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A B S T R A C T

Elevated atmospheric heat is considered as one of the bottlenecks for global wheat production. 
Screening potential wheat genotypes against heat stress and selecting some suitable indicators to 
assist in understanding thermotolerance could be crucial for sustaining wheat cultivation. 
Accordingly, 80 diverse bread wheat genotypes were evaluated in controlled lab condition by 
imposing a week-long heat stress (35/25 

◦

C D/N) at the seedling stage. The response of heat stress 
was evaluated using multivariate analysis techniques on 20 morpho-physiological traits. Results 
showed significant variations in the studied traits due to the imposition of heat stress. Eleven 
seedling traits that contributed significantly to the genotypic variability were identified using 
principal component analysis (PCA). A substantial correlation between most of the selected 
seedling attributes was observed. Hierarchical cluster analysis identified three distinct clusters 
among the tested wheat genotypes. Cluster 1, consisting of 33 genotypes, exhibited the highest 
tolerance to heat stress, followed by Cluster 2 (18 genotypes) with moderate tolerance and Cluster 
3 (29 genotypes) showing susceptibility. Linear discriminant analysis (LDA) approved that nearly 
93 % of the wheat genotypes were appropriately ascribed to each cluster. The squared distance 
analysis confirmed the distinct nature of the clusters. Using multi-trait genotype-ideotype dis
tance index (MGIDI), all 12 identified tolerant genotypes (BG-30, BD-468, BG-24, BD-9908, BG- 
32, BD-476, BD-594, BD-553, BD-488, BG-33, BD-495, and AS-10627) originated from Cluster 1. 
Selection gain in MGIDI analysis, broad-sense heritability, and multiple linear regression analysis 
together identified shoot and root dry and fresh weights, chlorophyll contents (a and total), shoot 
tissue water content, root-shoot dry weight ratio, and efficiency of photosystem II (PS II) as the 
most vital discriminatory factors explaining heat stress tolerance of 80 wheat genotypes. The 
identified genotypes with superior thermotolerance would offer resourceful genetic tools for 
breeders to improve wheat yield in warmer regions. The traits found to have greater contribution 
in explaining heat stress tolerance will be equally important in prioritizing future research 
endeavors.
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1. Introduction

The world’s food production is under constant risk due to the introduction of climate change associated with rising in atmospheric 
temperature. In a high-emission scenario, the mean global temperature is expected to increase by 3.3–5.7 ◦C by the end of the 21st 
century [1]. The appearance of supra-optimum temperature during crop production is a significant devastating impact of global 
climate change [2]. This elevated temperature has been affecting the productivity of many crops and wheat is not an exception of that. 
A collaborative research integrating the selection of heat-tolerant wheat genotypes with an in-depth understanding of vital physio
logical traits related to thermotolerance has the potential to significantly contribute to sustainable wheat production.

Among the cereals, the production of bread wheat (Triticum aestivum L.) secures the second position both globally and in 
Bangladesh [3,4]. The significance of wheat is vital as it solely supplies over one-fifth of required calories and proteins for the world 
[5]. In the near future, the productivity as well as availability of wheat will be the crucial for global food security and economy mainly 
to feed about 9.6 billion people by 2050 [6,7]. The above-optimum temperature at all stages of wheat growth negatively affects plant 
development [8] and causes physiological and biochemical damage [9].

Heat stress during early growth can hinder seedling development by disrupting enzymatic activity involved in seed metabolism. 
Additionally, the elevated abscisic acid level and reduced gibberellin activity due to heat stress inhibit seed germination and delays the 
germination process, respectively [10]. In addition to creating oxidative stress, which damages cells, heat stress slows the synthesis of 
hormones necessary for cell division and elongation. This ultimately restricts the absorption and movement of water and nutrients by 
the roots and shoots [11]. The disruption in cell wall structure and inhibition in expansion activity under elevated temperature restrict 
leaf growth and thus reducing the overall photosynthetic surface area [12]. The conformational changes, oxidative modifications, and 
proteolytic degradation resulted in inactivation of Rubisco under heat stress condition resulted in limiting carbon assimilation and cut 
down of plant growth and biomass accumulation [13].

High temperature alters the expression and activity of transporter proteins involved in nutrient absorption and transport, and 
damage the vascular tissue system, resulting in nutrient deficiencies and stunted growth [14]. Protein denaturation under elevated 
temperature is associated with unfolding and losing of functional conformation followed by toxicity to cells [15]. The kinetic energy of 
lipid molecules increases under heat stress, causing the membranes more fluid and permeable, making them highly susceptible to 
oxidative damage by ROS [16]. The reduction in biomass accumulation in seedlings is the consequence of the cumulative influence of 
high temperature stress on multiple physiological and biochemical processes. Heat stress diverts energy from growth processes, 
causing seedlings to exhibit reduced biomass and overall vigor due to the production of HSPs and antioxidant defenses [17]. The 
thylakoid lamellae, the site of the photochemical reactions of photosynthesis, is regarded as one of the foremost targets of heat stress 
mainly because of heat-induced ROS generation [18]. The photosystem II (PSII) is considered as the most heat-sensitive element of the 
photosynthetic electron transport chain, prone to heat-induced denaturation caused by dissociation of D1 protein from PSII reaction 
center [19]. The intrinsic photochemical efficiency of PSII can be recognized by a suitable chlorophyll fluorescence approach, namely 
the maximum photochemical efficiency of PSII photochemistry (Fv/Fm). High temperature causes a decline in Fv/Fm [20,21] which is 
the outcome of increased non-reducing PSII reaction centers followed by a decline in electron transport from QA to QB [22]. For 
detecting and quantifying the heat-induced alterations in the photosynthetic machinery, the chlorophyll a fluorescence is considered 
the most sensitive and reliable method [23]. A wide range of information concerning processes in PSII and thylakoid membranes has 
been provided by chlorophyll a fluorescence that leads an improvement regarding the understanding of photosynthesis [24]. The 
chlorophyll a fluorescence technique is a non-invasive and versatile method to monitor plant health, stress severity, and the efficiency 
of light-driven reactions in photosynthesis [25]. High temperature induced inhibition of PSII activity leads to breakdown of chloro
phyll pigments [26] followed by negative impacts on photosynthetic transformation of solar energy to the energy of chemical bonds.

Heat stress also brings about reduction in chlorophyll content and enhanced reactive oxygen species (ROS) production [27], 
decreased relative water content [28], and destruction in organelles membrane [29]. Heat stress not only inhibits the functionality of 
vital chlorophyll biosynthesis enzymes like glutamyl-tRNA reductase and Mg-chelatase but also accelerates chlorophyll degradation 
through enhancing the activity of chlorophyllase and other degrading enzymes, leading to a greater reduction in light harvesting 
pigment content [30]. All these potential physiological phenomena significantly affect wheat productivity. For mitigating heat stress 
impacts, it is vital to screen out potential genotypes based on some indicators aiming to endure environmental challenges [31]. In 
addition, an upgraded understanding on morpho-physiological features linked to heat stress tolerance has rational implications for 
recognizing several tolerance mechanisms that will assist in ameliorating the adverse effects of heat stress on wheat [32–34]. In this 
aspect, the adoption of multivariate analysis technique is a better option not only to select potential genotypes but also to identify vital 
traits that principally govern the tolerance mechanisms under high temperature condition [8].

