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widely used to integrate various types of omics data and study the cellular physiology under

different conditions. Here, we present PhenoMapping, a protocol that uses GEMs, omics, and

phenotypic data to map cellular processes and observed phenotypes. PhenoMapping also

classifies genes as conditionally and unconditionally essential and guides a comprehensive

curation of GEMs.
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SUMMARY

Targeted identification of cellular processes responsible for a phenotype is of
major importance in guiding efforts in bioengineering and medicine. Genome-
scale metabolic models (GEMs) are widely used to integrate various types of
omics data and study the cellular physiology under different conditions. Here,
we present PhenoMapping, a protocol that uses GEMs, omics, and phenotypic
data to map cellular processes and observed phenotypes. PhenoMapping also
classifies genes as conditionally and unconditionally essential and guides a
comprehensive curation of GEMs.
For complete details on the use and execution of this protocol, please refer to
Stanway et al. (2019) and Krishnan et al. (2020).
BEFORE YOU BEGIN

In this first section, we present a brief relation of PhenoMapping to prior art and the preparatory

steps to perform a PhenoMapping analysis (Figure 1). We discuss a set of decisions to make and

how they impact the subsequent PhenoMapping analysis. In addition, we introduce the input

data needed and how to set up the GEM and software. To adapt to all ranges of expertise in meta-

bolic modeling, we provide links to the troubleshooting section, where we describe technical details

to perform the related steps. We present as an example the application of these preparatory steps to

Plasmodium berghei in the section Expected outcomes. These steps were applied similarly in Toxo-

plasma gondii and are generalizable to any organism and study case. For examples of studies vali-

dating the results and insights obtained following the PhenoMapping protocol, please refer to Stan-

way et al., 2019 and Krishnan et al., 2020.
Relation of method to prior art

Identifying cellular processes responsible for a phenotype is especially complex and relevant in bio-

logical systems. Genome-scale models (GEMs) are widely used to integrate all available biochemical

information of an organism and various types of omics data to study the metabolic function at

different conditions. The protocol described here builds on three decades of method development

to construct and analyze GEMs. It complements available protocols (Thiele and Palsson, 2010) and

tools (Agren et al., 2013; Devoid et al., 2013; Heirendt et al., 2019, 2019; Lieven et al., 2020; Ma-

chado et al., 2018; Salvy et al., 2018; Wang et al., 2018) for high-quality reconstruction and analysis

of GEMs. This protocol provides a systematic guideline to identify cellular bottlenecks underlying
STAR Protocols 2, 100280, March 19, 2021 ª 2020 The Author(s).
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Figure 1. Preparatory steps for a PhenoMapping analysis

Color code is consistent with related steps in the main PhenoMapping workflow. We include an approximate assessment of the timing each step takes.
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phenotypes. It also describes how to use the knowledge about metabolic bottlenecks toward the

understanding of conditional essentiality and curation of GEMs, as recently shown (Krishnan

et al., 2020; Stanway et al., 2019).

Alternative methods to increase the predictive accuracy of GEMs include automatized approaches

like AMMEDEUS (Medlock and Papin, 2020), GrowMatch (Kumar and Maranas, 2009) or GlobalFit

(Hartleb et al., 2016), and others less automatized like RING (Sohn et al., 2012). The solutions pro-

vided by these methods may remain limited to the physico-chemical constraints integrated into the

GEM. This protocol suggests a systematic classification and evaluation of such physico-chemical

constraints for the identification and curation of a broader range of knowledge gaps in GEMs. More-

over, through the systematic classification and analysis of bottlenecks defined in this protocol, one

gains important biological insights like substrates linked to conditional gene essentiality that had

remained rather unexplored in silico so far. Currently, tools like COBRA (Heirendt et al., 2019), RA-

VEN (Wang et al., 2018), modelSEED (Devoid et al., 2013), KBase (US Department of Energy Systems

Biology Knowledgebase, http://kbase.us), CarveMe (Machado et al., 2018), TFA (Salvy et al., 2018)

etc. are widely used to construct and analyze GEMs. PhenoMapping, as defined in this protocol and

accompanying GitHub repository (www.github.com/EPFL-LCSB/phenomapping), can be applied in

combination with any of those tools. This protocol provides rigorous details for a PhenoMapping

study design, integrative analysis using omics and phenotypic data, and comprehensive evaluation

of results.
Organism and cellular state choice

Timing: 1–10 min

1. Select an organism and strain or cell line of interest.

2. Select the cellular state(s) of interest.

a. Select a life-stage (if applicable).

b. Select a specific time point in the life-stage.

