
Published online 26 November 2014 Nucleic Acids Research, 2015, Vol. 43, No. 3 e20
doi: 10.1093/nar/gku1224

ModuleBlast: identifying activated sub-networks
within and across species
Guy E. Zinman1, Shoshana Naiman2, Dawn M. O’Dee3, Nishant Kumar1, Gerard J. Nau3,
Haim Y. Cohen2 and Ziv Bar-Joseph1,*

1Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213, USA, 2The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
and 3Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh,
PA 15216, USA

Received March 09, 2014; Revised October 11, 2014; Accepted November 09, 2014

ABSTRACT

Identifying conserved and divergent response pat-
terns in gene networks is becoming increasingly im-
portant. A common approach is integrating expres-
sion information with gene association networks in
order to find groups of connected genes that are
activated or repressed. In many cases, researchers
are also interested in comparisons across species
(or conditions). Finding an active sub-network is
a hard problem and applying it across species re-
quires further considerations (e.g. orthology infor-
mation, expression data and networks from differ-
ent sources). To address these challenges we de-
vised ModuleBlast, which uses both expression and
network topology to search for highly relevant sub-
networks. We have applied ModuleBlast to expres-
sion and interaction data from mouse, macaque and
human to study immune response and aging. The im-
mune response analysis identified several relevant
modules, consistent with recent findings on apopto-
sis and NF�B activation following infection. Tempo-
ral analysis of these data revealed cascades of mod-
ules that are dynamically activated within and across
species. We have experimentally validated some of
the novel hypotheses resulting from the analysis of
the ModuleBlast results leading to new insights into
the mechanisms used by a key mammalian aging pro-
tein.

INTRODUCTION

Several studies rely on gene expression profiling (either us-
ing microarrays or RNA-Seq) to identify genes that are dif-
ferentially expressed (DE) between treatment and control or
to find genes that are involved in a specific condition. While
such studies led to useful results, proteins usually operate

in complexes or cascades and are often post transcription-
ally regulated, so in many cases important genes may be
missed when only using expression data. Interaction data
are useful for identifying such genes (1) and an increas-
ing number of studies attempted to integrate static gene
and protein interaction data with dynamic expression data
in order to find ‘active sub-networks’. Such sub-networks
are connected regions within the global interaction network
that contain several DE genes. Identifying such active sub-
network allowed researchers to generate concrete testable
hypotheses regarding the regulatory processes that under-
lie the observed changes in gene expression (1–7) Many re-
searchers refer to active sub-networks as ‘modules’ under-
scoring the ability of these sub-networks to capture coher-
ent functionality. In this manuscript we will use the terms
‘sub-networks’ and ‘modules’ interchangeably.

Several studies have utilized cross species expression data
for studying the same condition in multiple species (8–10).
Such analyses highlight the similarities and differences in
key mechanisms between the species, improving our bio-
logical understanding both from an evolutionary point of
view (11) and for the activity under specific conditions (12).
These two types of analyses (sub-networks and cross species
comparisons) have primarily remained separate with re-
searchers either using one or the other in each study. While
the active sub-networks approach can be an excellent tool
for analyzing expression pattern differences between species
and tracking the origins of these differences, to do so we
need to overcome several challenges. These include orthol-
ogy assignments, comparison of expression patterns across
platforms and species and differences in the association net-
works.

Optimally finding active sub-networks or modules in
a general graph was shown to be Non-deterministic
Polynomial-time (NP) hard (1). Several heuristic and ap-
proximation algorithms have been proposed to identify
such modules including methods that use pre-defined
groups (13,14), simulated annealing (1,2,15), greedy search

*To whom correspondence should be addressed. Tel: +1 412 268 8595; Fax: +412-268-2977; Email: zivbj@cs.cmu.edu

C© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.



e20 Nucleic Acids Research, 2015, Vol. 43, No. 3 PAGE 2 OF 12

approaches (3,16–18), optimization algorithms (7,19) and
methods based on graph theory (20). See Supplementary
Table S1 and (21) for further details. In practice, greedy
search approaches were shown to obtain good results with
significantly shorter runtime compared to other approaches
(16). We are aware of only one attempt to combine ac-
tive sub-network discovery with cross species analysis (22).
While NeXus performs well for some data, it does not al-
low simultaneous analysis of both conservation and diver-
gence. In addition, as we show in the Results section, NeXus
identifies several hundreds of highly overlapping modules
which may make it hard for a biologist to focus on a few
modules for follow up analysis and experiments. We have
thus developed a novel method, ModuleBlast, which ad-
dresses the need for an integrated analysis of network data
across species allowing for the identification of both con-
served and divergent sub-networks. Another important as-
pect missing from prior work on cross species sub-network
analysis that we address with our new method is using tem-
poral data. ModuleBlast can link modules over different
time points to identify causal effects leading to expression
changes. Our method is based on integrating expression and
interaction data from two or more species and searching for
active modules using the absolute activation in all species.
Module search expands highly activated seeds into modules
as long as the overall activation of the modules is maxi-
mized. We have also built a web application that supports
both single species and cross species module searches.

We used ModuleBlast to study the temporal response of
murine and macaque macrophages to Francisella tularen-
sis, a gram-negative bacterium that is highly virulent in hu-
mans (23) and to perform cross species studies of aging. The
resulting modules provide an overview of the similarities
and differences in the response across species. These mod-
ules were used to generate new hypotheses regarding cellular
responses to infection and the role of a key aging protein,
SIRT6, a number of which were validated in follow-up ex-
perimental studies.

MATERIALS AND METHODS

We first discuss our method for generating a cross species
network that can be used to identify both similarities and
differences between species. Once we have networks that
integrate information across species, we use a novel tar-
get function that takes into account both activity and con-
nectivity to search for active sub-networks. We present a
greedy search method for finding modules (sub-networks)
that maximize the target function and discuss how such
modules can be connected in time when using time series
expression data to identify the progression of information
within cells.

