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Abstract

Metabolism of xenobiotics by cytochrome P450s (encoded by the CYP genes) often leads to bio-activation, producing
reactive metabolites that interfere with cellular processes and cause DNA damage. In the testes, DNA damage induced by
xenobiotics has been associated with impaired spermatogenesis and adverse effects on reproductive health. We previously
reported that chronic exposure to the reproductive toxicant, acrylamide, produced high levels of DNA damage in
spermatocytes of Swiss mice. CYP2E1 metabolises acrylamide to glycidamide, which, unlike acrylamide, readily forms
adducts with DNA. Thus, to investigate the mechanisms of acrylamide toxicity in mouse male germ cells, we examined the
expression of the CYP, CYP2E1, which metabolises acrylamide. Using Q-PCR and immunohistochemistry, we establish that
CYP2E1 is expressed in germ cells, in particular in spermatocytes. Additionally, CYP2E1 gene expression was upregulated in
these cells following in vitro acrylamide exposure (1 mM, 18 h). Spermatocytes were isolated and treated with 1 mM
acrylamide or 0.5 mM glycidamide for 18 hours and the presence of DNA-adducts was investigated using the comet assay,
modified to detect DNA-adducts. Both compounds produced significant levels of DNA damage in spermatocytes, with a
greater response observed following glycidamide exposure. A modified comet assay indicated that direct adduction of DNA
by glycidamide was a major source of DNA damage. Oxidative stress played a small role in eliciting this damage, as a
relatively modest effect was found in a comet assay modified to detect oxidative adducts following glycidamide exposure,
and glutathione levels remained unchanged following treatment with either compound. Our results indicate that the male
germ line has the capacity to respond to xenobiotic exposure by inducing detoxifying enzymes, and the DNA damage
elicited by acrylamide in male germ cells is likely due to the formation of glycidamide adducts.
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Introduction

Paternal exposure to environmental toxicants or xenobiotics has

been associated with adverse reproductive effects such as birth

defects, miscarriages, and childhood genetic diseases [1]. The

potential for xenobiotics to induce genetic damage in male germ

cells is thought to be involved in mediating these reproductive

effects, as the male germ line has limited capacity for DNA repair,

particularly in the later stages of spermatogenesis [2,3,4]. The

genotoxic impact of xenobiotics may also be amplified (bio-

activated) following their metabolism via detoxifying enzymes,

such as the CYPs. CYP2E1 is one of several CYPs known to cause

bio-activation and metabolises a range of exogenous substances,

including acrylamide [5,6]. Acrylamide is of particular interest, as

traces of the compound have been detected in numerous

carbohydrate-rich foods such as potato chips and breads [7,8].

Additionally, acrylamide is a known neurotoxicant in humans and

acts as a carcinogen, genotoxin and reproductive toxin in rodents

[9]. Whilst the reproductive toxicity of acrylamide has not been

observed in humans to date, there are concerns that chronic

dietary exposure to the compound may have a cumulative effect

on human fertility and reproductive health [10].

Interestingly, the reproductive toxicity of acrylamide primarily

affects the male. Acrylamide is readily distributed throughout the

body, is able to transit the blood testis barrier in rodents and has

been shown to accumulate in the testis within one hour of oral

exposure [11]. Rodent studies have reported decreases in

copulatory behaviour and a loss of spermatogenesis following

exposure to acrylamide in males [12]. Multi-generational effects

have also been described, such as the loss of post implantation

embryos and reduced postnatal survival. In a study by Sakamoto

and Hashimoto [13], high doses of acrylamide in the drinking

water of male mice lead to decreases in fertility, reduced litter

sizes, and increases in embryo resorptions. However, the

mechanisms by which acrylamide elicits these reproductive effects

are not clear. Based on the timing between exposure and effect

(loss of embryos), sperm transit of the epididymis has been the

major focus, with failure to fertilise attributed to protamine

alkylation in maturing sperm [14,15]. Alternatively, a clastogenic

mechanism may be involved, as the formation of kinesin adducts
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in the meiotic/mitotic spindles may impair chromosomal segre-

gation in germ cells during spermatogenesis [16].

The above mechanisms require the interaction of acrylamide

with an intermediary protein, as acrylamide does not directly react

with DNA and preferentially forms adducts with cysteine residues

of proteins [17]. However, the metabolism of acrylamide by

CYP2E1 generates the epoxide metabolite, glycidamide, which

has a higher mutagenic potential than acrylamide and directly

interacts with DNA, forming adducts [18]. Indeed, the presence of

these adducts have been identified in the lung, liver, kidney and

testes following acrylamide exposure in mice [19]. Studies by

Ghanayem et al. [20,21,22] have also demonstrated the signifi-

cance of the metabolic conversion of acrylamide to glycidamide in

CYP2E1 knockout mice. The multigenerational effects were

abrogated in CYP2E1-null males, indicating that the presence of

CYP2E1 is essential in mediating acrylamide reproductive toxicity.

It is therefore hypothesised that the reproductive effects of

acrylamide are related to its conversion to glycidamide, which

generates DNA adducts, leading to genetic damage in the male

germ line.

We recently reported that chronic exposure of male mice to

acrylamide at doses relevant to human exposure lead to

significantly increased levels of DNA lesions in spermatocytes

[23]. Given that acrylamide is metabolised by CYP2E1, the

expression and regulation of this CYP was examined in the present

study within specific stages of early male germ cell development.

We show that spermatocytes express CYP2E1, indicating that they

have the capacity to metabolise acrylamide to glycidamide.

Furthermore, the DNA damage induced in spermatocytes by

acrylamide or its metabolite, glycidamide, following in vitro

exposure was examined using the comet assay, modified to detect

DNA adducts. The results of the present study support the notion

that DNA damage induced in meiotic germ cells by acrylamide is

likely attributable to the formation of DNA adducts generated by

glycidamide.

