivity of their measurements. It will be more difficult to 
adopt these cutoff values prospectively, given the interindividual 
variability in children of different ages in particular, but also of 
different genders and ethnicities (32, 33).

intracranial elastance
An emerging technique for measuring ICP using MRI is by using 
the concept of intracranial elastance. Elastance is defined as the 
ratio of change in pressure to change in volume, and an elastivity 
index has been determined for the brain over a range of ICPs (34). 
MRI analysis of CSF velocities and arterial, venous and CSF flow 
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volumes are used to calculate the small fluctuation in intracranial 
volume and pressure change during the cardiac cycle, which is 
then related to ICP using the known relationship between ICP 
and elastance (35).

There have been some studies to assess this model in adults 
but to date the only application in pediatric cohorts comes from 
Muehlmann et al. who found a positive correlation (Spearman 
ρ = 0.64, p < 0.01) between shunt opening pressure and MR-ICP 
in 15 children with hydrocephalus (36). Based on these obser-
vations there is reason to suspect that there is a potential role for 
intracranial elastance measurements in pediatric TBI patients. 
The technique is likely to be too cumbersome and time-consuming  
to provide rapid diagnosis and aid with decision-making criteria 
on therapy. However, there is a wide scope to use the modal-
ity to gain a greater understanding of the pathophysiology of 
intracranial hypertension following TBI and gain an insight into 
potential therapy.

Cerebral Blood Flow
Measurements of CBF can be studied using two modalities, 
transcranial Doppler ultrasound (TCD) magnetic resonance 
angiography (MRA). To date, only TCD has been used in the 
context of pediatric TBI.

Measurements of CBF by TCD rely on the observed physi-
ological phenomenon that elevated ICP leads to a greater reduc-
tion in diastolic flow velocity than systolic flow velocity (37). This 
relationship is exploited by calculating the Gosling pulsatility 
index (PI), defined as the difference between systolic and diastolic 
flow velocities, divided by the mean flow velocity (37). The results 
of PI correlation to ICP in adults have shown limited utility, with 
numerous studies concluding that the relationship may only be 
reliable at extreme values of ICP (38, 39). However, in children, 
this relationship may be of more value. Notably, the findings of 
O’Brien et al. suggest an extremely good correlation in the very 
early stages postinjury, with ICP ≥ 20 mm Hg being predicted 
with 100% sensitivity and 82% specificity (40). This relationship 
does not seem to hold true more than 24 h postinjury, but this 
may still render TCD a valuable tool in screening which patients 
require invasive monitoring in monitoring for secondary brain 
injury (41).

Although MRA has not been demonstrated in pediatric TBI, 
the technique has been used in pediatric hydrocephalus patients. 
Measurement CBF at the level of the internal carotid artery and 
basilar artery were performed with the conclusion of only a 
moderate correlation (r = −0.55) with raised ICP (42). However, 
significant reduction in CBF would be expected to require 
severe elevation in ICP. The study was performed in infants (age 
range = 1 day to 7 months old) who were young enough to have 
open fontanelles. This makes it more likely, therefore, that these 
patients would have been able to tolerate significant rises in ICP 
before exhibiting any clinical signs. Indeed, Bateman, failed to 

reproduce this correlation in a cohort of older children (mean 
age = 8 ± 5) (43). As such, given the complexity of the analysis 
and the time delay in image acquisition and analysis, MRA is 
unlikely to provide parameters that would be clinically useful in 
pediatric TBI.

FUTURe DiReCTiOnS

A growing body of evidence is demonstrating some potentially 
beneficial modalities for using radiological parameters to guide 
therapy in pediatric TBI. Early work has already identified some 
thresholds to improve both sensitivity and specificity of such 
radiological markers.

There are existing radiological classification systems in adults, 
such as Marshall or Rotterdam scores, that have shown value in 
correlating radiological evidence to predict outcome (44, 45). 
While some of these have been validated in children there is scope 
to refine this to better suit the pathophysiology of pediatric TBI 
(46). A study combing the outlined measurements above would 
evaluate whether they serve to direct care more efficiently.

A validation of the radiological parameters of raised ICP on 
CT imaging would be of the most immediate clinical value, given 
this modality’s widespread use in current practice. Currently, 
the parameters from adult studies are assumed as valid—an 
assumption that has already been questioned, as discussed 
above. Moreover, given the possible age-related differences (e.g., 
as a result of open fontanelles or changes in skull compliance), 
it would be prudent for future studies to stratify their pediatric 
cohorts by age, rather than group children as one demographic as 
some previous studies have done. Given the number of potential 
variables involved a large, prospective study specific to children 
would allow for validation of the most suitable radiological 
markers.
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