Generating cross species gene association networks

We assembled gene association networks using various ge-
nomic data types including protein–protein interactions
and genetic interactions from BioGRID (24), version
2.0.63. To combine multiple species we created networks in
which nodes correspond to entire orthogroups containing
gene orthologs from all the species that are part of the anal-
ysis based on Inparanoid (25) orthogroup definitions. We

are interested in finding sub-networks with high activation,
regardless of the species, therefore the node score is set to be
the absolute of the most extreme value in the orthogroups
(Supplementary Figure S1). Edges between nodes in our
network include interactions connecting any of the genes
in the two orthogroups. Interactions can be weighted ac-
cording to the confidence in the interaction if one is pro-
vided (e.g. the log likelihood score) and summed across var-
ious data types and species. As these weights are compara-
ble across species, it is possible to merge association net-
works from several species into a single association net-
work. Edges that have evidence in more than one species
have a higher weight indicating the increased confidence in
seeing this edge across species. As in this study, we used
for both species interactions only from BioGRID, which
does not provide confidence measurement for the interac-
tions, the edge score would be the number of evidences ob-
served for an interaction in both species combined. Inte-
grating data from several species into a single gene associ-
ation network allows us to overcome some of these issues
related to missing data of less studied species. We note that
current interaction data, especially of higher organisms in-
cluding mammals, are incomplete, and in this study human
interactions contributed ∼90% of the edges. However, over
50% of the mouse interactions were also found in human.
Our final joint network contained 6188 nodes and 21 655
unique edges. See Supplementary Data Set DS1 for species-
specific details.

Immune response expression data

Mouse and macaque expression data for the Schu S4 im-
mune response analysis were downloaded from Array Ex-
press; accession number: E-MTAB-427. The data are from
Zinman et al. (9). The data set contains a time series ex-
pression following the infection of Alveolar macrophages
(AM) from mouse and macaque with the Schu S4 bacteria.
Cells were harvested at 0, 1, 2, 6, 12 and 24 h post infec-
tion and were hybridized to Agilent arrays. Standard arrays
(G4122F) were used for mouse samples, whereas custom
arrays were used for Macaca mulatta using sequence data
downloaded from the NCBI database.

Aging expression data

The analysis of SIRT6 expression in mouse and human cells
is based on data from (32). Following tumor necrosis factor
alpha (TNF-�) treatment, genes were profiled in mouse em-
bryonic fibroblast cells (MEF) extracted from a knockout
SIRT6 mouse and compared to cells from a control wild-
type mouse (GSE13207). A similar experimental setup was
used by the same lab to compare the expression of human
HeLa cell line treated with a short hairpin RNA against
SIRT6 (shSIRT6 knockdown) with the expression in con-
trol pSR HeLa cells (GSE13206) (26).

Node/edge score calculation

Node scores quantify the differential expression of treat-
ment and control data for each gene (node) assuming Gaus-
sian distribution for the control experiments. For the F. tu-
larensis response analysis, we averaged the values of six time
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points following infection for both mouse and macaque as
the treatment experiment response and compared these (in
each species) to the average of the times series of mock val-
ues (see (9) for details). For the aging analysis we averaged
the log fold change in time points 6 h and 24 h after treat-
ment of TNF and shRNA in mouse and human, respec-
tively.

Edges were derived from BioGRID (24), version 2.0.63
for mouse and human. The macaque network was based on
the human interaction network by matching protein names.
A new association network for the joint species analysis
was created based on the union of all individual species
edges that connect genes in any two orthogroups. Since Bi-
oGRID does not provide confidence measurement for the
interactions, we defined the score of each edge by counting
the number of sources supporting each interaction in the
species-specific network, thus edges present in more than
one species would have a higher weight in the joint network.

Scoring sub-networks

Given a connected sub-network (module j), early studies (1)
scored it by summing the node scores (which were assumed
to be drawn from a standard normal distribution) with re-
spect to background distribution:

Sj = 1
σZ

∑
i Zi − βZμZ√

M
, (1)

where Zi is a node score for a node in module j based on the
absolute of the most extreme value of the orthogroup and
was shown to follow a normal distribution with parameters
(μZ,σ Z). The subscript Z refers to parameters pertaining
to nodes. M is the number of nodes in sub-network j. βZ
is an empirical parameter designed to produce fewer nodes
with a positive score, hence creating smaller sub-networks
(27). By subtracting βZ μZ, from each node score we obtain
a sum over normal standard variables (Sj), which is a nor-
mally distributed random variable with mean μ

M and stan-
dard deviation σ√

M
. The advantage of such a scoring sys-

tem is that it allows comparing sub-networks of different
sizes (16). While node scores are useful, they can only iden-
tify transcriptionally regulated genes. In addition to node
scores, our method also takes into account the strength of
the interactions between genes in the modules. Note that by
using such interactions, we may be able to include in the
modules genes that are not DE but that are connected to
many other DE genes. If such genes are indeed involved in
similar pathways and functions as the DE genes, while not
being DE themselves, they are likely post-transcriptionally
regulated and may impact the expression of their neighbors
in the network. We thus extended the node score objective
function leading to a target function that is a weighted sum
of two components; nodes and edges scores:

Sj = 1
σZ

∑
i (Zi − βZμZ)√

M
+ W

(
∑

h Eh) − μE(M)

σE(M)
. (2)

The first part is the same as Equation (1). The second
uses a similar idea to score the edges in each sub-network.
Ei is the edge score defined for edge i for an edge in mod-
ule j, μE(M) and σ E(M) are, respectively, the mean and SD

of edge scores calculated for a module of size M. Comput-
ing the background statistics for the edges score component
is less straight forward as it is a function of the number of
nodes. The number of nodes in a sub-network sets mini-
mum and maximum limits on the number of edges in this
sub-network. To learn the conditional distribution of edge
scores (as a function of size, μE(M), σ E(M)) we used an it-
erative approach using randomized modules. We calculated
mean and standard deviation of the edge score distribution
over random modules for every possible module size M be-
tween 1 and 150. In addition, the score of the edge com-
ponent in Equation (2) is dependent on the topology and
density of the network. To balance the impact of edge com-
ponent on the overall score of the sub-network, we combine
the node score and edge score components using a tunable
weight parameter W. This parameter, W, is a user-defined
parameter controlling the weight of the edges score compo-
nent w.r.t. the node component. Note that W differs from
the confidence score given to each individual edge (Ei). The
optimal value of W is determined based on the parameter
selection criterion described in the Section titled ’Parameter
selection criterion’ below. A higher W means more empha-
sis is placed on the connectivity.