Materials and Methods

Animal Ethics Statement
Experiments involving animals were conducted in strict

accordance with the policies set out by the Animal Care and

Ethics Committee of the University of Newcastle (Ethics Numbers:

SR1004 0708, A-2008-145). Swiss mice were housed under

conditions of 16 hours light, 8 hours dark, with food and water

provided ad libitum. Animals were euthanized by CO2 asphyxiation

and all efforts were made to minimize suffering.

Chemicals and reagents
All chemicals and reagents including custom designed primers

were obtained from Sigma Chemicals (St Louis, MO) unless

otherwise stated, and were of molecular biology or research grade.

Rabbit polyclonal anti-cytochrome p450 2E1 antibody (anti-

CYP2E1, ab28146) was obtained from Abcam (Cambridge, MA).

Mouse anti-cAMP dependent Protein Kinase [Catalytic subunit]

antibody (anti-PKA[C], #610981) was purchased from BD

Transduction Laboratories. Rat anti-germ cell nuclear antigen

antibody (anti-GCNA) was a gift from Dr. George Enders [24].

Secondary antibodies, Alexa Fluor 594 goat anti-rabbit immuno-

globulin G (IgG) (A11012) was purchased from Invitrogen

(Carlsbad, CA). Dulbecco’s Modified Eagle Media (DMEM) and

supplements for cell culture were obtained from Sigma and

Invitrogen. Acrylamide was obtained from Sigma ($99% purity,

A9099) and glycidamide (98% purity, G615250) was obtained

from Toronto Research Chemicals (North York, CA). Oli-

go(dT)15 primer, RNasin, dNTPs, M-MLV-Reverse Transcrip-

tase, RQ1 DNase, GoTaq Flexi, MgCl2 and GoTaq quantitative

PCR master mix were obtained from Promega (Madison, WI).

DNA repair endonucleases, formamidopyrimidine-DNA glycosy-

lase (FPG) and 8-oxoguanine DNA glycosylase (hOGG1) were

purchased from New England Biolabs Inc. (Arundel, Qld).

Germ cell isolation
Spermatogonia, spermatocytes and spermatids (Fig S1 in File

S1) were enriched from dissected mouse testes using density

sedimentation at unit gravity as described previously [25]. Briefly,

testes were disassociated and tubules were digested sequentially

with 0.5 mg/ml collegenase/DMEM and 0.5% v/v trypsin/

EDTA to remove extra-tubular contents and interstitial cells.

Remaining cells were loaded onto a 2–4% w/v bovine serum

albumin (BSA)/DMEM gradient to separate male germ cell types

according to density. Germ cell fractions were collected, washed

and counted. This method enables the isolation of germ cells with

very little to no somatic cell contamination, as extra-tubular cells

are digested and removed prior to density sedimentation. Greater

than 90% purity can be achieved for spermatogonial isolations.

Spermatocye isolation achieves 65–70% purity for pachytene

spermatocyte. The remaining cells in these isolations consist of

early leptotene, zygotene and diplotene spermatocytes. For

isolation of round spermatids the purity is 85–95% with

contaminating cells consisting of late spermatids [25].

RNA extraction
Total RNA was isolated from male germ cells and whole testis

using two rounds of a modified acid guanidinium thiocyanate-

phenol chloroform protocol [26], in which cells and tissues were

lysed with lysis buffer (4 M guanidinium thiocyanate, 25 mM

sodium citrate, 0.5% v/v sarkosyl, 0.72% v/v b-mercaptoethanol).

RNA was isolated by phenol/chloroform extraction and isopro-

panol precipitated.

Quantitative PCR (Q-PCR)
Reverse transcription was performed with 2 mg of isolated

RNA, 500 ng oligo(dT)15 primer, 40 U of RNasin, 0.5 mM

dNTPs, and 20 U of M-MLV-Reverse Transcriptase. Total RNA

was DNase treated prior to reverse transcription to remove

genomic DNA contamination. Q-PCR was performed using

SYBR Green GoTaq qPCR master mix according to manufac-

turer’s instructions on an MJ Opticon 2 (MJ Research, Reno, NV,

USA). The sequences of all primers used in this study and the

predicted size of the amplicons are provided in Table S1 in File

S1. Reactions were performed on cDNA equivalent to 100 ng of

total RNA and carried out for 40 amplification cycles. SYBR

Green fluorescence was measured after the extension step at the

end of each amplification cycle and quantified using Opticon

Monitor Analysis software Version 2.02 (MJ Research). Each

sample was examined in triplicate and a replicate omitting the

reverse transcription step was undertaken as a negative control.

Real-time data were normalized to cyclophilin expression using

the equation 2e-DC(t), where C(t) is the cycle at which fluorescence

was first detected above background fluorescence [27]. Real-time

data were presented as the average of each replicate, normalized

to each reference sample (6SEM). Further validation of Q-PCR

data was conducted using the geometric mean of cyclophilin and a

second reference gene, hypoxanthine-guanine phosphoribosyl-

transferase (hprt),in accordance with Vandesompele et al. [28]

(Fig. S2 in File S1). The 2-DDC(t) transformation [27] was used for

comparisons between treated and vehicle control primary cultures.

Values for each replicate were averaged, and relative expression
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levels between treated samples were depicted as percentages of

controls (6SEM). Each data set is the average of at least three

separate experiments.

Immunohistochemistry & immunocytochemistry
Mouse testes were fixed in Bouin’s fixative, embedded in

paraffin wax and sectioned at 5 mm thickness. Sections were de-

paraffinized, rehydrated, and antigen retrieval was performed

using Proteinase K (20 mg/ml) for 30 min at room temperature.