For exploring relationships, grouping, and selecting traits from a complex data set, multivariate analysis techniques are essential. 
These approaches are more representative, meaningful, and precise inferences compared to simpler methods [35,36]. The cluster 
analysis classifies genotypes for desirable traits according to their genetic similarity with minimal error [37]. Similar to cluster 
analysis, the principal component analysis (PCA) also explains the dissimilarity among genotypes and it has the ability to transform the 
information into a lesser set of variables that capture most of the original information [38,39]. PCA is a powerful technique for un
derstanding the relationships between traits and analyzing their correlations [40]. For defining genotypic groups as prior sorting 
criteria, linear discriminant analysis (LDA) is frequently used. LDA identifies misclassification inaccuracy and calculates the 
remoteness between groups, and as a result can effectively screen out tolerant genotypes under stress conditions [41]. Moreover, 
selecting superior genotypes with higher genetic gain and desirable traits is crucial for successful breeding programs. To assist in such 
identification, the introduction of multi-trait genotype-ideotype distance index (MGIDI) plays an important role as this index considers 
multiple traits simultaneously, allowing researchers to assess both the strengths and weaknesses of the tested genotypes relative to an 
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ideal breeding target [42].
Therefore, the general purpose of this investigative study is to assess heat tolerance in a wide number of wheat genotypes based on 

seedling performance. Precise objectives are outlined to- (i) evaluate the variations in morpho-physiological features of the wheat 
genotypes subjected to high temperature stress; (ii) categorize wheat genotypes into distinct clusters differing in heat tolerance using 
hierarchical clustering algorithm; and (iii) identify potential heat-tolerant genotypes and seedling traits associated with heat stress 
tolerance using diverse multivariate approaches.

2. Materials and methods

2.1. Plant materials and heat stress imposition

In this exploratory investigation, eighty wheat genotypes of diverse nature were collected from various sources. Among them, 9 
mutant lines (mutagen: 1 % EMS) were collected from ACI Seed; 14 varieties and 2 advanced lines from Bangladesh Wheat and Maize 
Research Institute; 1 variety from Bangladesh Institute of Nuclear Agriculture; and rest of the 54 wheat accessions collected from Plant 
Genetic Resource Center of Bangladesh Agricultural Research Institute. Table S1 lists the sources and types of 80 wheat genotypes used 
in the investigation. A two-factor completely randomized design (CRD) with 3 replicates was used for the study. Two levels of tem
perature treatment as ‘control’ (25/15 

◦

C D/N) and ‘heat stress’ (35/25 
◦

C D/N), according to Khatun et al. [43], was applied to 80 
wheat genotypes at seedling stage.

Seeds of uniform sized of each wheat genotypes were selected prior to sowing. The selected seeds were first disinfected with 80% 
ethanol for 5 min, rinsed thoroughly with sterile distilled water, and then soaked in distilled water for another 10 min. Before that, the 
germination trays (21cm × 15cm × 4.5 cm) were filled up with 1.5 kg of sterile sand moistened with distilled water. Later on, for the 
specified control and heat stress conditions, 90 seeds from each genotype were placed in two germination trays. The trays were kept 
under normal room temperature condition (28–33 ◦C) for five days.

Five days after seed sowing, the percent germination in each germination tray was determined as n/N × 100 (where n represents 
the total number of germinated seed; N represents the total number of seeds sown) (Table S1). The wheat seedlings were subsequently 
thinned to 30 per tray. After that, the germination trays with established seedlings were set in a plant growth facility (GC-560H, Firstek 
Scientific, Taiwan) with the following settings: 25/15 

◦

C (D/N) temperature (control), relative humidity (RH) 75–80%, 14 hours of 
photoperiod maintained by 200 μmol m− 2 s− 1 of photosynthetic photon flux density (PPFD).

Each germination tray was provided with 50 mL of half-concentrated Hoagland’s solution on every alternated day as a source of 
nutrients. The control temperature was continued up to 17 days of sowing. On 18th day after seed sowing, one set of germination tray 
was transferred to another growth facility of same nature and heat stress (35/25 

◦

C D/N) was imposed therein for seven days (18–24 
days after sowing). A digital temperature and humidity meter (HD-306, HTC Instruments, Taiwan) was used to monitor the growth 
chamber temperature and humidity. The experimental setup and the visual impacts of heat stress on wheat genotypes are provided in 
Fig. S1. The control and heat stress treatments imposed on wheat genotypes were terminated 24 days after seed sowing, and data were 
recorded subsequently.

2.2. Measurement of seedling traits

The seedling traits like lengths and dry and fresh weights of shoots and roots were recorded from 10 seedlings in each replicate. The 
length of shoots and roots was determined by measuring from the root-shoot junction to the respective leaf and root apices. Dry 
weights of shoots and roots were measured after oven drying (DSO-300D, Digisystem Laboratory Instruments Inc., Taiwan) at 80 ◦C for 
24 h. The root dry weight over the shoot dry weight was used to determine the root-shoot ratio. Tissue water content (TWC), an 
expression of the amount of water present per unit of shoot and root fresh weight, was determined following the formula proposed by 
Mickky et al. [44]. 

TWC=
Fresh wt. − Dry wt.

Fresh wt.

The formula of Hellal et al. [45] was used to measure the seedling vigor index (SVI). 

SVI=
(Shoot length + Root length) × Germination percent

100 

The relative water content of leaf (LRWC) was determined in accordance of Meher et al. [46]. Briefly, fresh leaf samples (at least of 
0.5 g) from both control and heat-stressed plants were soaked in 50 mL deionized water for 4 h. Afterward, weights of the turgid leaf 
samples were recorded using a digital weighing balance (AJ-620E, Shinko Denshi Co. Ltd., Japan) after carefully removing the surface 
water using blotting paper. The leaf samples were dried at 80 ◦C until their weight stabilized. The dry weight of each sample was then 
determined. 

LRWC (%)=
Fresh wt. − Dry wt.
Turgid wt. − Dry wt.

× 100 

Cell membrane stability (CMS) was assessed using the slightly modified protocol described by Rasool et al. [47]. Briefly, 0.1 g leaf 
samples from both control and heat-treated plants were washed separately in double-distilled water, cut into uniform squares. Then the 
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leaf chips were transferred in test tubes containing 10 mL of deionized water and then incubated for 30 min at 40 
◦

C in a hot water bath. 
Afterward, 200 μL of solution was taken from each test tube, and the initial conductivity (C1) was recorded using a compact electrical 
conductivity meter (LAQUAtwin-EC-22, Horiba Scientific, Japan). Subsequently, the same test tubes were placed in a boiling water 
bath for 15 min. After cooling, the final conductivity (C2) was measured. The CMS was then calculated individually for respective 
growing conditions as proposed by Mohi-Ud-Din et al. [48]. 

CMS (%)=

[

1 −
C1

C2

]

× 100 

The germination trays with wheat seedlings were allowed to dark-adapt for 30 min before the measurement of chlorophyll a 
fluorescence attributes as proposed by Khan et al. [49]. The minimum (Fo) and maximum (Fm) fluorescence of dark-adapted leaves 
were recorded using a fluorometer (Junior-PAM, Heinz Walz GmbH, Germany) with a low measuring beam intensity of 125 μmol m− 2 

s− 1 from the adaxial surface of fully expanded lowermost leaf. The variable fluorescence (Fv) was calculated from the difference of Fm 
to Fo. The fluorescence attributes were estimated according to Sperdouli et al. [50].