Searching for high scoring sub-networks

Greedy search was previously shown to produce good re-
sults when searching for sub-networks (16). Our search pro-
cedure starts by selecting seed nodes (e.g. highly activated
nodes) that are expanded using breadth first search by eval-
uating the objective function described above. In each step,
we add the node that maximizes the objective function for
the subset of nodes that were previously selected. Nodes can
be added to the component as long as the overall score of
the component increases. We set an optional minimal ac-
tive module size to five nodes which allows the algorithm
to grow seeds with high initial scores. As nodes can appear
in more than one module, highly intersecting modules are
merged by keeping only edges that are appear in a high per-
centage of the modules. Edges that are found to be part of
several modules starting from different seeds are more likely
to be relevant to the analysis. This is evaluated by calculat-
ing the number of appearances of an edge e(a,b) between
node a and node b in any module, divided by the maximum
number of appearances of node a or node b in any module,
and comparing this calculation to some user-defined cutoff.
In set notation this can be written as the following.

For each e(a, b) ∈ E, e(a, b) is kept if
∑

j
I(Mj , a) ∧ I(Mj , b)

max(
∑

j
I(Mj , a),

∑

j
I(Mj , b))

> cutoff, (3)

where E is the set of all edges, e(a,b) is an edge connect-
ing nodes a and b, Mj is a module identified by iterator j
for all possible modules (1,...,n) and I(Mj,x) is an indica-
tor function of whether node x is part of module Mj, for
nodes a and b, respectively. A higher cutoff will only retain
edges that have been frequently visited starting from differ-
ent seeds nodes and would thus lead to smaller modules.
However, varying the parameters within a reasonable range
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[0.1–0.4] had little effect on the assessment criteria (see the
Parameter selection criterion and Supplementary Data Set
DS2). Modules with less than four nodes were omitted.

Parameter selection criterion

As with any data integration method, we need to determine
the weight assigned to each data type (W in our model).
The best method to determine parameter values is by using
a gold standard set (e.g. known modules in the condition)
and, in a training procedure, choosing values that lead to
the best recovery of such known modules. However, in our
case little is known about modules that are activated dur-
ing different types of infection, and we expect this to be
a general problem for other studies as well. Thus, to de-
termine the value of this parameter we searched for values
that optimize the following three general criteria (so that it
is applicable across a wide range of conditions being stud-
ies): (i) the percentage of the number of modules that con-
tain uniquely enriched Gene Ontology (GO) biological pro-
cesses terms (i.e. terms that are found to be significantly en-
riched in only one module) (28). (Alternatively the KEGG
biological pathways (29) can be used, although the granu-
larity level of Kyoto Encyclopedia of Genes and Genomes
(KEGG) is less refined compared to GO). This criterion ex-
amines the ability of the algorithm to capture distinct bio-
logical processes. (ii) The percentage of the number of DE
nodes out of total nodes in the selected modules. This cri-
terion aims to explain as many of the observed expression
changes as possible. (iii) The total number of modules. This
criterion attempts to balance the number of DE genes ex-
plained with the goal of selecting a set of distinct processes.
Taken together the three criteria aim to produce the most
relevant set of modules for the given expression data. Mod-
ules were tested on a variety of possible edge weight and
beta parameter combinations and the values that maximize
the above criteria are selected (see heatmap in Supplemen-
tary Data Set DS2).

Network randomization

In order to evaluate the performance of ModuleBlast we
generated random networks that preserve the degree distri-
bution of the corresponding real networks. We tried two
randomization methods: node expression value shuffling
and edge switching. The first method is based on shuffling
the expression values in each of the species, hence preserv-
ing the exact same topology of the original network. In the
edge switching method we continuously picked two edges
and switched their node assignments, hence preserving the
degree distribution of each node (see the Supplementary
Methods).

Assessing module conservation

As mentioned above, for each node in our network we have
at least two scores (one from each species). While we use the
maximum absolute value when searching for sub-networks,
once these are found, we can study and compare the acti-
vation of nodes from the two species in each module using
their actual values. In order to evaluate the convergence or

divergence of modules we calculated for each module the
L1 distance over all the nodes in the module using the dif-
ference between the most extreme values in the genes rep-
resented by each node in the two species. Specifically, we
compute

Diff(Sj ) =
∑

i |Zi A − Zi B|√
M

, (4)

where Sj is a sub-network of size M, ZiA and ZiB are node
scores from species A and B, respectively. The distance ob-
tained for each module was compared to distances calcu-
lated for 10 000 random modules with the same number
of nodes, using nodes that are part of some module. In ad-
dition, we assessed the overall activation/repression of the
modules in each of the species using a similar randomiza-
tion method over the sum of values in nodes for each of the
species separately, i.e.

Active(Sj , X) =
∑

i |Zi X|√
M

, (5)

where Sj is a sub-network of size M and ZiX is a node score
for all nodes i in Sj from species X. Similar to the Diff cal-
culations, we compared the obtained distances to distances
calculated for 10 000 random modules with the same num-
ber of nodes, using nodes that are part of some module.