CRITICAL: the cellular state selected will determine the metabolic state of your organism
or cell, which further restricts the gathering of data (see section on Phenotypic, media, and

omics data collection) and selection of a cellular objective (see section Cellular objective

definition) in the PhenoMapping analysis. We recommend the ‘‘safe and easy’’ selection

of a highly metabolically active state for which the cellular objective can be represented

as a ‘‘desire to maximize growth.’’
2 STAR Protocols 2, 100280, March 19, 2021
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Metabolic model selection

Timing: ~1 day

Note: the time spent to select a GEM varies dramatically depending both on the experience of

the user with the organism of study and analysis of GEMs, and on the availability and quality of

the GEMs.

3. Search in databases like BiGG (King et al., 2015), modelSEED (Henry et al., 2010), KBase (US

Department of Energy Systems Biology Knowledgebase, http://kbase.us), LCSB database

(LCSB, 2020), etc. or publications for a GEM of your organism of interest.

CRITICAL: if there exists no GEM for your organism and strain, you may want to follow
standard protocols to construct a GEM; Troubleshooting 1. If there exist multiple

GEMs, you need to select one for the subsequent analysis; Troubleshooting 2. Any addi-

tional analysis and evaluation of the GEMs prior to PhenoMapping are an alternative with a

consequent time extension.
4. Select a GEM for your organism and strain of interest.

Note: in the subsequent steps the GEM will be thermodynamically curated, prepared, and

initialized to be ready for a PhenoMapping analysis.

Thermodynamic curation

Timing: ~1 day

Note: the time spent to thermodynamically curate a GEM varies considerably depending on

the tools used to perform this task. In addition, the time will vary based on the extent to which

the user wants to a posteriori evaluate and curate the performance of the GEM under thermo-

dynamic constraints. If no systematic tool is used to curate the GEM thermodynamically, vari-

ables like GEM size will affect the timing too.

5. Include all thermodynamic data in the GEM as necessary within the TFA framework (Henry et al.,

2006, 2007; Jankowski et al., 2008; Salvy et al., 2018) to perform a thermodynamically consistent

flux balance analysis; Troubleshooting 3.

6. Verify the GEM has all fields required to be thermodynamically curated in a systematic fashion

following the steps defined in the section Software setup.

Phenotypic, media, and omics data collection

Timing: 5–8 h

Note: the time spent in a literature search and mapping of the data to the GEM greatly varies

depending on the organism of study, amount of data available, and automatization of the

mapping.

7. Get phenotypic data for the organism and cellular state to study.
a. List all genes in the GEM and map the collected data of in vivo phenotypes (e.g., essential or

dispensable upon single gene knockout).
8. Gather information about the media composition at the cellular state.
a. List all extracellular metabolites in the GEM and map the available information about the

availability of each metabolite at the cellular state.
STAR Protocols 2, 100280, March 19, 2021 3
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9. Assemble available metabolomics data for the organism and cellular state to study.
4

a. List the set of metabolites included in the GEM and map the corresponding concentration

ranges (minimum and maximum absolute values).
10. Assemble available RNA-seq or proteomics datasets for the organism and cellular state to

study.
a. List all genes in the GEM and map the corresponding and unique RNA or protein level.
Medium definition

Timing: 1–10 min

11. Select a media composition for the PhenoMapping analyses.

CRITICAL: we recommended to select a rich medium at this point. We define a rich me-
dium when a broad range of metabolites (if possible, all extracellular) are allowed to be

taken up by the GEM. Selecting a rich medium at this stage will allow PhenoMapping to

map substrate availability to essentiality (conditional essentiality). PhenoMapping will

only be able to map conditionally essential genes and the responsible substrates for the

genes’ essentiality, if those substrates are made available (can be taken up) at this step

(see section Metabolic model contextualization).
12. Define the medium composition in the GEM with the desired maximum uptake rates allowed;

Troubleshooting 4.
Genetic background and essentiality definition

Timing: 1–5 min

13. Select the type of essentiality analysis to perform.
a. Single gene knockout.

b. Single reaction knockout.

c. Multiple gene knockout, or multiple reaction knockout.