Heat stress induced thylakoid membrane damage (TMD) was measured by comparing the Fv/Fm values of control and heat-treated 
plants. The equation suggested by Moradpour et al. [31] was employed to calculate TMD as follows: 

TMD(%)=
Fv/Fm (control) − Fv/Fm (heat)

Fv/Fm (control)
× 100 

The same leaves used for recording chlorophyll a fluorescence attributes were then collected to determine the chlorophylls and 
carotenoids according to the procedure described by Porra et. el [51]. Briefly, 100 mg of fresh leaf sample from both control and 
heat-treated plants was placed in 10-mL glass vials with 5 mL of 80% acetone and then it was preserved at 4 

◦

C in the complete darkness 
for 24 hours. Afterward, 1 mL of supernatant was transferred in a quartz cuvette and the absorbance was read at 663, 646, and 470 nm 
wavelengths corresponding to chlorophyll a (chl a), chlorophyll b (chl b) and carotenoids (car), respectively, with a UV–VIS spec
trophotometer (Genesys 10S UV–VIS, Thermo Fisher Scientific, USA). Acetone (80%) was used as blank. The leaf pigment contents (chl 
a, chl b, total chlorophyll [chl T], and car) were quantified following the method described by Mohi-Ud-Din et al. [9] and expressed as 
mg g− 1 fresh weight.

The ratios of chlorophyll a to b (chl a:b) and chlorophyll to carotenoids (chl:car) were calculated by dividing chl a by b and chl T by 
car, respectively.

For the measurement of seedling traits, the fully developed leaves from ten seedlings were pooled to create a single biological 
replicate. This process was repeated twice more using separate sets of seedlings for a total of three replicates. For the recording of 
fluorescence attributes and pigment contents, six fully expanded lowermost leaves were collected. Two leaves were pooled to create 
one biological replicate. This pooling was repeated three times to obtain a total of three replicates. For all the measurements and 
assays, samples were collected separately from control and heat-treated seedlings.

The collected data on seedling traits were expressed as relative values (RV). The RV was calculated based to the formula prescribed 
in Wahab et al. [52] as follows: 

Relative value (RV) =
Trait value under heat stress ​ condition

Trait value under control ​ condition 

2.3. Statistical technique and data analysis using machine learning systems

Every form of statistical analysis was performed using R-4.0.3 for win (http://CRAN.R-project. org/) (accessed on January 12, 
2023) in Rstudio-1.3.1093 (https://rstudio.com/) (accessed on January 12, 2023). The analysis of variance (ANOVA) of the studied 
traits was performed under 2-factor (temperature regimes × genotypes) condition in the general linear model (GLM) in the R package 
‘lme4’ [53]. The library ‘agricolae’ [54] was adopted to compare the mean differences by Tukey’s HSD test. Statistical significance was 
determined at a p-value threshold of less than 0.05.

The graphical representation via boxplots and radar plot were adopted to illustrate the impact of heat stress on wheat seedling and 
relative magnitude of change in the seedling traits due to a-week long heat stress treatment, respectively. Boxplots visually summarize 
multiple variable distributions, aiding in detecting relationships, comparing central tendency and variability, and aiding in exploratory 
data analysis and hypothesis testing [55]. Radar plots allow for the simultaneous representation of multiple variables in a complex 
dataset, providing insights into patterns and trends across different observations [56]. The R packages ‘ggplot2’, ‘ggpubr’, and 
‘reshape2’ were used to create boxplot and ‘fsmb’ package along with ‘reshape2’ were implied to develop radar plot [57,58]. Principal 
component analysis (PCA), a versatile tool of multivariate analysis, offers insights into the structure of complex datasets not only by 
reducing the dimensionality of the datasets while remaining most of the variability but also identifies the key components driving the 
variation [59]. The relative value (RV) of the studied seedling traits were used for computing PCA. The R packages ‘ggplot2’, ‘grid
Extra’, ‘factoextra’, ‘ggbiplot’ and ‘corrplot’ were used to extract the Eigen value and to visualize the PCA variable plot [60]. The 
principal components (PCs) with eigenvalues >1 was considered as significant and the contribution (%) of all seedling traits in those 
significant PCs was evaluated to select the key traits, having impact on thermotolerance, for succeeding multivariate approaches 
(Fig. S2).

Correlation analysis not only helps identify patterns and dependencies in datasets by quantifying linear relationships between 
variables but also provides a holistic view of interdependencies and aids in variable selection [61]. The Pearson’s correlation 
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coefficients were computed separately for both growing conditions. The R package ‘metan’ was employed to visualize the correlation 
using the function corr_coef [62]. The ideal number of clusters was identified using the gap statistic algorithm implemented in the 
fviz_nbclust function of the ‘factoextra’ R package (Fig. S3) [63]. The hierarchical clustering of genotypes, a valuable tool of multi
variate analysis, aids in not only categorizing genotypes with similar genetic makeup and performances but also assist in further 
studying the trait associated analysis like principal component analysis [64]. The RVs were used to create a heatmap and hierarchical 
clusters with Euclidean distance and Ward’s minimum variance method (WardD2) using the ‘pheatmap’ and ‘ggplot2’ libraries [65]. 
The genotypes were grouped into definite clusters with distinct dissimilarities in the produced cluster heatmap, and the genotypes 
within the clusters exhibited a high degree of similarity.

LDA is a powerful multivariate analysis method used to improve classification accuracy by finding linear combinations of features 
in complex datasets, reducing dimensionality, and discriminating between groups [66]. The R packages ‘psych’ and ‘MASS’ were 
adopted to perform LDA using RV [67]. Mahalanobis distance is a crucial matrix in multivariate analysis, providing insights into data 
relationships, distributions, similarity between points, and clustering observations [68]. The Mahalanobis squared distance (D2) 
among the clusters was estimated by using a cluster validation package ‘clv’ [69]. The Multi-trait Genotype-Ideotype Distance Index 
(MGIDI), a novel technique suggested by Olivoto and Nardino [42], can be used to compare a genotype’s proximity to an ideotype 
across many traits, making it easier to pick genotypes with desired attributes. The RVs were used to compute MGIDI using the ‘metan’ R 
package [62]. Multiple linear regression (MLR) enhances the selection of influential variables through exploring, quantifying, and 
interpreting the relationships among multiple variables [70]. MLR was estimated with the aid of R package ‘datarium’ by placing shoot 
dry weight (SDW) as dependent variable and rest of the selected seedling traits as independent variables [71].