Using these measurements we classified the modules into
three categories: (i) conserved modules. These modules
show little difference between the species compared to ran-
dom modules (Diff(Sj) > 0.95), i.e. at least 95% of the ran-
dom modules are more divergent than the inspected mod-
ule. (ii) Modules that are species specific. Modules that
are different between the species (Diff(Sj) < 0.05) and
show high activation (Active(Sj,A) < 0.05) in one of the
species and low activation in the other (Active(Sj,B) <
0.05). (iii) Divergent modules that are divergent in oppos-
ing patterns (e.g. one is upregulated and the other is down-
regulated). These modules are highly different between the
species (Diff(Sj) < 0.05) and show high activation in both
species, i.e. Active(Sj,A) < 0.05 and Active(Sj,B) < 0.05).
Note that several modules fall outside all three categories
(divergence score between 0.05 and 0.95). While such mod-
ules are still very relevant to the condition being studied,
for these modules we do not make a call regarding conser-
vation.

Matching modules through time

In order to identify cascades of activated modules, we gen-
erated a separate modules set for each time point using a
search procedure that is similar to the one described above.
We next tested the overlap of module sets between time
points using a hypergeometric test. If reciprocal tests were
found to be significant (P-value < 0.01), we defined these
modules as matching. In many cases clear chains are iden-
tified throughout the time series indicating a module that is
preserved through time. Nonetheless, usually in earlier time
points where the overall activation of modules is lower there
may be several modules that are matched to later time points
creating a fan-in structure.
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Enrichment analysis

Enrichment analysis for each module was performed using
GO biological processes (28), KEGG pathways (29) and
all possible sets defined in GSEA (30) (that include gene
sets from KEGG, REACTOME (31) and BIOCARTA).
Transcription factors regulating modules were inferred us-
ing data from TRANSFAC (32). Annotation information
for mouse and human was combined. Multiple hypothesis
testing corrections were performed using Bonferroni correc-
tion for GO, KEGG, GSEA enrichment and FDR for TF
enrichment. Full analyses are available in Supplementary
Data Sets DS4–DS7 correspondingly.

RESULTS

Cross species interaction networks

Interaction networks that combine information from both
species being compared are assembled as discussed in the
Materials and Methods section using available genomic
data from the two species. Once we have networks that inte-
grate information across species, we use a novel target func-
tion that takes into account both activity and connectivity
to search for active sub-networks. Our target function is use-
ful for identifying not just the active/repressed genes but
may also identify genes that are post-transcriptionally reg-
ulated being impacted by the expression of their neighbors
in the network. We use a greedy search method for finding
modules (sub-networks) that maximize the target function.
Highly overlapping sub-networks are merged based on the
quality of the overlap (the Materials and Methods section).
These networks can be used to identify both similarities
and differences between species. In addition, the modules
can be connected over time when using time series expres-
sion data to identify the progression of information within
cells. A general outline of our methods for assembling and
searching the combined interaction network is presented in
Supplementary Figure S1. Simulation result indicate that
ModuleBlast is able to identify conserved and species spe-
cific activated modules for the vast majority of tested cases.
More importantly, the method correctly assigns the ‘con-
served’ or ‘divergent’ label for almost all identified modules
indicating that such assignments are robust; see the Supple-
mentary Results for details.

Comparing mice and macaques

We next applied ModuleBlast to study the response of
alveolar macrophages (AM) from mice and cynomolgus
macaques to F. tularensis Schu S4. F. tularensis causes
a wide range of infections, including pneumonias of the
lower respiratory tract. In order to understand how preva-
lent these cases are, we calculated statistics for the num-
ber of members in each orthogroups between mouse and
macaque. 80.1% (11 368 out of 14 200 orthogroups) have
only two members corresponding to a 1:1 orthology match
(See Supplementary Data Set DS1). 16.5% (2337) have three
members (corresponding to 1:2 or 2:1 matches). Only 0.3%
of the orthogroups have six members or more, indicating
that paralogs are not likely to cause a large shift in the re-
sults. This was also confirmed by repeating the analysis us-
ing the mean expression value over the group of paralogs

instead of using the most extreme value, which resulted in
nearly identical modules.

Functional analysis of modules across species

Using ModuleBlast we obtained 17 modules containing 188
unique nodes (Supplementary Data Set DS3), out of which
13 modules were enriched for unique GO terms. The abil-
ity of the method to identify significantly enriched mod-
ules with relevant functions while at the same time mini-
mize overlap between these modules highlights the ability
of ModuleBlast to identify distinct mechanisms triggered
by the infection. 43 unique GO terms, 36 unique KEGG
pathways and 154 GSEA sets were identified for all modules
(Supplementary Data Sets DS4, DS5 and DS6), including
modules that are enriched for chemotaxis, transfer of anti-
genic peptides (TAP) complex, apoptosis and NF�B regu-
lation, all relevant to the strategies employed by F. tularensis
upon infection of the cell (see further discussion below). Of
the 188 nodes, 52.13% show a high differential expression in
either of the species. The modules contain 602 unique edges
(3.2 edges to nodes ratio, 0.0343 graph density) indicating a
high connectivity in the resulting modules.

We conducted several tests to evaluate whether cross
species analysis improves our ability to identify relevant
modules. We first tested the ability of our method to capture
insights across species by comparing the combined mouse–
macaque analysis with analyses that were conducted sep-
arately for each of the species using species-specific ex-
pression data and complete interaction networks (including
genes that do not have orthologs in the other species). As
can be seen in Table 1, cross species analysis leads to more
modules, a larger number of nodes and a significantly larger
number of unique enriched GO terms and KEGG path-
ways. Importantly, none of the enriched modules that were
identified using the individual species data are enriched with
the TAP complex or the apoptotic processes which play sig-
nificant role in the F. tularensis infection (see below). Sup-
plementary Data Set DS4 marks GO categories that are
unique to the joint analysis (species-specific GO analysis is
available in Supplementary Data Sets DS8 and DS9). We
next compared our results to analyses that are based on
randomization tests. We used two variants for the tests: ex-
pression value randomization (that keeps the exact same
network topology as the real data) (Supplementary Table
S2), and edges switching (that keeps the same expression
for nodes but changes the network topology) (Supplemen-
tary Table S3). See the Materials and Methods section and
Supplementary Methods for details. In both cases, the num-
ber of modules as well as the number of nodes identified
by ModuleBlast significantly decreased. Both of these ran-
domization methods retain the underlying network distri-
butions.