Note: by default, PhenoMapping performs single gene knockout. This is because the pheno-

typic data available are normally single gene knockout data. If a single gene knockout analysis

is selected, PhenoMapping will map bottlenecks to individual essential genes. A single gene

knockout analysis is normally preferred to a multiple knockout analysis because it is

faster (given the current available methods to unbiasedly perform double or multiple gene

knockout analysis in silico). In this protocol, we will refer to single essential genes. And, the

same concepts apply to any set of essential genes or reactions identified in silico as decided

at this step.

14. Decide the genetic background of the in silico organism (GEM) on which the PhenoMapping

analysis will be performed.
a. Keep the wild-type genetic background to perform PhenoMapping analyses of single essen-

tial genes.

b. Define in silico deletion strains, i.e., with a deleted gene or reaction or multiple deleted

genes or reactions (even if that does not match the genetic background of the organism cho-

sen) to efficiently identify bottlenecks of sets of redundant genes.

Note: a scenario with a knockout backgroundmight be desired when one knows that a gene is

part of a synthetic lethal pair and one desires to map bottlenecks to the synthetic lethal pair.
STAR Protocols 2, 100280, March 19, 2021
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This strategy will not require a double knockout analysis within PhenoMapping, which is more

time consuming and computationally expensive.

15. Define an essentiality threshold or a percentage of the optimal value of the objective function.

The knockout that renders a value of objective function below this threshold is considered as le-

thal (see Essentiality prediction section).
a. PhenoMapping uses by default an essentiality threshold of 0.1, which indicates that every

gene whose knockout leads to a growth reduction of 90% or more with respect to a reference

value (normally the wild-type growth) is considered essential.
Cellular objective definition

Timing: 1–5 min

Note: the time spent to define the objective function varies considerably depending on three

main factors: the type of objective function chosen; the feasibility of the GEM for the given

objective function under the defined conditions; and the experience of the user to accurately

formulate the desired objective function. Difficulties in any of these points can expand the

timing to days and weeks.

16. Select and define in the GEM an objective function that represents the cellular objective at the

state of study (Schuetz et al., 2007). By default, PhenoMapping uses maximization of growth as

the objective function (Feist and Palsson, 2010); Troubleshooting 5.

17. Verify that it is possible to obtain a solution for the objective function selected in the medium

and genetic background defined; Troubleshooting 6.

Accuracy metric definition

Timing: 1–5 min

18. Familiarize with the description of knockouts based on the predicted outcome using the GEM:
a. Positives: the GEM predicts little or no effect on wild-type growth (positive growth) upon

knockout of the gene

b. Negatives: the GEM predicts a negative effect on wild-type growth upon knockout of the

gene
19. Familiarize with a contingency matrix for the comparison of predictions and data, which includes

the following definitions:
a. True positives (TP): dispensable both in silico and in vivo.

b. True negatives (TN): essential both in silico and in vivo.

c. False positives (FP): dispensable in silico and essential in vivo.

d. False negatives (FN): essential in silico and dispensable in vivo.
20. Select a metric to assess the accuracy of your GEM in the essentiality prediction. These metrics

can be systematically computed within PhenoMapping (see section Expected outcomes):
a. Matthew correlation coefficient (MCC):
MCC =
TP,TN� FP,FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞðTP + FNÞðTN+ FPÞðTN+ FNÞp
b. Overall accuracy:
Accuracy =
TP + TN

TP + FP + TN+ FN
STAR Protocols 2, 100280, March 19, 2021 5
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c. Negative prediction rate (NPR):
NPR =
TN

TN+ FN
d. Positive prediction rate (PPR):
PPR =
TP

TP + FP
e. Sensitivity:
Sensitivity =
TP

TP + FN
f. Specificity:
Specificity =
TN
TN+ FP
Note: the MCC and overall accuracy tend to be used as the main metrics of accuracy assess-

ment. However, they assume that incorrect predictions, i.e., FPs and FNs, are equally ‘‘bad,’’

and this is arguably not the case. Given a reliable and high-quality dataset of phenotypes, one

would normally prefer to work with a GEM that has less FNs than FPs. Such GEM is not over-

constrained, so it does not incorrectly predict essential genes, but it lacks a set of constraints

to increase the number of true essentiality predictions.