Fig. 1. The descriptive statistics of the seedling attributes of wheat genotypes under distinct temperature conditions are displayed in the box plots. 
Different asterisk(s) on the boxes indicate significant difference between growth conditions. ***, **, and * indicate significant at p ≤ 0.001, 0.01, 
and 0.05, respectively according to Tukey’s HSD test; ns = non-significant. The respective trait mean is shown by the black circle, while the median 
is represented by the horizontal line within the box. The lower and upper bounds of the box, lower and upper whisker denotes Q1 (first quartile/ 
25th percentile), Q3 (third quartile/75th percentile), (Q1− 1.5IQR) and (Q3 + 1.5IQR), respectively. IQR—interquartile range. The distribution of 
the 80 observations is shown by the slate-colored dots in the boxes. SL—shoot length; RL—root length; SVI—seedling vigor index; SFW—shoot fresh 
weight; RFW—root fresh weight; SDW—shoot dry weight; RDW—root dry weight; STWC—shoot tissue water content; RTWC—root tissue water 
content; RSR—root-shoot weight ratio; LRWC—leaf relative water content; CMS—cell membrane stability; Fv/Fo— efficiency of the water-splitting 
complex on the donor side of PSII; Fv/Fm—maximum photochemical efficiency of PSII photochemistry; chl a—chlorophyll a content; chl 
b—chlorophyll b content; chl a:b—chlorophyll a to b ratio; chl T —Total chlorophyll content; car—carotenoid content; chl:car—chlorophyll to 
carotenoid ratio; FW—fresh weight.
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3. Results

3.1. Variability among the seedling traits

While tested in two growing conditions (control and heat stress), 80 wheat genotypes showed highly significant (p ≤ 0.001) 
variation in all seedling traits (Table S1). With the exception for chl a:b, the effect of growing conditions and its interaction effect with 
genotypes were significant at least at p ≤ 0.05 (Table S2). A box plot was used to visualize the descriptive statistics of the seedling traits 
(Fig. 1). Due to heat stress, the seedling traits decreased significantly over the control condition except chl a:b. Heat stress decreased 
shoot length (SL), shoot fresh weight (SFW), shoot dry weight (SDW), and shoot tissue water content (STWC) by 11, 42, 23, and 10%, 
respectively, over control, whereas 9, 59, 29, and 23% decreases were recorded in root length (RL), root fresh weight (RFW), root dry 
weight (RDW), and root tissue water content (RTWC), respectively (Fig. 1). The seedling vigor index (SVI) and root-shoot ratio (RSR) 
reduced by 12 and 5%, respectively due to heat stress. The leaf relative water content (LRWC) and cell membrane stability (CMS) were 
decreased by 13 and 15%, respectively, due to heat stress (Fig. 1). The maximum energy conversion potential of PSII (Fv/Fo) was more 
affected due to heat stress and reduced by 20% over the control while a little decline (5%) was noticed in the maximum photochemical 
efficiency of PSII photochemistry (Fv/Fm). High temperature stress greatly declined the concentration of chl a, chl b, chl T, and car 
content by 25, 23, 24, and 16%, respectively, while the chl a:b and chl:car were reduced by 3 and 11%, respectively due to heat stress 
over the control (Fig. 1).

3.2. Principal component analysis

Principal component analysis (PCA), a potential tool of multivariate data analysis, is deliberately used to study and simplify 
complex and substantial datasets. In our study, the PCA was computed to enhance the discriminatory power for categorizing the 
measured traits based on their relationships under heat stress conditions. In the present study, a total of 20 principal components (PCs) 
were acquired, but only first six PCs with eigenvalues >1 were considered as significant (data not shown). These six PCs explained 
about 84% of the genotypic variability, as influenced by observed traits. Among the significant PCs, the first two components explained 
about 49% of the total variability (Fig. 2). The first PC (PC1) in PCA-variable plot exhibited about 33% of the total variability, and the 
seedling traits like SFW, STWC, CMS, LRWC, chl a:b, and RTWC contributed positively to PC1, while the pigment attributes like chl a, 

Fig. 2. PCA-variable plot showing the position of seedling traits. A vector’s length and color intensity in the plot specify the representation quality 
and traits contribution to the principal components, respectively. Positive or negative interactions of the seedling attributes are displayed by the 
angles between the vectors produced from the plot’s central point. Details of seedling traits are presented in Fig. 1. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.)
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chl b, chl T, and car had negative contributions towards PC1 (Fig. 2). The second PC (PC2) accounted for about 16% of total variability 
and was principally explained by fluorescence attributes like Fv/Fo, Fv/Fm and chl:car on the way to positive direction. Almost all root 
related traits contributed negatively towards PC2 (Fig. 2). To gain an overall understanding, the contributions of seedling traits to the 
first six significant principal components (PCs) were evaluated. Traits with a contribution of greater than 5% to the overall variability 
were then selected for further analysis using multivariate approaches. These traits included chl a, chl b, chl T, Fv/Fo, Fv/Fm, SFW, RFW, 
SDW, RSR, RDW, and STWC (Fig. S2).

3.3. Correlation analysis

The correlation coefficients were employed to measure the degree of association among the seedling traits. The greater amount of 
stronger significant correlations among the studied traits were observed under control compared to the heat stress conditions (Fig. 3A 
and B). Under control conditions, SFW exhibited a positive and association with majority of seedling traits, except for fluorescence 
features and RSR (Fig. 3A). However, under heat stress, SFW maintained a significant and positive association with fluorescence 
features (Fv/Fo and Fv/Fm) and a negative association with RSR (Fig. 3B). RFW showed a greater number of significant correlations 
with most seedling traits under control conditions compared to heat stress. SDW followed the similar pattern of SFW under control 
conditions, however, it did not maintain any association with fluorescence features under heat stress conditions. RDW correlated with 
SDW, SFW, fluorescence features, RFW, and RSR under control conditions, while under heat stress, RDW only maintained positive 
associations with SFW, RFW, and RSR (Fig. 3). The STWC maintained a positive relationship with pigment contents, SFW, and RFW 
under control conditions, while showed a positive correlation with RFW, SFW, and fluorescence features under heat stress. RSR 
exhibited the most unique pattern in its association with seedling traits under both growing conditions. It consistently showed a 
significant negative association with pigment content, but this effect was stronger under heat stress. Interestingly, RSR maintained 
significant relationships with fluorescence features and RDW under both temperature conditions. However, under heat stress, it 
additionally showed negative associations with SFW and SDW. The fluorescence features maintained a positive association with RSR in 
all treatment states. However, under heat stress, they additionally showed a positive association with SFW. Pigment contents 
consistently displayed a positive association with SFW, RFW, SDW, and STWC, while maintaining a negative relationship with RSR 
under control and heat stress (Fig. 3). Interestingly, chl T and chl a maintained a greater number of significant associations compared 
to chl b under heat stress conditions (Fig. 3).

The majority of the seedling traits selected by PCA exhibited significant correlations among themselves across growing conditions 
(Figs. 2 and 3). While root-related traits like RFW and RDW contributed negatively to PCA, they maintained highly significant positive 

Fig. 3. The Pearson correlation coefficient values are displayed in the correlation heatmap for the selected seedling traits under control (A) and heat 
stress (B) conditions. The blue values are positive and the red ones are negative. It has a range of − 1 to 1, whereby − 1 denotes an absolute negative 
linear relationship, 1 indicates a perfect positive linear relationship, and 0 specifies no relationship at all between studied variables. Details of 
seedling traits are presented in Fig. 1. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.)
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associations with SFW, SDW, and pigment attributes under heat stress conditions, except for RSR (Figs. 2 and 3B).