Comparing ModuleBlast to other methods

While several methods were developed for finding active
sub-networks in a single species, as mentioned in the In-
troduction section, only one previous method (NeXus (22))
has been developed for cross species identification of such
modules. In addition, several of the single species based
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Table 1. Comparing ModuleBlast to species specific, random and other methods

ModuleBlast Species specific Cross species programs Single species programs Expression only

Joint species
analysis Mouse only

Macaque
only

NeXus-
conserved

Nexus-sp
specific jActiveModules COSSY GXNA K-means

# of modules 17 8 14 907 1888 50 8 25 100
% of uq
nodes

100%
(188/188)

100%
(76/76)

100%
(105/105)

0.50%
(1749/386851)

0.10%
(2838/2403084)

11.50%
(1694/14722)

90% (36/40) 38.70%
(145/375)

100%
(14200/14200)

% of uq
active nodes

52.10%
(98/188)

31.60%
(24/76)

31.40%
(33/105)

35.6%
(623/1749)

18.10%
(514/2838)

40.9%
(692/1694)

27.80% (10/36) 20%
(29/145)

15.50%
(2203/14200)

% uq
enriched GO
modules

76.50%
(13/17)

50% (4/8) 28.60%
(5/14)

3.6%
(33/907)

1.60%
(30/1888)

34% (17/50) 50% (4/8) 0 2% (2/100)

% uq
enriched
KEGG
modules

47% (8/17) 37.50% (3/8) 7.10% (1/8) 0.70%
(6/907)

0.20%
(3/1888)

12% (6/50) 75% (6/8) 0 0% (0/100)

% uq
enriched
GSEA
modules

76.50%
(13/17)

50% (4/8) 0% (0/8) 6% (54/907) 2.60%
(49/1888)

80% (40/50) 87.50% (7/8) 0 2% (2/100)

# of uq GO
terms

43 28 5 158 243 77 13 0 5

# of uq
KEGG
pathways

36 5 1 62 67 37 11 0 0

# of uq
GSEA sets

154 29 0 598 815 437 27 0 4

Running
time

s s s 15 h 79.2 h 3 m s s s

ModuleBlast results using joint mouse and macaque data (first column) compared to analyses using only mouse or only macaque expression data and network (second and third
columns), and several other sub-network search methods including two modes of operation of NeXus (conserved and species specific), GXNA, COSSY and jActiveModules.
The last column shows clustering expression values with no network information. Rows definitions: the number of modules, percent of unique (uq) nodes out of the nodes in the
analysis, percent of unique active (DE) nodes (scaled fold change > 0.25), percent of modules that have at least one uniquely (uq) enriched GO term, KEGG pathway or GSEA
set, the total number of unique (uq) GO terms, KEGG pathways or GSEA sets. The best values in percentage categories are marked in bold. For running times, s - seconds, m -
minutes, h - hours.

methods discussed above do not provide an implementa-
tion making it hard to directly compare our method with
these previous methods (in this setting, once the networks
are formulated, a single species method can be used as well).
We have thus compared our results with NeXus (22) as well
as multiple single species algorithms for which we could
find a standalone implementations including jActiveMod-
ules (1), GXNA (16) and COSSY (33). MATISSE (34) was
not able to scale to the size of our network. In addition,
to test the usefulness of the network information we have
also compared to a simple clustering method (k-means) that
only uses the expression values of the set of orthologous
genes. The results are summarized in Table 1. See com-
parison details in Supplementary Methods. Our results are
compared using GO annotations as well as KEGG path-
ways (29) and GSEA terms (30) (both were not used in
our target function). Because of comparison reasons with
NeXus, node and edge scores were predetermined based on
the orthology information and scaled to [−1,1] range. In
most comparisons, ModuleBlast identified the largest per-
centage of unique active nodes out of the nodes that are
part of the analysis (52.13%) as well as the largest percent-
age of uniquely enriched modules using either biological
ontology (e.g. 76.47% GO enrichment). NeXus, the other
cross-species module search program, has two distinct mod-
ule search modes: conservation and species-specific. Un-
like ModuleBlast which searches for conserved and diver-
gent modules at once, NeXus requires two independent
runs which result in two distinct module sets, hence the
NeXus results are reported separately for each mode. As
can be seen, for these data NeXus identifies significantly
more modules than ModuleBlast in both modes (17 ver-