Sections were blocked in 3% w/v BSA/phosphate buffered saline

with 0.05% v/v Tween-20 (PBST) for 1 h at room temperature,

after which they were incubated with anti-CYP2E1 (1:50 with 1%

w/v BSA/PBST) overnight at 4uC. Sections were then washed

and incubated with fluorescent-conjugated secondary antibody,

Alexa Fluor 594 goat anti-rabbit IgG (1:200 with 1% w/v BSA/

PBST), for 1 h at room temperature. Counterstaining was

conducted using ’-6-diamidino-2-phenylindole (DAPI) for 3 min.

Sections were then mounted in Mowiol and observed under

fluorescence on an Axio Imager A1 fluorescent microscope (Carl

Zeiss MicroImaging, Inc., Thornwood, NY). As a control, parallel

testis tissue sections were probed with rabbit serum in the absence

of primary antibody, which did not produce a detectable signal

(blank images not shown). Images were taken using an Olympus

DP70 microscope camera (Olympus America, Centre Valley, PA).

Isolated spermatogonia, spermatocytes and spermatids were air

dried onto a 12 well slide and blocked in 3% w/v BSA/PBST for

1 h at room temperature. Germ cells were dual-stained with anti-

CYP2E1 (1:50 with 1% w/v BSA/PBST) and anti-GCNA (1:20

with 1% w/v BSA/PBST) or anti-PKA[C] (1:25 with 1% w/v

BSA/PBST) for 1 h at room temperature. Anti-GCNA labels

spermatogonia and spermatocytes whereas anti-PKA[C] is a

marker for spermatids [24,29]. Cells were then washed and

incubated with appropriate secondary antibodies for 1 h at room

temperature. As a control, cells were also probed with rabbit

serum in the absence of primary antibody, which did not produce

a detectable signal (blank images not shown), and slides were

subsequently viewed under fluorescence as previously described

above.

Treatment of germ cells with chemicals
Isolated germ cells were suspended in 1 ml sterile DMEM,

supplemented with 100 mM sodium pyruvate, 200 mM L-gluta-

mate, 100 U/ml penicillin, 10 mg/ml streptomycin, and 5% v/v

fetal bovine serum. Cells were treated with acrylamide at a final

concentration of 10 nM, 100 nM, 1 mM or 10 mM or glycidamide

at a final concentration of 5 nM, 50 nM, 0.5 mM or 50 mM and all

samples were incubated for 18 h at 37uC, 5% CO2. In a previous

study, treatment of dissociated testicular cells with acrylamide or

glycidamide was carried out at millimolar concentrations, for

relatively short exposure times of 2 h (Hansen et al. 2010).

Therefore, due to the length of exposure used in the current study

(18 h), the concentration of acrylamide was adjusted to the

10 nM–10 mM range to ensure cell viability remained largely

unaffected whilst still eliciting a cellular response to chemical

exposure in spermatocytes. Glycidamide was found to elucidate

similar effects to acrylamide at lower doses of 5 nM–5 mM.

Negative control samples were treated with vehicle only (distilled

water, dH2O). An additional control in which germ cells were

treated at room temperature with hydrogen peroxide (H2O2) at a

final concentration of 500 mM for 5 min was also included. In

some experiment cells were treated with resveratrol at a final

concentration of 0.1 mM (suspended in ethanol at a final

concentration of 1%) in the presence or absence of acrylamide

(1 mM) or glycidamide (0.5 mM) for 18 hours as described. In this

instance the negative control samples were treated with 1%

ethanol. Following treatment, cell suspensions were washed and

collected by centrifugation prior to further analysis.

Trypan Blue exclusion and germ cell staining
Germ cells exposed to acrylamide were assessed for cell viability

using trypan blue live/dead staining. Cells were stained with

0.08% v/v trypan blue and more than 200 cells per replicate were

scored using a haemocytometer. To observe germ cell morphology

following acrylamide treatment, cells were fixed in 4% v/v

paraformaldehyde and 16104 cells were air dried onto a 12-well

slide. Cells were permeabilised with 0.2% v/v Triton X-100/PBS

for 10 min at room temperature and then incubated with peanut

lectin conjugated to fluorescein isothiocyanate (FITC-PNA) for

15 min at room temperature. FITC-PNA fluorescently labels the

developing acrosome green and can be used to distinguish

different spermatogenic cell types. Cells were counterstained with

propidium iodide (PI), mounted in Mowiol, and visualised using

fluorescence microscopy as previously described above.

Determination of DNA damage in germ cells using the
comet assay

The extent of germ cell DNA damage elicited by exposure to

acrylamide was assessed using an alkaline comet assay according

to methods published by [30] with modifications detailed below.

Fully frosted Dakin slides (ProSciTech, Australia) were coated with

one layer of 1% w/v normal melting point agarose. Ten ml of germ

cells suspended in PBS (16107 cells/ml) were mixed with 70 ml of

0.5% w/v low-melting point agarose, and this suspension was

layered onto the pre-coated slides and covered with a coverslip.

Once agarose was set, the coverslip was removed and cells were

immersed in fresh lysis solution (2.5 M NaCl, 100 mM Na2EDTA,

10 mM Trizma and 1% v/v Triton X-100 at pH 10) for 1 h at

4uC. Cells were incubated in lysis buffer with dithiothreitol

(10 mM final concentration) for a further 30 min at 4uC, after

which lithium diiododsalicyclate was added (4 mM final concen-

tration) and cells were incubated for 1.5 h at room temperature.