3.4. Hierarchical clustering of genotypes and traits

The cluster heatmap consisted of three clusters for the genotypes and three groups based on the variability available in the studied 
seedling traits (Fig. 4; the genotypes belonging to each cluster are listed in Table S3). The most similar genotypes were allotted in the 
clusters, whereas the seedling traits strongly associated with themselves were placed in groups of the clustered heatmap. SFW and 
STWC formed Group 1. Group 2 contained majority of the seedling traits, including fluorescence features, pigments contents, RFW, 
RDW, and RSR. SDW solely formed the Group 3. Cluster 1 contained the maximum number of genotypes (33) followed by Cluster 3 
(29) and Cluster 2 (18). Interestingly, the allotment of wheat genotypes in Cluster 1 appears to be strongly influenced by all seedling 
traits, even though these traits were placed in different trait groups (Fig. 4).

Fig. 4. Heatmap and cluster analysis (method = wardD2 and distance = Euclidean) based on PCA-selected traits influencing genotypic variability in 
heat tolerance revealed association between genotypes and seedling traits. The relative values (RV) attained from the PCA-selected traits of the 
wheat genotypes were subjected to cluster analysis. Three clusters were acquired at the genotype level (cluster-1, 2 and 3) and three groups (group- 
1, 2 and 3) were obtained at the trait level. The intensity of the relative values for the studied attributes is expressed by various color tones. Results 
indicated that Cluster 1 exhibited the highest potential for heat stress tolerance due to superior performance across most seedling traits, followed by 
Clusters 2 and 3. Table S3 displays the genotypes list for each cluster. Details of seedling traits are presented in Fig. 1; BG—BARI Gom, AS—ACI 
Seed. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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The average RV of all seedling trait was highest in Cluster 1 (Table 1). Trait mean values for individual genotypes and relative 
values (RVs) within clusters are presented in Table S4 and Table S5, respectively. Thylakoid membrane damage (TMD) was determined 
for the genotypes of each cluster. Cluster 1 genotypes showed the lowest TMD (4.51%), followed by Clusters 3 (6.11%) and 2 (8.36%) 
(Table 1).

3.5. Genotypic variability in the extracted clusters

The results obtained from cluster analysis revealed that the genotypes in Cluster 1 performed substantially better under heat stress 
condition followed by Cluster 2, while the genotypes of Cluster 3 performed poorly under the same temperature regime (Fig. 5 and 
Table 2). SFW and RFW were less affected by heat stress in Cluster 1 (reduced by 28 and 37%, respectively), while a drastic reduction 
was noticed in Cluster 2 by 69 and 70%, respectively. The reduction pattern of SFW and RFW in Cluster 3 was not aligned with other 
clusters and showed a moderately lower reduction in SFW (43%), but a greater reduction in RFW (69%).

The genotypes of Cluster 1 were least affected in terms of SDW with a reduction of 17% while greater reduction was noticed in 
Clusters 2 and 3 with an average decline of 28% (Fig. 5 and Table 2). The effect of heat stress was less in the case of RDW in Cluster 1 
(7% decrease); however, a major reduction was noticed in the rest of the clusters, with a mean decline of 40%. The shoot tissue water 
content (STWC) was little affected by heat stress in Cluster 1 (3% decrease), followed by Cluster 3 (7%) while a profound reduction 
occurred in Cluster 2 (29%) under heat stress over control. Contrarily, the RSR increased by 12% in Cluster 1 due to heat stress over 
control, while it reduced in the other clusters with an average of 14% (Fig. 5 and Table 2).

The degree of variation and heat stress sensitivity was very little in case of Fv/Fm, whereas Fv/Fo was less affected in Cluster 1 (17%) 
than rest of the clusters (an average of 24%) (Fig. 5 and Table 2). Heat stress affected the pigment contents (viz. chl a, chl b, and chl T) 
in similar magnitudes. Cluster 1 exhibited the least decline in pigment content (an average decrease of approximately 13%), followed 
by Cluster 2 (approximately 21%) (Fig. 5 and Table 2) The genotypes of Cluster 3 were severely affected in terms of pigment contents 
under heat stress (a mean decline of about 40%). Cluster 1 comprised of all released wheat varieties except Pavon-76, along with 15 
accessions and 2 mutants. Cluster 2 and 3 contained a similar diversity of accessions and mutants, with Cluster 3 including the 
additional category of advanced lines.

3.6. Linear discriminant analysis

Linear discriminant analysis (LDA) is a technique used to reclassify genotypes based on previous classification criteria and to 
minimize the dimensionality of a dataset while preserving maximum information. Table S6 represents the coefficients of the studied 
traits with the linear discriminant functions (LD), and the coefficients are ordered by their absolute size. The LD1 explained about 58% 
of total variation, and the seedling trait chl T was ranked first with the maximum coefficient value (37.52). The coefficient values of 
other traits like chl a (− 34.86), Fv/Fm (17.21), chl b (− 10.92), Fv/Fo (4.12), RDW (− 7.90), and SDW (4.42) also specified their leading 
role in explaining the variation under LD1.

On the other hand, 42% of total variation is explained by LD2, and was markedly contributed by Fv/Fm (22.53), chl T (9.48), STWC 
(9.31), chl a (− 9.28), chl b (− 3.52), and RDW (2.07 (Table S6). From the stepwise linear discriminant analysis, it can be concluded that 
seedling traits like chl T, chl a, Fv/Fm, chl b, Fv/Fo, STWC, RDW, and SDW played the most critical role to explain the variability of 80 
diverse wheat genotypes under heat stress conditions.

3.7. Validation of genotype clustering using LDA

After performing cluster analysis, the wheat genotypes placed in individual clusters were confirmed with the aid of the prognostic 

Table 1 
Comparative profiles of the three hierarchically clustered groups of 80 genotypes of wheat (the means of the relative values [RV] for genotypes of 
individual cluster are represented by the cluster figures).

Seedling traits Average RV of clusters

Cluster 1 Cluster 2 Cluster 3

Number of genotypes 33 18 29
Shoot fresh weight (SFW) 0.726 0.362 0.579
Root fresh weight (RFW) 0.707 0.388 0.425
Shoot dry weight (SDW) 0.829 0.747 0.714
Root dry weight (RDW) 0.925 0.647 0.624
Shoot tissue water content (STWC) 0.967 0.715 0.935
Root-shoot weight ratio (RSR) 1.130 0.867 0.880
Efficiency of the water-splitting complex on the donor side of PSII (Fv/Fo) 0.834 0.748 0.775
Maximum photochemical efficiency of PSII photochemistry (Fv/Fm) 0.955 0.916 0.939
Chlorophyll a content (chl a) 0.859 0.794 0.582
Chlorophyll b content (chl b) 0.882 0.834 0.625
Total chlorophyll content (chl T) 0.866 0.803 0.594

Thylakoid membrane damage (TMD) (%) 4.51 8.36 6.11
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capability of LDA. On the basis of LDA, wheat genotypes present in the preceding clusters were examined, matched, and re-allocated 
misclassified genotypes into the true groups (Table 3). About 97, 89, and 90% of the wheat genotypes were appropriately allotted in 
Clusters 1, 2, and 3, respectively, as per the results obtained from the LDA. The mean correctness of the genotypes in assigning various 
clusters was 93% (Table 3).

3.8. Mahalanobis distance matrix

The LDA was also adopted to determine the Mahalanobis squared distance (D2) among the clusters. Clusters 1 and 2 were the least 
distant, with 7.63 units, indicated that these clusters were most similar in this exploratory experiment, followed by greater distance of 
Clusters 2 and 3 (9.41 units) in the distance matrix (Table 4). The genotypes those performed poorly under heat stress were allotted in 
Cluster 3.