sus 907/1888). However, many of these extra modules are
highly overlapping and 99% of the nodes appear in more
than one module. This may present a problem when search-
ing for few distinct modules for follow-up experimental
analysis. Indeed, while the number of modules obtained
by NeXus is 164 times (combined) the number of mod-
ules identified by ModuleBlast, only a small percentage
of them is uniquely enriched with specific GO categories
(76.47% versus 3.64%/1.59%). Modules that were obtained
in NeXus’s species-specific mode and in the conserved mode
were found to be highly overlapping and could not eas-
ily classify biological functions as species-specific or con-
served. Another problem when using NeXus is its runtime.
NeXus required almost 4 days to run (combined) whereas
ModuleBlast terminates in few seconds on this data set
(all tests were performed on a standard dual core desk-
top workstation). In addition, we compared the ability of
ModuleBlast and NeXus to obtain relevant modules com-
pared to random by shuffling expression values (Supple-
mentary Table S2). Due to the long running time of NeXus
only one random analysis was performed for NeXus. Mod-
uleBlast found 41% more modules for the real data com-
pared to random, while NeXus found only 10% more in
the conserved setting and about the same for the species-
specific setting. In terms of the number of uniquely enriched
modules (GO/KEGG) ModuleBlast had a 38% improve-
ment compared to random while for NeXus the percentages
where comparable between the real and random data (Sup-
plementary Table S2). jActiveModules is a single species
module search that is provided as a plugin for Cytoscape
(35). jActiveModules, requires the user to provide the num-
ber of modules to look for. Using the default settings which
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searches for 50 modules and allows at most 80% overlap be-
tween modules (Table 1), most of the modules were found to
be highly overlapping, quite large and less indicative for spe-
cific roles modules may be involved in. In another setting,
in which no overlap was permitted, only one large module
containing more than 400 nodes was identified by jActive-
Modules (not shown). GXNA, another single species pro-
gram, also requires the user to define the number of modules
and their maximum size. Using its default settings, GXNA
generated 25 modules each containing 15 genes. However
these modules were highly overlapping and were not found
to be enriched with known biological functions thus diffi-
cult to use for practical follow-up analysis. COSSY is also
a single species analysis method. For this comparison we
treated the two species as two conditions and mapped all
the values to the mouse gene names. As can be seen in Ta-
ble 1, while the result from COSSY appear to be better than
the other methods we compared to (finding a small set of
non-overlapping modules, several of which were enriched
with GO and KEGG terms), the total number of modules
COSSY identified for these data and the number of genes
in these modules were very small (8 and 40, respectfully). In
contrast ModuleBlast identified more than twice the num-
ber of modules and four times the number of genes leading
to a much higher set of identified functional and KEGG cat-
egories. Clustering the gene expression data using K-means
(K = 100) was not able to find clusters associated with rele-
vant biological functions since, unlike the other methods, it
does not use the network information that may have made
it hard to focus on a subset of the genes.

Evaluating divergence and conservation

We next assessed the modules to determine if they are con-
served or divergent across the two species. Conservation is
multifaceted when examining modules across species. The
three options for conservation and divergence we consid-
ered are: (i) conserved modules (CM), (ii) divergent mod-
ules that are species-specific (SP), i.e. active in only one of
the species and (iii) divergent modules that show opposite
expression patterns in the two species (OP) (the Materials
and Methods section). In order to evaluate the convergence
or divergence of the modules we calculated the sum of dif-
ferences between the various species over all the nodes in the
module and compared these differences to 10 000 random
modules with the same number of nodes (the Materials and
Methods section). Conservation and divergence are deter-
mined by looking at the absolute difference between expres-
sion values for nodes from both species. This may bias the
analysis in cases of correlated expression changes leading
the method to miss conserved modules. In addition, vari-
ance in module node values will affect the assignment to
conserved/divergent categories, as our method does not as-
sume that divergent modules should have a consistent dif-
ference (e.g., one high and one low) between the two species.
We also assessed the overall activation of the modules in
each of the species using randomization methods. Out of the
17 modules, we classified four modules as conserved (CM),
two modules as species specific (SP), and two module as di-
vergent (OP) using the cutoffs defined in the Materials and
Methods section (Supplementary Data Set DS4). Compar-

Figure 1. Activation and divergence of key modules. The activation mea-
sure is plotted against the divergence measure for several selected modules.
The most significant GO biological process term is shown for selected mod-
ules. The number near each module represents the module ID. Modules on
the top are more divergent (1––Divergence P-value as defined in equation
(4)). Modules on the right show higher activation in either of the species
(1––Activation P-value as defined in equation (5), but calculated on both
species together, leading to the linear shape of the scatter plot). The size of
each node is proportional to the number of genes in the module.

ing modules overall activation and divergence revealed high
correlation between them. Figure 1 plots overall activation
versus divergence for some modules with significant GO en-
richment (the most significant GO term is shown for each
module). Note that in this figure the activation axis com-
bines information from both species together, leading to the
highly linear shape of the scatter plot. GO enrichment anal-
ysis of the conserved modules was found to be related to
several biological processes including chromatin modifica-
tion and chaperonin containing T-complex, a process which
was shown to play role in ciliogenesis, specifically in airway
infections (36).

The divergent modules highlight processes that may re-
spond differently to F. tularensis infection. For example, the
mouse-specific module 10 was found to be enriched with
KEGG pathway of chemokine signaling pathway and GO
process of serine/threonine kinase activity that was shown
to be involved with F. tularensis infection (37). In another
example, one of the relatively divergently opposite modules,
module 1, was enriched for TAP complex and in KEGG
pathway for Antigen processing and presentation (Figure
2). This complex is known to be involved in the transport
of antigens from the cytoplasm to the Endoplasmic Reticu-
lum (ER) for association with the major histocompatibility
complex (MHC) class I molecules and TAP1 was previously
shown to be transcriptionally active after F. tularensis infec-
tion of human cells (38–40) and was found to be one of the
genes that could best separate tularemia patients from con-
valescent patients (38).

F. tularensis induces changes in apoptotic expression

Module 54 (Supplementary Figure S2), is relatively diver-
gent across both species and is highly enriched for apopto-
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Figure 2. Differences between species. Module 1 is one of the divergent
modules in opposing directions (OP) and involves the transfer of antigenic
peptides (TAP) complex, which was previously shown to be transcription-
ally active after F. tularensis infection in human cells. (A) Mouse expres-
sion values. (B) Macaque expression values. (C) Macaque expression val-
ues subtracted from the mouse expression values, highlighting similarities
and differences between the species. Note that the species-difference scale
is set to a minimum and maximum of 4-fold change compared to a 2-fold
change for each species separately. Mouse gene names are used.

sis (1E-6) and positive NF�B regulation (1E-6). Apoptosis
was previously shown to play an important role in murine
F. tularensis infection, killing macrophage cells in 24–48 h
(41). TF enrichment analysis for this module found RelA-
p65, an active form of NF�B to be the most enriched TF
regulating this module (1E-3; see Supplementary Data Set
DS6). Aberrant NF�B activation by F. tularensis coupled
with differential activation of NF�B in murine versus pri-
mate cells could contribute to the differences observed in
Supplementary Figure S2 and influence apoptosis-related
genes. In support of this, Module 54 contains transcript for
a number of pro- and anti-apoptotic molecules including
TNF, TRAF1, TRAF2 and TRADD. All of these show
significant expression changes between 2 and 6 h after F.
tularensis infection in both species. NF�B is regulated by
the heterodimeric TRAF1/2 complex that interacts with
the inhibitor-of-apoptosis proteins and TRADD to medi-
ate an anti-apoptotic signal from the TNF receptors. In-
dependent evidence also supports this interrelationship; a
related bacterium, Francisella novicida, was recently shown
to block staurosporine-induced apoptosis in macrophages,
which correlated with activation of nuclear transcription
factor B (NF�B) (42).