Following lysis, cells were treated with adduct specific cleavage

enzymes, formamidopyrimidine glycosylase (FPG) or 8-oxogua-

nine DNA glycosylase (hOGG1) at 1:1000 [0.4 units/gel] and

1:500 [0.16 units/gel] respectively, for 30 min at 37uC (enzyme

optimisation data included in Fig. S3 in File S1). Control cells were

treated with enzyme buffer (40 mM HEPES, 0.1 M KCl, 0.5 mM

EDTA, 0.2 mg/ml BSA, pH 8.0 with KOH) and all samples were

incubated in chilled alkaline electrophoresis buffer (0.3 M NaOH,

1 mM EDTA) for 20 min. Electrophoresis was carried out for

5 min at 0.9 V/cm, 300 mA, after which slides were drained and

neutralised (0.4 M Tris, pH 7.5). Slides were stained with SYBR

green (Trevigen, Gaithersburg, MD) and visualised under

fluorescence. The DNA integrity of 50–100 cells per slide was

analysed using Comet Assay IV software (Perceptive Instruments,

Suffolk, UK). The fluorescence intensity in the comet ‘‘tail’’ was

used as measure of DNA damage (Tail DNA %). Highly damaged

cells with irregular or blown out nuclei, referred to as ‘clouds’ or

‘hedgehogs’, were excluded from analysis, and no statistically

significant differences in the frequency of ‘hedgehog’ comets was

found across treatments (Fig S4–S5 in File S1).

Quantification of cellular glutathione
Levels of glutathione (GSH) in germ cells and P19 embryonal

carcinoma cells were quantified using GSH-GloTM Glutathione

Assay kit (Promega) according to manufacturers’ instructions.

Luminescence was analysed using a luminometer plate reader
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(FLUOstar Optima, BMG Labtech) and data presented is the

average of three replicate experiments.

Statistics
Statistical analyses were performed using JMP software Version

9 (SAS Institute, Cary, NC). Data was tested for normality using

the Shapiro-Wilk test. When data was not from the Gaussian

distribution, the non-parametrical Kruskal-Wallis test was applied.

If a statistically significant difference was found across groups of

means, then a post-hoc Steel-Dwass multiple comparisons test was

used to examine significant differences between pairs of groups.

Differences between control and treated samples were considered

to be statistically significant if the probability of the difference

being due to chance was less than 5% (p,0.05) and F statistic and

degrees of freedom are indicated in parentheses in Figure captions.

All experiments were replicated at least three times with

independent samples and data are presented as the mean values

6 SEM.

Results

Expression of CYP2E1 in the male germ line
Characterisation of CYP2E1gene expression within the male

germline was performed by assessing the levels of expression in

whole mouse testis of mice at different ages; from 2 d after birth to

adult (older than 56 d) (Fig. 1). Immature testis from 2 to 6 d

exhibited limited expression ofCYP2E1. However, CYP2E1gene

expression was maintained at relatively high levels between 11 to

18 d after birth, after which the level of CYP2E1was approxi-

mately halved and remained at this level through to adulthood.

Examination of RNA from isolated germ cells by Q-PCR

indicated that the highest levels of CYP2E1expression were in

spermatogonia, compared to spermatocytes and spermatids.

Spermatogonia are present in the testis after the migration of

gonocytes to the basal membrane (4–6 d after birth) [31]. Thus,

the high testicular expression of CYP2E1from day 11 to 18 (Fig. 1)

is likely attributed to the relatively high proportion of spermato-

gonia that dominate the testicular environment during this early

stage of development. In contrast, later stage germ cells including

round and elongating spermatids, begin to develop in mouse testis

at day 20 [29], and since neither of these cell types express high

levels of Cyp2e1, the overall Cyp2e1 expression level diminishes in

maturing testis.

Interestingly, Cyp2e1 appeared to be subject to translational

repression. Immunohistochemistry and immunocytochemistry on

isolated cells revealed that the CYP2E1 protein was predominantly

expressed in the early pachytene spermatocyte stage of spermato-

genesis, which are present in the testis from 14 d after birth (Fig. 2

A and B). Downregulation of CYP2E1 protein expression was

observed in spermiogenic stages in 36 d old and adult testis (a

diagram of germ cell stages of spermatogenesis in the testis is

included in Fig. S1 in File S1). Such differences in gene and

protein expression are likely the result of translational delay and

repression, commonly found during the process of spermatogen-

esis [32]. The presence of CYP2E1 protein within pachytene

spermatocytes suggests that the metabolism of acrylamide to

glycidamide is likely to occur in this germ cell type. It is already

established that acrylamide can accumulate in the testis and

penetrate the blood testis barrier to reach these germ cells [11].

Thus, as translation of CYP2E1 mRNA appeared to be delayed in

spermtogonia and spermatids exhibited relatively little CYP2E1

protein expression, investigation into the effects of acrylamide

exposure was primarily focussed on spermatocytes in the present

study.

Male germ cells respond to acrylamide by increasing CYP
gene expression

One feature of cells responding to xenobiotic exposure is the

induction of xenobiotic metabolising enzymes. Indeed, upregula-

tion of numerous P450s in response to xenobiotic exposure has

previously been observed in liver tissue of mice [[33]CYP genes,

CYP2E1 and CYP1B1, were therefore examined in isolated

spermatocytes following acrylamide exposure by Q-PCR, as

preliminary data indicated that these genes were both constitu-

tively expressed in these cells (data not shown). As previously

mentioned, CYP2E1 specifically metabolises acrylamide; CYP1B1

however, is a known detoxifying CYP that facilitates the

metabolism of polycyclic hydrocarbons as well as endogenous

compounds such as estradiol and retinoic acids [6,34,35]. As

described in the Materials and Methods section, treatment of germ

cells with acrylamide was carried out at 1 mM for 18 h as this level

of exposure did not affect cell viability and morphology, which was

confirmed by fluorescent cell staining and trypan blue exclusion

(Figs. 3 A and B). Q-PCR analysis indicated that pachytene

spermatocytes responded to acrylamide exposure by significantly

increasing CYP2E1 gene expression by approximately 2.5 fold

compared to controls (p,0.05, Fig. 4). Whilst CYP1B1 does not

play a role in acrylamide metabolism, it was interesting to note

that acrylamide exposure also led to a significant upregulation of

CYP1B1expression in spermatocytes.