Fig. 5. Spider plot demonstrating the changes in studied attributes of the genotypes of various clusters as affected by high temperature stress. The 
values are given as a percentage of the control. Details of seedling traits are presented in Fig. 1.

Table 2 
Mean values of assessed seedling characteristics under both growing conditions and their variation (%) due to heat stress from control of three 
clusters.

Cluster Treatment SFW RFW SDW RDW STWC RSR Fv/F0 Fv/Fm chl a chl b chl T

Cluster 
1

Control 314.78 57.47 50.36 16.30 0.837 0.328 3.315 0.766 0.795 0.300 1.251
Heat 226.79 36.14 41.79 15.09 0.809 0.368 2.763 0.731 0.691 0.262 1.089
% change (− ) 

27.95a
(− ) 
37.13a

(− ) 
17.01a

(− ) 
7.39a

(− ) 
3.33a

(+) 
12.19a

(− ) 
16.66b

(− ) 
4.50a

(− ) 
13.17a

(− ) 
12.41a

(− ) 
12.95a

Cluster 
2

Control 316.65 82.13 51.12 19.99 0.828 0.392 2.882 0.730 0.676 0.309 1.127
Heat 98.67 24.67 36.99 12.24 0.585 0.337 2.146 0.670 0.530 0.246 0.889
% change (− ) 

68.84c
(− ) 
69.96b

(− ) 
27.63b

(− ) 
38.78b

(− ) 
29.25b

(− ) 
14.01b

(− ) 
25.56b

(− ) 
8.28b

(− ) 
21.58b

(− ) 
20.30b

(− ) 
21.17b

Cluster 
3

Control 295.11 87.87 49.51 22.07 0.827 0.446 3.769 0.786 0.756 0.291 1.197
Heat 167.35 26.87 35.57 12.75 0.772 0.380 2.939 0.739 0.440 0.180 0.708
% change (− ) 

43.29b
(− ) 
69.42b

(− ) 
28.15b

(− ) 
42.23b

(− ) 
6.57a

(− ) 
14.87b

(− ) 
22.02b

(− ) 
6.04ab

(− ) 
41.79c

(− ) 
38.36c

(− ) 
40.82c

According to Tukey’s HSD, mean % change values in a column with different superscript letter(s) are statistically different at p ≤ 0.05. The (+) and 
(− ) signs indicate the percent increase and decrease, respectively regarding the effect of heat stress treatment over control. Details of seedling traits 
are presented in Fig. 1.

Table 3 
Matrix of classification based on LDA for three groups of 80 wheat genotypes (columns representing the anticipated category and rows showing the 
observed category).

Clusters True Groups Total No. Observed

Cluster 1 Cluster 2 Cluster 3

Cluster 1 32 1 3 36
Cluster 2 0 16 0 16
Cluster 3 1 1 26 28
Total Number 33 18 29 80
Number Corrects 32 16 26 74
% correctness 97.0 88.9 89.7 92.5
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3.9. Selection of heat-tolerant genotypes using MGIDI

The multi-trait genotype-ideotype distance index (MGIDI) was calculated using the selected traits from PCA to identify the heat- 
tolerant genotypes. Interestingly, a very significant effect of genotypes (p < 0.05) was found for all selected traits (data not 
shown). Broad-sense heritability (h2) was extended from 0.53 (RSR) to 0.97 (STWC) for different traits, with an average of 0.773 
(Table 5). These high heritability estimates suggest that these traits are good candidates for wheat improvement through selection. 
Among the selected traits, RFW, SFW, RDW, chl a, chl T, STWC, SDW, chl b, Fv/Fo, and RSR showed greater genetic gains, ranging from 
5.4% for Fv/Fo to 50.9% for RFW (Table 5). Generally, the MGIDI resulted in a higher total gain, i.e., 147.4% for all variables assumed 
to be increased in the present study. Factor analysis (FA) grouped the 11 traits into five distinct factors (Table 5): FA1− SDW; FA2− chl 
a, chl b, and chl T; FA3− Fv/Fo and Fv/Fm; FA4− RFW, RDW, and RSR; and FA5− SFW and STWC.

The MGIDI identified twelve heat-tolerant and -stable genotypes from this investigation: BG-30, BD-468, BG-24, BD-9908, BG-32, 
BD-476, BD-594, BD-553, BD-488, BG-33, BD-495, and AS-10627 (Fig. 6A). Interestingly, all these selected genotypes originated from 
Cluster 1, the highest performing group identified earlier from hierarchical cluster analysis (Fig. 4). Additionally, genotype BG-26, 
while not selected by MGIDI, was very close to the selection threshold and also belongs to Cluster 1. This highlights BG-26 as a 
potentially interesting candidate for further evaluation. Fig. 6B presents the relative strengths and weaknesses of studied genotypes, as 
determined by the contribution of each factor to the MGIDI value for each genotype. Genotypes (BD-594, AS-10627, BD-553, BD-488, 
BG-33, BD-476, and BD-495) with minimal contribution from SDW (FA1) in MGIDI analysis likely excel under heat stress due to 
optimized seedling growth (Fig. 6B, Table 5). Conversely, genotypes (BD-468, BG-30, BG-24, BD-594, and BD-488) with minimal 
contribution from pigment content (FA2) in the MGIDI analysis likely possess efficient light capture mechanisms (Fig. 6B, Table 5). 
Similarly, minimal contribution from fluorescence features (FA3) for genotypes BG-33, BD-468, BD-594, and BD-553 might indicate 
better thylakoid membrane function (Fig. 6B, Table 5). Minimal contribution from root traits (FA4) for genotypes BG-24, BD-553, and 
BG-30 suggests efficient root-shoot coordination (Fig. 6B, Table 5). Finally, genotypes (AS-10627, BG-24, BD-9908, BG-32, BD-553, 
BD-488, and BD-495) with minimal contribution from SFW and STWC (FA5) in the MGIDI analysis likely exhibit improved water 
retention in shoots (Fig. 6B, Table 5).

3.10. Multiple linear regression

Multiple linear regression analysis was executed to assess the effect of the examined seedling traits on shoot dry matter accu
mulation (SDW). The SDW was significantly impacted by other seedling traits under heat stress conditions compared to the control 
group (Table 6). Results indicated that SFW, RFW, RDW, STWC, RSR, and chl T significantly influenced the SDW in both growing 
conditions, while SDW was substantially affected by chl a under heat stress (Table 6).

4. Discussion

A week-long heat stress significantly affected the morpho-physiological attributes of wheat genotypes, with almost all seedling 
traits exhibiting decreases compared to the control (Fig. 1). These findings align with previous reports on wheat exposed to elevated 
temperatures [72,73]. To elucidate heat stress tolerance mechanisms in wheat seedlings and identify promising genotypes for further 
research, selecting key traits through a well-considered multivariate approach is crucial at the seedling stage.