Figure 3. Response progression over time. Modules were created for each
time point and matched using reciprocal hypergeometric test. Module 124
in time point 24 h is shown in a layout that depicts the module expansion
through time; genes that are part of matched modules in earlier time points
are placed in columns from left to right based on the earliest time point
they were found to be part of a matched module. The number of nodes
and their activation level increase over time. Node coloring is based on
overall activation (up or downregulation) of the orthogroups in 1–24 h.
This module is enriched with regulatory factors, including TP53, relA, AR
and AKT1 that are involved with the F. tularensis infection (see text).

Response progression over time

The above analysis was conducted by averaging the entire
time series values for each gene into a single value. While
useful for finding relevant functional modules, we sought
to identify the entire cascade of events that occur following
F. tularensis infection over time. We therefore constructed a
module set for each time point separately and matched the
resulting module sets in each time point to all other time
points using a reciprocal hypergeometric test (see the Ma-
terials and Methods section). General trends through the
time course analysis show that the size of the modules and
the number of enriched GO terms significantly increase as
the response progresses.

In one example, module 124, in time point 24 h is en-
riched with transcription regulation and is reciprocally sig-
nificantly matched to modules in all earlier time points (the
Materials and Methods section). Figure 3 plots the genes in
module 124 in five columns based on the earliest time point
a gene was part of a matched module. Each node is col-
ored by the expression level at all time points in a counter-
clockwise fashion. It is easy to see that in this module the
number of genes and the overall activation of the genes (up
or downregulation) increased over time. Module 124 is en-
riched with important transcription regulators, including
p53, Jun, RelA (NF�B p65), CREB binding protein and hi-
stone deacetylases (HDAC) 1, 3, 4 and 5. TP53 plays role in
apoptotic and anti-apoptotic processes, and its expression
was increased in 6 h. RelA, a part of the NF�B complex,
increased at 12 h and is a pro-inflammatory transcription
factor that also triggers anti-apoptotic responses. HDACs,
which are shown to be transcriptionally active in late time
points can regulate the function of NF�B and TP53 (43,44).
Pro and anti-apoptotic processes may play a significant role
during F. tularensis infection (see above). Module 124 also
contains several genes that were found in matched modules
in early time points. Specifically, AKT1 expression is ele-
vated 1 h after exposure to bacteria, during the F. tularensis
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penetration, but not in later time points. This result is sim-
ilar to previous observations that F. tularensis Schu S4 in-
fection reduces AKT1 gene and protein expression, thereby
reducing cytokine response and host defenses against infec-
tion (45) Another gene that is active in early time points
is androgen receptor (AR), a nuclear receptor that is reg-
ulated by target lesson revascularization stimulation and
interferon-� in macrophages (46). In addition, we found im-
mune modules enriched with chemotaxis, cytokine activity
and chemokine activity. Specifically, for module 34 in the
24-h module set, we observed early activation of chemokine
ligands CCL20 and CCL8. CCL8 interacts with CCR10,
a chemokine receptor that is activated at later time points
when both are assigned to the same module. Taken together,
these results indicate that the temporal matching method
can identify relevant associations when integrating expres-
sion and interaction data.

Cross species analysis of aging

The analysis of immune response data described above al-
lowed us to compare ModuleBlast to other methods based
on curated sets of immune response genes. However, Mod-
uleBlast can also be used in cases where little prior biolog-
ical knowledge is available. To illustrate this and to test the
ability of such an analysis to generate new testable hypothe-
ses, we applied ModuleBlast to study data regarding the
SIRT6 (sirtuin 6) protein. This protein was implicated in
calorie restriction response (47) and its deficiency in mice
leads to premature aging and metabolic defects, resulting in
premature death (48). In a recent study we showed that over-
expression of SIRT6 extends lifespan of male mice (49), and
protects against high-fat-diet-induced obesity, although we
still do not fully understand the exact mechanism by which
SIRT6 operates.

To study the mechanisms by which SIRT6 affects aging
and to determine the relationship between mice and human
responses we used ModuleBlast to compare expression data
sets from mouse embryonic fibroblast cells (MEF) extracted
from a knockout SIRT6 mouse (KO mice) and a human
HeLa cell line expressing shRNA against SIRT6 (KD hu-
man) (26). We found that in the absence of SIRT6, the re-
sulting modules for the mouse–human comparison are en-
riched with chaperonin containing T-complex, ubiquitina-
tion, DNA binding, RNA splicing and positive regulation
of NF�B. Importantly, we found a significantly conserved
immune and inflammatory response module in which some
of the genes downregulated in both human and mouse while
others, including TNFR2 in the human module and TRAF
in the mouse module, were upregulated (Supplementary
Figure S3).