In vitro exposure to acrylamide or glycidamide induces
DNA adducts in male germ cells

The expression of CYP2E1 in spermatocytes suggests that

acrylamide is metabolised to glycidamide in these cells and may

lead to the generation of DNA adducts. Thus, the DNA integrity

of spermatocytes was examined using the alkaline comet assay,

following either acrylamide at 1 mM or glycidamide at 0.5 mM for

18 h. A significant increase in DNA damage (Tail DNA %) was

observed following glycidamide exposure (p,0.05); however, only

a modest effect was found in cells exposed to acrylamide (Fig. 5 B).

The sensitivity of the comet assay was therefore enhanced by

utilising the endonuclease FPG, which recognises and introduces

strand breaks at sites of DNA adducts. The inclusion of FPG led to

greater detection of DNA damage in both acrylamide and

glycidamide treated cells (p,0.001), with slightly higher levels of

damage observed in the glycidamide treated sample (Fig. 5 B).

Acrylamide and glycidamide were also found to elicit a dose-

dependent increase in DNA damage in the comet assay, in the

presence of FPG (Fig. 5 C and D). Statistically significant increases

were observed at doses of 100 nM, 1 mM and 10 mM of

acrylamide after 18 hours of exposure in spermatocytes (p,

0.001). Spermatocytes appeared to be more sensitive to glycida-

mide treatment, with significant increases in damage observed at

exposures as low as 10 nM (p,0.01). H2O2 treatment (500 mM,

5 min) was used as a positive control in these experiments and

generated significant increases in damage in both the presence and

absence of FPG (Fig. 5 B, C and D).

Oxidative adducts contribute little to the DNA damage
induced by acrylamide in male germ cells

Exposure to acrylamide or glycidamide may lead to the

generation of oxidative adducts as both compounds can be

conjugated with GSH, which plays a critical role in anti-oxidant

defence. Indeed, the FPG endonuclease recognises a range of

DNA lesions, including oxidative adducts; thus the DNA damage

induced by acrylamide or glycidamide in spermatocytes was

further characterised using an alternate cleavage enzyme,

CYP2E1 and Acrylamide Metabolism in Male Germ Cells
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hOGG1, in the comet assay. The hOGG1 enzyme specifically

recognises oxidative DNA adducts, such as 8-oxo-7,8-dihydrogua-

nine (8-oxoGua) which is an adduct induced by reactive oxygen

species [36]. The use of hOGG1 in the comet assay did not

produce a significant increase in Tail DNA % in spermatocytes

treated with acrylamide (1 mM, 18 h); although a modest increase

was observed following treatment with glycidamide. These results

suggest that oxidative adducts represent a fraction of the damage

induced by the acrylamide metabolite, glycidamide; in spermato-

cytes however, acrylamide does not directly generate oxidative

DNA damage in these cells.

Since both acrylamide and its metabolite, glycidamide, can be

conjugated with glutathione (GSH) GSH levels were measured in

spermatocytes treated with acrylamide using an established GSH

Figure 1. Gene expression of CYP2E1 in the male germ line. Q-PCR analysis of CYP2E1 mRNA expression in mouse testis at different
developmental stages 2, 6, 11, 14, 18, 22, and 36 d after birth, and adult (older than 56 d). Expression was also examined in isolated male germ cells,
spermatogonia, spermatocytes and spermatids. Data are representative of n = 3 experiments and depicted as transformed values, 2e2DC(t) (Mean
6SEM), as described in Materials and Methods. CYP2E1 gene expression was found predominantly in spermatogonia. Statistically significant
differences were found in spermatogonia, 11, 14 and 18 d compared to 2 d testis (F10,79 = 4.0,*p,0.05).
doi:10.1371/journal.pone.0094904.g001

Figure 2. Protein expression of CYP2E1 in the male germ line. (A) Immunolocalisation of CYP2E1 (red staining) in testis sections at different
developmental stages, 11 d after birth, 22 d after birth, 36 d after birth, and adult (older than 56 d). Sections were sequentially probed with anti-
CYP2E1 and appropriate secondary antibody before being counter-stained with DAPI (blue staining). CYP2E1 protein expression was found in
spermatocytes at 22 d after birth to adult testis, with weaker staining observed in spermatids. Diagram outlining where different male germ cell types
reside in the seminiferous tubule is shown in supplementary data. (B) Immunolocalisation of CYP2E1 in isolated spermatogonia, spermatocytes and
spermatids, showing CYP2E1 expression (green staining) in spermatocytes. Germ cells were probed with anti-CYP2E1 and anti-GCNA, which labels
spermatogonia and spermatocytes, or anti-PKA[C], which labels spermatids (red staining). Both tissue sections and cells were probed with rabbit
serum in the absence of primary antibody as a control, which did not produce a detectable signal (blank images not shown). Scale bars equal to
50 mm.
doi:10.1371/journal.pone.0094904.g002
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assay (Fig. 6 B). Intriguingly, spermatocytes have relatively low

basal levels of cellular GSH compared to that of a control cell line

(P19 embryonal carcinoma cells). No significant differences in

GSH levels were observed after exposure of spermatocytes to

acrylamide or glycidamide. These data indicated that antioxidant

levels are constitutively low in spermatocytes and that oxidative

damage is unlikely to be a major consequence of acrylamide or

glycidamide exposure in these cells.

Acrylamide is metabolized in spermatocytes to
glycidamide via CYP2E1

Resveratrol has been established as an inhibitor of CYP2E1

[37,38]. The role of CYP2E1 in DNA adduct formation was

assessed by the comet assay following treatment of isolated

spermatocytes with acrylamide (1 mM), or glycidamide (0.5 mM) in

the presence or absence of resveratrol (0.1 mM) for 18 h (Fig. 7).