Principal component analysis (PCA) is a valuable statistical technique to lessen the dimensionality and gathering expressive in
formation from a vastly connected complex dataset [74]. It also offers a data-driven approach to exploring relationships between 
genotypes and traits under heat stress, as demonstrated in various crops [72,75]. In PCA biplots, the angle between trait vectors in
dicates their correlation. Acute angles (<90◦) characterize positive correlations, obtuse angles (>90◦) indicate negative correlations, 
and the right angles (90◦) suggest no correlation between the traits. PCA biplot emerged as a successful tool for evaluating crop 
tolerance to various abiotic stresses [72,76,77]. Investigating the intrinsic patterns and relationships among variables is a key 
application of PCA. This capability assists researchers to identify potential redundancies and irrelevant features within a dataset. This 
study employed PCA to identify seedling traits significantly influencing heat stress tolerance. Six significant principal components 
(eigenvalues >1) were identified in PCA capturing most of the variation in the seedling trait data. By focusing on traits contributing at 
least 5% to these components, we effectively selected relevant traits for further analysis (Fig. S2). PCA-identified traits guided the 
selection of the top-performing and tolerant genotypes using hierarchical cluster analysis (Fig. 4) and the multi-trait genotype-ideotype 
distance index (MGIDI) (Fig. 6).

Correlation studies reveal the type and strength of relationships between traits, aiding plant breeders in selecting desirable varieties 
with preferred characteristics [78]. Our study found significant associations among most seeding traits, demonstrating their combined 

Table 4 
Pairwise Mahalanobis squared distances (D2) among three clusters of wheat genotypes.

Clusters Cluster 1 Cluster 2 Cluster 3

Cluster 1 0 7.63a 9.01a

Cluster 2 – 0 9.41a

Cluster 3 – – 0

a Distances that are significantly different from zero at a 95 % confidence level.
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Table 5 
Estimated genetic gain for the PCA-selected seedling characteristics in the MGIDI.

Factor Traits Goal Broad-sense heritability (h2) Selection gain (%)

FA1 Shoot dry weight (SDW) Increase 0.741 6.8

FA2 Chlorophyll a (chl a) Increase 0.662 9.5
FA2 Chlorophyll B (chl b) Increase 0.554 6.3
FA2 Total chlorophyll (chl T) Increase 0.646 9.2

FA3 Efficiency of the water-splitting complex on the donor side of PSII (Fv/Fo) Increase 0.936 5.4
FA3 Maximum photochemical efficiency of PSII photochemistry (Fv/Fm) Increase 0.960 1.8

FA4 Root fresh weight (RFW) Increase 0.892 50.9
FA4 Root dry weight (RDW) Increase 0.698 16.9
FA4 Root-shoot weight ratio (RSR) Increase 0.527 6.0

FA5 Shoot fresh weight (SFW) Increase 0.921 26.7
FA5 Shoot tissue water content (STWC) Increase 0.967 7.9

Fig. 6. MGIDI analysis for genotype ranking in increasing order (A). The red color highlights the top-ranked and selected genotypes. Based on the 
selection pressure, the cut point is represented by the central red circle. The percentage of each factor on the calculated MGIDI index represents the 
genotype’s strengths and weaknesses (B). The more closely a factor’s characteristics resemble the ideotype, the less the proportion of the factor’s 
explanation (nearer the outside border). The theoretical value, assuming equal contributions from all components, is indicated by the dashed line. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 6 
Multiple linear regression to evaluate the effect on seedling traits on shoot dry weight (SDW) under both growing conditions (n = 80).

Seedling traits Control Heat stress

Coefficient Std. error P R2 Coefficient Std. error P R2

Intercept 144.6 16.7 <0.001 0.977 52.84 12.74 <0.001 0.968
SFW 0.103 0.009 <0.001 ​ 0.027 0.012 0.03 ​
RFW 0.03 0.009 0.002 ​ − 0.101 0.032 0.002 ​
RDW 1.15 0.155 <0.001 ​ 2.53 0.148 <0.001 ​
STWC − 132.8 12.8 <0.001 ​ − 13.33 5.65 0.021 ​
RSR − 0.52 8.57 <0.001 ​ − 75.32 6.18 <0.001 ​
Fv/Fo 2.91 1.68 0.09 ​ 3.69 2.16 0.091 ​
Fv/Fm − 40.0 27.8 0.19 ​ − 35.37 26.55 0.187 ​
chl a 2.95 1.52 0.06 ​ 5.16 2.02 0.013 ​
chl b 2.37 3.78 0.53 ​ − 2.17 4.75 0.65 ​
chl T 8.002 2.94 0.008 ​ 7.69 3.11 0.016 ​
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influence on wheat plant responses to heat stress. This aligns with previous report suggesting that selecting a single trait can have 
unintended impact on others [79].

In the present study, enhanced accumulation of biomass (dry weights of shoot and root) and tissue water content appear to be 
crucial factors for genotypes grouped in the superior-performing Cluster 1. This aligns with the established principle that tolerance to 
stressful environments is often linked to dry matter accumulation in seedlings [75]. The ability of seedlings to maintain dry weight 
under heat stress further strengthens this connection, serving as a good indicator of thermotolerance [80]. Our study revealed that 
Cluster 1 genotypes exhibited minimal reduction in fresh and dry weights of root and shoot, indicating their superior ability to mitigate 
heat stress impacts compared to Clusters 2 and 3 (Fig. 5, Table 2). Heat stress disrupts the root-shoot weight ratio (RSR) in plants, likely 
due to a shift in resource allocation to cope with elevated temperatures. This shift occurs because heat stress reduces photosynthetic 
activity, limiting the carbohydrates available for root growth while favoring shoot maintenance [18]. Our study confirmed this, 
revealing that heat stress significantly reduced RSR in relatively susceptible genotypes (Fig. 5, Table 2), emphasizing their vulnera
bility in resource allocation under stress. In contrast, genotypes in Cluster 1 exhibited a higher RSR compared to other clusters, 
suggesting these genotypes possess a potential advantage in resource allocation under heat stress. A greater RSR suggests that root 
growth is less impacted than shoot growth in these resilient genotypes.

The water-splitting efficiency on the donor side of PSII (Fv/Fo) and maximum photochemical efficiency of PSII photochemistry (Fv/ 
Fm) are commonly used to assess heat-induced impairment to PSII [31,81]. This study revealed significant declines in Fv/Fo and Fv/Fm 
values, with a more pronounced decrease in Fv/Fo compared to Fv/Fm, indicating the higher sensitivity of the former feature [50]. A 
decreased Fv/Fm remains a crucial indicator for assessing damage in chloroplasts, particularly within thylakoid membranes under 
abiotic stress conditions [82]. Thylakoid lamellae, the sites of photosynthetic reactions, are severely damaged under heat stress due to 
impairment of PSII reaction centers, particularly D1 protein, which undergoes structural alterations [83,84]. In the current study, 
Cluster 1 genotypes exhibited higher Fv/Fm and Fv/Fo values compared to Clusters 2 and 3, strongly indicating less damage in the 
thylakoid membrane (TMD) (Table 1). Genotypes with lower TMD can maintain physiological active during heat stress [31] and 
undergo crucial chloroplast adjustments, including altered thylakoid organization, grana stacking disruption, swelling [85,86].