Experimental validation of hypotheses resulting from our
analysis of the ModuleBlast results

The role SIRT6 plays in controlling inflammation has been
somewhat controversial. On the one hand, the study that
generated the KO and KD expression data (26) indicated
that SIRT6 may have a protective anti-inflammatory role,
as lack of SIRT6 causes increased inflammation. However,
a study using human HEK293 kidney cells did not find such

Figure. 4. Follow-up analysis of Sirt6 regulation. In vitro mRNA levels
of ICAM-1 (A) and iNOS (B) in 3t3-L1 cells stimulated with TNF-�. (C)
In vivo IL-6 mRNA levels in SIRT6-overexpressing mice fed high fat diet
(HFD) (D) IL1� mRNA levels in SIRT6-overexpressing mice fed HFD,
n = 7 or 8 per group. (*P < 0.05 based on a 2-tailed t-test). (E) In vitro
mRNA levels of CD38 in HeLa cells stimulated with TNF-�.

protective role for SIRT6 over-expression 1 h after treat-
ment with the tumor necrosis factor (TNF-�), an inflam-
matory agent (50). ModuleBlast analysis of KO and KD
SIRT6 in human and mouse cells identified modules con-
taining important immune response regulators, including
the activation of TNFR2, a member of the tumor necrosis
factor receptor family. We thus decided to experimentally
test the effect of modulation of SIRT6 levels on classical
markers of inflammation, both in vitro and in vivo in both
human and mouse by treating cells with TNF-� (which acts
through TNFR2) over a 10-h period (as opposed to only 1
h tested by (50)). Pre-adipocyte 3T3-L1 mouse cells stably
over-expressing SIRT6 were stimulated with TNF-�, and
select inflammatory genes were examined. As seen in Fig-
ure 4A and B, following treatment with TNF-�, after 2–4 h
SIRT6 was able to inhibit the increased response of the clas-
sic inflammatory gene ICAM-1 and delay the inflammatory
response of iNOS, demonstrating that over-expression of
SIRT6 protects against these TNF-�-mediated inflamma-
tory genes. Following our in vitro validation, mRNA lev-
els of adipokine gene IL-6 were measured in SIRT6 over-
expression mice during high fat diet (HFD), a diet known
to increase inflammation. IL-6 is a classic pro-inflammatory
adipokine secreted from the white adipose tissue (WAT),
and mice fed HFD have increased levels of this adipokine.
We found a significant decrease in the average levels of IL-6
mRNA in WAT from mice over-expressing SIRT6 (Figure
4C). Additionally, we examined the transcription levels of
the inflammatory gene IL1� in mice fed HFD and found
that SIRT6 over-expression significantly decreased levels of
IL1� as well (Figure 4D). These results indicate that SIRT6
may protect against inflammatory cytokines produced by
the WAT tissue in HFD mice.

We have also repeated these experiments in a human cell
line (HeLa cervical cancer cells), to confirm that the im-
mune response is decreased in human cells as well. Down-
regulating SIRT6 in TNF-�-stimulated HeLa cells results
in significantly increased levels of the inflammatory gene
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CD38 (Figure 4E). Taken together, these experiments sup-
port the hypotheses derived from the ModuleBlast results
indicating that SIRT6 plays an important role in regulating
inflammatory response starting at 2–4 h after TNF-� treat-
ment via regulation of the TNF module.

DISCUSSION

We developed a novel method to find active sub-networks
within and across species. ModuleBlast provides enhanced
cross species capabilities by classifying the modules to sev-
eral conservation types and identifying modules that show
interesting activation patterns. Identifying conserved and
divergent response patterns in the context of connected
groups of genes is becoming increasingly important with
applications for both basic science and drug discovery re-
search by highlighting biological mechanisms that are likely
to be affected similarly or differently to a specific drug or
treatment. We applied ModuleBlast to a time series of ex-
pression data from mouse and macaque AMs infected with
F. tularensis and found several modules with high relevance
to the response progression over time and immune response
mechanisms. The combined species analysis was able to
identify modules that were not found in the single species
analyses and show improved statistics over other methods.
We have also applied it to study the effects of one of the first
validated mammalian aging proteins, SIRT6. Follow-up ex-
perimental analysis, both in vitro and in vivo, confirmed the
inflammatory response role for SIRT6 that was predicted by
ModuleBlast.

It should be noted that ModuleBlast is intended to serve
as a discovery platform and not as a detailed mechanistic
modeling framework for gene regulation. An underlying as-
sumption in our analysis is that paralogous genes are likely
to show similar expression patterns and their measurements
can be summarized by taking the most extreme value for
the maximum possible activation for all paralogs. This as-
sumption is not always realistic and paralogous genes may
exhibit quite distinct behavior. In addition, no ‘gold stan-
dard’ or large-scale experimentally validated information is
currently available in order to validate the resulting mod-
ules. We have thus used GO, KEGG, GSEA and follow-up
experiments to determine functional enrichment and vali-
date some of our modules. While such an analysis cannot
serve a conclusive evidence for the accuracy of the modules,
the increase in the number of observed terms from all three
annotation sets when compared to the randomized results,
and the agreement between the predictions and experimen-
tal results, supports the modules identified by ModuleBlast.

A related prior work is the ‘phenologs’ approach by Mc-
Gary et al. (51) which looks for phenotypes across species
that intersect by a large fraction of orthologous genes.
Whereas ModuleBlast attempts to determine gene function
and cross species relationships by relying on new quan-
titative experimental data, the ‘phenologs’ work requires
known assignments of genes to phenotypes in each species
and is thus not intended to the same type of studies that
ModuleBlast is intended for.

ModuleBlast constructs a joint network for both spe-
cific being studied. An interesting future direction would be
to develop similar methods that can perform cross species

module analysis without the need to (artificially) combine
the two networks. Such an approach would need to rely,
at least in part, on network alignment methods and these
can be computationally challenging though several heuris-
tics for such problems have been suggested (52).

We have implemented ModuleBlast as a general purpose,
easy-to-use web tool with built-in support for various gene
identifier names spaces, orthology information and under-
lying networks (See Supplementary Figure S4). The web
tool can be used at the URL provided in the Abstract page,
requires only gene identifiers and values to operate and of-
fers extensive analysis options of the results. We hope that
our tool will be a useful addition to the current set of anal-
ysis packages used by the experimental and computational
communities.

AVAILABILITY

Supporting web server: www.expression.cs.cmu.edu/
module.html

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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