Use of the FPG enzyme in the comet assay revealed the formation

of DNA adducts caused by acrylamide treatment (Fig. 5) and this

was reduced by cotreatment with CYP2E1 inhibitor, resveratrol

(Fig. 7). The addition of resveratrol to the glycidamide treatment

had no effect on DNA adduct formation as detected by the FPG

modified comet assay (Fig.7). Addition of the hOGG1 enzyme to

the comet assay detected oxidative damage (Fig. 5). Resveratrol

did not reduce the minimal oxidative effects caused by acrylamide

treatment.

Discussion

While steroidogenic enzymes such as CYP17A1 have previously

been found in the germ line [39], our results are the first to

demonstrate that detoxifying CYPs are also expressed at specific

stages of meiotic male germ cell differentiation. Male germ cells

were found to express both CYP2E1 mRNA and protein (Figs. 1

and 2). Previously, CYP2E1 protein was reported to be exclusively

expressed in the interstitial cells of the testis [40]. However, in the

present study, immunohistochemistry of mouse testis (Fig. 2 A) and

isolated populations of germ cells (Fig. 2 B) clearly revealed protein

expression of CYP2E1 in spermatocytes. The elevated expression

of CYP2E1 in spermatocytes compared to other germ cells types

may serve as increased cellular defence against chromosomal

Figure 3. Acrylamide treatment (1 mM, 18 h) or glycidamide treatment (0.5 mM, 18 h) did not impact on spermatocyte morphology
or viability. (A) Adult mouse spermatocytes were treated with acrylamide (1 mM, 18 h) or glycidamide (0.5 mM, 18 h) and dual stained with FITC-
PNA, which labels the developing acrosome (green), and PI (red) to observe cell morphology. Scale bar is equal to 50 mm. (B) The viability of
spermatocytes treated with acrylamide (1 mM, 18 h) or glycidamide (0.5 mM, 18 h) assessed by trypan blue exclusion. Data are representative of n = 3
experiments, measured in triplicate (Mean, 6SEM), and .200 cells were scored per replicate. At the doses used in the current study, no differences in
cell morphology or viability were observed following treatment with acrylamide or glycidamide.
doi:10.1371/journal.pone.0094904.g003

Figure 4. Acrylamide exposure elicits an increase in CYP gene
expression in the male germ line. Gene expression levels were
analysed in isolated spermatocytes by Q-PCR following incubation with
acrylamide. Cells were isolated and cultured with acrylamide (1 uM,
18 h), RNA was extracted, reverse transcription performed and QPCR
conducted as described in Materials and Methods. CYP2E1 and CYP1B1
gene expression was significantly increased in spermatocytes following
acrylamide exposure (F1,16 = 20.1, *p,0.05). Data are depicted as
transformed values (2e2DDC(t)) as described in Materials and Methods,
and is representative of n = 3 experiments (Mean 6SEM).
doi:10.1371/journal.pone.0094904.g004
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damage during this stage of germ cell development, as spermato-

cytes are entering into meiosis. However, while the presence of

detoxifying enzymes in the male germ line may confer additional

protection, it also comes with attendant risks. The generation of

reactive metabolites as a product of detoxification processes may

induce both cellular and DNA damage. In male germ cells, DNA

damage is of particular importance as xenobiotic exposure may

contribute to reduced fertility and impact on the health of future

progeny [4].

Figure 5. Acrylamide and glycidamide induces DNA damage in the male germ line. DNA damage was assessed in spermatocytes treated
with acrylamide or glycidamide using the comet assay in the presence or absence of FPG. (A) Representative comet images from control, acrylamide
(1 mM, 18 h), glycidamide (0.5 mM, 18 h) and H2O2 (500 mM, 5 min) treated spermatocytes. (B) The average Tail DNA % was assessed for each sample
and in the absence of FPG, a modest increase in Tail DNA % was observed in spermatocytes treated with glycidamide (F7,663 = 61.7, *p,0.05). In the
presence of FPG however, both acrylamide and glycidamide produced significant increases in Tail DNA % (***p,0.001) with a greater response
observed following glycidamide exposure. Treatment of spermatocytes with H2O2 (500 mM, 5 min) was used as a positive control for damage, and
induced significant increases in Tail DNA % in both the presence and absence of FPG. (C) Spermatocytes were assessed for DNA damage using the
FPG comet assay following acrylamide exposure, at doses between 10 nM to 10 mM for 18 h. Spermatocytes treated with H2O2 (500 mM, 5 min) were
used as a positive control for DNA damage. Significant increases in Tail DNA % were observed in spermatocytes following 100 nM acrylamide
treatment and above (F5,507 = 83.6, ***p,0.001). Significant increases in Tail DNA % were also observed in cells treated with H2O2 (***p,0.001).(D)
Spermatocytes were assessed for DNA damage using the FPG comet assay following glycidamide exposure, at doses between 5 nM to 5 mM for 18 h
(F5,491 = **p,0.01). Spermatocytes treated with H2O2 (500 mM, 5 min) were used as a positive control for DNA damage. Significant increases in Tail
DNA % were observed in spermatocytes following 5 nM glycidamide treatment and above. All data are representative of n = 3 experiments (Mean
6SEM).
doi:10.1371/journal.pone.0094904.g005
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The specificity of CYP2E1 for acrylamide enabled us to

examine the role of one particular detoxifying enzyme in the

male germ line in response to xenobiotic exposure. In the present

study, we utilised a relatively low level of acrylamide exposure

(1 mM, 18 h), that was not cytotoxic to isolated spermatocytes

(Fig. 3), but sufficient to elicit a pronounced cellular response

(Fig. 4). Spermatocytes were found to respond to acrylamide

exposure by increasing mRNA expression not only ofCYP2E1, but

alsoCYP1B1. While CYP1B1 is not specifically involved in the

metabolism of acrylamide, members of both the CYP1 and CYP2

families of CYPs are primarily involved in metabolism of

xenobiotics and are typically induced as part of the toxic response

[41]. Thus, it is possible that the toxic response triggered by

acrylamide exposure increases expression of multiple genes

involved in detoxification in spermatocytes. Indeed, regulation of

various detoxifying CYPs has been observed in the liver of

acrylamide exposed mice [42]. However, to our knowledge, the

present study is the first to observe such a response in the male

germ line.