Plant pigment systems, including chlorophyll a, b, and total chlorophyll, serve as indicators of stress tolerance levels [87,88]. 
Disruption of the thylakoid membrane due to heat stress decreases chlorophyll contents [9]. Additionally, elevated temperatures can 
increase the activity of enzymes like peroxidase and chlorophyllase, further accelerating chlorophyll degradation [9,30,89,90]. Our 
study confirmed these findings, recording significant decreases in chlorophyll content across all genotypes due to heat stress (Table 2). 
However, genotypes in Cluster 1 exhibited a lower reduction in chlorophyll content compared to other clusters, suggesting their 
potential for improved thermotolerance.

Hierarchical cluster analysis is an efficient method used by researchers to categorize genotypes based on their similarity across 
various stress tolerance indices [91,92]. In the present investigation, the analysis revealed distinct clusters with varying stress 
tolerance potentials. Cluster 1 genotypes exhibited maximum heat stress tolerance potential, likely due to contributions from most of 
the seedling traits (Figs. 4 and 5). In contrast, Cluster 2 excels in shoot and root dry matter accumulation and pigment contents. 
However, Cluster 3 genotypes are characterized by moderate reduction in shoot fresh and dry mass contents, chlorophyll fluorescence 
features, and shoot tissue water content. Linear discriminant analysis (LDA) is a powerful tool that specifically targets enhancing the 
distinction between different classes by identifying the features that optimally discriminate between them [99]. This makes LDA a 
valuable tool for validating the effectiveness of clustering performed with methods like hierarchical clustering. In our study, we 
employed LDA to assess the quality of the clusters, particularly focusing on the placement of genotypes within the clusters. Our results 
were highly encouraging, with LDA achieving overall accuracy of 93% in assigning genotypes to their respective clusters, indicating 
minimal misclassification errors in the initial clustering. Furthermore, genotypes belonging to Cluster 1, identified as the best per
forming group, exhibited an even higher accuracy of 97% with LDA, further strengthening the confidence in its placement.

Cluster analysis has several limitations that can hinder the selection of tolerant genotypes. These include subjectivity interpreta
tion, inadequate dimensionality reduction, challenges in handling missing data, lack of statistical rigor, and the inability to account for 
interaction effects [93]. To overcome these limitations, integrating other analytical techniques is crucial. For example, combining 
cluster analysis with quantitative indices like the multi-trait genotype-ideotype distance index (MGIDI) can facilitate the identification 
of tolerant genotypes. MGIDI enables an inclusive assessment of genotypes across multi-trait simultaneously, reducing the risk of 
overlooking crucial traits. MIGIDI involves collecting data on multiple traits for each genotype, defining an ideotype based on optimal 
values, normalizing and weighting traits, calculating remoteness between genotypes and the ideotype, and ranking genotypes based on 
distance to the ideotype. The smallest distances are preferred to represent the perfect combination of traits. This quantitative tool 
evaluates multiple traits to select tolerant genotypes with optimal stress tolerance, while simultaneously comparing genotypes to an 
ideotype, thereby enhancing breeding efficiency by curtailing time and supplies requisite to develop stress-tolerant varieties [94]. For 
the MGIDI analysis, all PCA-selected traits were assigned equal weights in this study, assuming positive values were optimal. This 
approach was justified by the substantial influence of these traits on genotype variability as determined by PCA. All selected traits met 
the desired goals, and MGIDI analysis indicated positive selection gains for all traits studied (Table 5). In the present study, genotypes 
in Cluster 1 displayed the highest heat stress tolerance potential due to the favorable contribution of most seedling traits (Figs. 4 and 5). 
This finding was further supported by MGIDI analysis, which directly and precisely identified twelve highly heat-tolerant and stable 
genotypes (BG-30, BD-468, BG-24, BD-9908, BG-32, BD-476, BD-594, BD-553, BD-488, BG-33, BD-495, and AS-10627) (Fig. 6). 
Notably, all these genotypes originated from the top performing Cluster 1 (Figs. 4 and 6). These findings highlight the prospects of the 
selected genotypes, suggesting their suitability for prioritization in breeding programs. Their superior performance under heat stress 
conditions makes them strong candidates for further evaluation and advancement, as they are more likely to exhibit the desired 
performance under warmer environments. The greater predictability, stability, broad-sense heritability (h2), and selection gain of 

Md.M. Hasan et al.                                                                                                                                                                                                    Heliyon 10 (2024) e38623 

13 



traits can enhance breeders’ ability to evaluate the effectiveness of selection strategies [95–97]. MGIDI analysis revealed that traits like 
STWC, Fv/Fo, SFW, RFW, SDW, RDW, chl a, and chl T exhibited higher h2 and selection gain, indicating their potential as breeding 
targets (Table 5).

A crucial prerequisite for assessing plant’s overall performance is increased biomass output, measured by dry matter accumulation, 
especially under stressful conditions [98]. The inclusion of shoot dry weight (SDW) in both hierarchical clustering and MGIDI analysis 
underscores the importance of this vital trait. Further supporting this notion, multiple linear regression analysis revealed that SDW was 
significantly influenced by traits such as SFW, RFW, RDW, STWC, RSR, chl a, and chl T under heat stress condition (Table 6). Despite its 
non-significant relationship with biomass, Fv/Fo could be a potential marker for thermotolerance due to its high h2 and modest se
lection gain (Table 5). Notably, it exhibited a significantly positive association with STWC under heat stress (Fig. 3B), a crucial factor 
for membrane fluidity, a prerequisite for heat stress tolerance [99]. Although RSR showed low h2 in this study, its modest selection gain 
and significant association with SDW suggest its potential as a target for wheat improvement (Tables 5 and 6). Collectively, a 
comparative analysis of h2, selection gain, and multiple linear regression analysis identified RFW, SFW, RDW, SDW, RSR, STWC, chl a, 
chl T, and Fv/Fo as key seedling traits for effectively discussing heat stress tolerance.

5. Conclusions

In conclusion, our study demonstrated that heat stress significantly impacted seedling performance. Multivariate analysis ap
proaches proved to be powerful tools for this exploratory investigation. PCA effectively unmasked the seedling traits that exerted the 
greatest influence to the genotypic variability. Most of the PCA-selected traits were significantly correlated with each other. Hierar
chical cluster analysis enabled us to categorize the genotypes according to their tolerance to heat stress. The genotypes in Cluster 1 
exhibited the highest level of heat stress tolerance relative to clusters 2 and 3. LDA confirmed a high classification accuracy, with 93% 
of genotypes correctly assigned to their respective hierarchical clusters. MGIDI analysis successfully identifying twelve highly heat- 
tolerant and stable genotypes: BG-30, BD-468, BG-24, BD-9908, BG-32, BD-476, BD-594, BD-553, BD-488, BG-33, BD-495, and AS- 
10627, all of them originated from the tolerant Cluster 1. The multiple linear regression analysis revealed that root and shoot fresh 
and dry weights, tissue water content, root-shoot weight ratio, and pigment contents had significant association with seedling biomass. 
The selected tolerant genotypes and identified crucial traits (RFW, SFW, RDW, SDW, RSR, STWC, chl a, chl T, and Fv/Fo) explaining 
heat stress tolerance derived from this experiment will assist breeders in developing heat-tolerant wheat genotypes for warmer en
vironments. These heat-tolerant genotypes hold promise for developing practical solutions in sustainable agriculture, potentially 
mitigating the consequences of climate change on wheat production. To fully harness the potential of these thermotolerant genotypes, 
collaborative efforts among researchers, breeders, and policymakers are highly necessary.
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