The quantitative increase in CYP2E1 mRNA, observed in

acrylamide treated spermatocytes suggested that CYP2E1 is

upregulated in germ cells at the transcriptional level, through

either transcriptional activation or via inhibition of mRNA

degradation. Interestingly, several studies have demonstrated that

the elevation of CYP2E1 protein levels by exogenous substrates in

the liver is mediated largely through protein stabilisation, with

little to no change in mRNA levels [43]. Conversely, other studies

have indicated that induction of CYP2E1 gene expression does

occur in extrahepatic tissues, such as kidney, intestine and lung

[44,45] which supports our observations in early male germ cells

(Fig. 4). However, none of the aforementioned studies examined

CYP2E1 induction in response to acrylamide, and induction of

CYP2E1 in male germ cells has not previously been explored. The

results of the current study indicate that male germ cells do

respond to xenobiotic exposure and that specific mechanisms of

CYP regulation are active in the mouse male germ line.

Additionally, our results suggest that spermatocytes have the

capacity to upregulate metabolism of acrylamide to glycidamide.

DNA damage in spermatocytes was investigated using the

comet assay, which measures DNA strand breaks as opposed to

adduct formation. Hence, cleavage enzymes that recognise specific

DNA adducts were also utilised. The major DNA adducts that

glycidamide forms are N7-(2-carbamoyl-2-hydroxyethyl)guanine

(N7-GA-Gua) and N3-(2-carbamoyl-2-hydroxyethyl)adenine (N3-

GA-Ade) [20]. The cleavage enzyme, FPG, has been used in

previous studies in the comet assay to recognise these glycidamide

adducts and introduce strand breaks at these adduct sites [46,47].

In the absence of FPG, a significant increase in DNA damage was

induced in spermatocytes treated with glycidamide (p,0.05, Fig. 5

B). This may be due to depurination of glycidamide adducts,

resulting in single or double strand breaks which are detectable by

the comet assay [48]. However, upon the addition of FPG, the

level of DNA damage detected more than doubled for both

acrylamide and glycidamide treated cells (Fig. 5 B) and was found

to increase dose-dependently (Fig. 5 C and D). From this, it could

be inferred that acrylamide induces DNA damage in spermato-

cytes via adducts, rather than DNA strand breaks, and may be

indicative of the presence of glycidamide-DNA adducts as

exposure to glycidamide in these cells produced similar increases

in damage.

In contrast, a previous study by Hansen et al. [46] found that

two hours of acrylamide exposure at millimolar concentrations did

not induce DNA damage in dissociated testicular cells as detected

by the FPG modified comet assay. These doses were 100 fold

greater than the doses used in our study. However our study was

conducted on a population of cells enriched for spermatocytes

which express cyp2e1Thedifferences in exposure times between

the two experiments may also be indicative of the required time for

cells to metabolise acrylamide to glycidamide. As detailed above,

germ cells respond by inducing greater levels of CYP2E1 mRNA.

Therefore the longer exposure time in our experiments (18 h) may

also lead to enhanced levels of CYP2E1, potentially upregulating

the metabolic conversion of acrylamide to glycidamide. Indeed,

Sega et al. [49] reported that a maximum peak in DNA repair

activity in mouse testis was observed six hours post acrylamide

treatment, which was considered to be related to the period of time

needed for acrylamide metabolism to occur.

As previously mentioned, the damage detected by FPG in the

comet assay could be indicative of oxidative adducts as well as

Figure 6. Oxidative stress may play a role in the DNA damage
induced by acrylamide in spermatocytes. (A) The comet assay was
conducted on spermatocytes treated with acrylamide (1 mM, 18 h) or
glycidamide (0.5 mM, 18 h) in the presence or absence of hOGG1.
Significant levels of DNA damage were not detected in the acrylamide
treated spermatocytes in either the presence or absence of hOGG1. A
modest but significant increase in Tail DNA % was observed in
spermatocytes following glycidamide treatment in the absence of
hOGG1 (F7,677 = 134.4, *p,0.001); however, hOGG1 treatment resulted
in greater detection of Tail DNA % following glycidamide exposure.
Treatment with H2O2 (500 mM, 5 min) was used as a positive control
and produced significant increases in Tail DNA % in the presence of
either enzyme (***p,0.001). (B) Glutathione (GSH) levels in spermato-
cytes were measured using a GSH assay following acrylamide (1 mM,
18 h) or glycidamide exposure (0.5 mM, 18 h). No significant differences
in GSH levels in male germ cells were observed following acrylamide or
glycidamide treatment. Additionally, relatively low GSH levels were
found in spermatocytes (0.19 mM) compared to P19 embryonal
carcinoma cells (2.14 mM, F3,6 = 1676.2, ***p,0.001). Data are represen-
tative of n = 3 experiments (Average 6SEM).
doi:10.1371/journal.pone.0094904.g006
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glycidamide adducts as FPG has the capacity to recognise several

types of DNA lesions, including 8-oxoGua. Exposure to either

acrylamide or glycidamide may deplete glutathione levels and

subsequently result in increased oxidative stress. Indeed, oxidative

stress is known to contribute to poor sperm function and generate

DNA damage in sperm [50]. However, cellular GSH levels were

unaffected by either acrylamide or glycidamide in spermatocytes

(Fig. 6 B). Further characterisation of oxidative DNA damage

using hOGG1 failed to identify significant increases in the

acrylamide treated spermatocytes (Fig. 6 A), and only a modest

increase was found in glycidamide treated cells (22% Tail DNA,

p,0.001). Hence, the DNA damage induced by acrylamide and

glycidamide in spermatocytes are likely due to the presence of

glycidamide adducts, and a minor contribution of oxidative

damage.

Importantly, this study demonstrates the connection between

CYP2E1 mediated metabolism of acrylamide and DNA damage.

Resveratrol is an established inhibitor of CYP2E1 [37,38]. While

acrylamide treatment does cause an increase in DNA adducts, co-

treatment of spermatocytes with 1 mM acrylamide and 0.1 mM

resveratrol for 18 h reduced the level of DNA adducts as measured

by the FPG modified comet assay to control levels. This reveals the

capacity of isolated spermatocytes to metabolise acrylamide to

glycidamide (Fig. 7). The levels of adduct formation when

spermatocytes were treated with either glycidamide (0.5 mM) on

its own or in combination with resveratrol were no different.

Glycidamide is the molecule which forms adducts with DNA.

Direct treatment with glycidamide causes DNA damage, with

resveratrol treatment having no effect on the DNA damaging

capacity of glycidamide only it’s production by cyp2e1. Use of the

hOGG1 enzyme in the comet assay demonstrated that resveratrol

had no effect on the minimal role that oxidative adducts play in

the DNA damaging capacity of acrylamide. Thus the isolated

spermatocytes have the capacity to generate glycidamide adducts

by metabolising acrylamide.

These findings are consistent with in vivo studies which suggest

the relevance of acrylamide metabolism within the testis.

Radioactively [14C] labelled acrylamide is detected in testis tissue

only 1 hour after administration [11], showing that acrylamide

reaches testicular tissue in its unmetabolised form. Thus, in situ

activation of acrylamide to glycidamide in the in vivo situation is

highly likely. When we treat whole animals with acrylamide we see

DNA damage in spermatocytes [51]. Since acrylamide can reach

these cells without being metabolised our data indicates that

localised metabolism is possible.

DNA damage is likely to be reversible in early stage germ cells,

as DNA repair mechanisms are still intact [1]. However, post-

meiotic cells may not have the capacity to repair DNA damage as

effectively. The blood/testis barrier prevents the passage of most

toxic substances through the seminiferous tubule towards the

residing post-meiotic germ cells. Acrylamide however has been

found to reach the testes in an un-metabolised state and is able to

transit the blood/testis barrier, due to its low molecular weight and

hydrophilicity [52]. Spermatogonia lie outside the blood/testis

barrier (see Fig. S1 in File S1) and have functional repair

mechanisms to deal with DNA damage. In contrast, spermato-

cytes, which lie within the blood/testis barrier, are in the process of

undergoing meiosis and DNA damage generated at this stage

would be expected to be of significant consequence. In a study by

Olsen et al. [53], spermatocyte exposure to benzopyrene produced

DNA damage that was retained throughout spermatogenesis,

resulting in adducts present in the spermatozoa. Thus, it is highly

Figure 7. Acrylamide is metabolized in spermatocytes to glycidamide via CYP2E1. The Isolated spermatocytes were treated with
acrylamide (1 mM, 18 h), glycidamide (0.5 mM, 18 h), resveratrol (0.1 mM, 18 h), or a combination of acrylamide (1 mM) and resveratrol (0.1 mM, 18 h)
or glycidamide (0.5 mM) and resveratrol (0.1 mM, 18 h). DNA damage was assessed by the comet assay modified by the addition of the FPG or hOGG1
enzyme. Significant levels of DNA damage were detected in the acrylamide treated spermatocytes in the presence of FPG (F13,877 = 92.5, ***p,0.001)
or hOGG1 (**p,0.001). A significant increase in DNA damage was observed with glycidamide treatment in the presence of FPG (***p,0.001).
Resveratrol treatment on its own had no effect on the level of DNA damage in spermatocytes with FPG or hOGG1 treatment. DNA damage assessed
in cells treated with the combination of acrylamide and resveratrol was not significantly different from control. Treatment with glycidamide and
resveratrol caused a significant induction in DNA damage when treated with FPG (***p,0.001), but not hOGG1. Spermatocytes treated with H2O2

(500 mM, 5 min) were used as a positive control for DNA damage. Significant increases in Tail DNA % were observed in cells treated with H2O2 in the
presence of either FPG or hOGG1 (***p,0.001). All data are representative of n = 3 experiments (Mean 6SEM).
doi:10.1371/journal.pone.0094904.g007
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possible that the DNA damage induced in spermatocytes by

acrylamide will persist through to mature spermatozoa in mice

exposed to acrylamide.

Induction of CYP gene expression in response to xenobiotic

exposure in male germ cells represents an additional mechanism of

cellular defence that has not been extensively examined in the

germ line in previous studies. Having shown that spermatocytes

are the specific germ cell type that express CYP2E1, it is

interesting to note that in our previous study [23], chronic

exposure to acrylamide in male mice also produced high levels of

DNA damage in these cells. In the present study we also show that

the presence of DNA adducts in spermatocytes following

acrylamide exposure are likely due to glycidamide, rather than

oxidative adducts. Indeed, the upregulation of CYP2E1expression

in spermatocytes exposed to acrylamide may in turn upregulate

the metabolism of acrylamide to glycidamide, leading to an

increase in glycidamide-DNA adducts. This present study has

demonstrated the capacity of spermatocytes to metabolise

acrylamide to glycidamide via CYP2E1. This metabolism can be

prevented with the use of the CYP2E1 inhibitor resveratrol.

Importantly, the inhibition of glycidamide formation from

acrylamide prevents the DNA damage as measured in terms of

DNA adducts. These results provide further evidence of the

consequences of acrylamide exposure during spermatogenesis and

sheds light on the mechanisms of detoxification present in early

male germ cells.
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