For example, when one uses a highly curated life-stage agnostic GEM, one expects that it

already contains all biochemical information available about the organism. To make it life-

stage specific, we should a priori only add physico-chemical constraints that are context-spe-

cific. These constraints should increase the number of correctly identified conditionally essen-

tial genes, while not increasing the incorrect essentiality predictions (FNs). This means, to

generate context-specific GEMs we may try to increase the positive prediction rate while

keeping the negative prediction rate constant.
Data setup

Timing: 1 h

This section includes a suggestion on the setup of data within the PhenoMapping repository. The

data were set up in this format for the example scripts and PhenoMapping analyses of the Plasmo-

dium berghei metabolic model (iPbe) (Stanway et al., 2019) and Toxoplasma gondii metabolic

model (iTgo) (Krishnan et al., 2020).

21. GEM setup
a. Save the GEM in MATLAB (.mat) format in the folder ‘‘models’’ of the PhenoMapping direc-

tory.

b. Generate a folder with your model name in the PhenoMapping subfolder ‘‘tests/ref.’’
22. Phenotypic data setup
a. Format the phenotypic data in a 2-column csv file: genes names (column 1) and observed

phenotype upon knockout (column 2).

b. Store the csv file with the phenotypic data in the PhenoMapping subfolder tests/ref/model-

name.
STAR Protocols 2, 100280, March 19, 2021
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CRITICAL: verify gene identifiers match those included in the model in the field ‘‘genes.’’ If
not available in the GEM, a warning will state that these genes are not in the GEM and the

data will not be considered for further analysis.
23. Media data setup
a. Format the media data in a 2-column csv file: metabolite names or identifiers (column 1) and

information about their availability or uptake (column 2).

b. Store the csv file with media data in the PhenoMapping subfolder ‘‘tests/ref/modelname.’’

CRITICAL: verify metabolite identifiers match those included in the model in the field
‘‘mets’’ or ‘‘metNames.’’ If not available in the GEM, a warning will state that these metab-

olites are not present in the GEM and the data will not be integrated or considered for

further analysis.
24. Metabolomics data setup
a. Format the metabolomics data as a 3-column csv file: names of metabolites for which con-

centration data are available (column 1) and concentration data formatted as explained

below in columns 2 and 3.

b. Compute the minimum (average minus standard deviation) and maximum (average plus

standard deviation) values of concentration measured.

c. Convert the units of the metabolomics data into mol/Lcell.

d. Add the concentration values to the csv file: minimum concentration values (column 2) and

maximum concentration values (column 3).

e. Store the csv file with metabolomics data in the PhenoMapping subfolder tests/ref/model-

name.

CRITICAL: verify metabolite identifiers match those included in the model in the field
‘‘mets’’ or ‘‘metNames.’’ If not available in the GEM, a warning will state that these metab-

olites are not present in the GEM and the data will not be integrated or considered for

further analysis.
25. Transcriptomics or proteomics data setup
a. Format the transcriptomics or proteomics data in a 2-column csv file: genes names (column 1)

and a unique value of measured RNA or protein level (column 2).

Note: the units of the RNA-seq or proteomics measurements are not relevant at this point as

long as all RNAs or proteins measured share these units. This is because the GEMs used in

PhenoMapping do not integrate the concentration of RNAs or proteins as variables. Pheno-

Mapping will evaluate the distribution of RNA or protein levels across all genes in the GEM

and will discretize these distributions in three groups using TEX-FBA (Pandey et al., 2019);

lowly expressed, medium expression, and highly expressed (see the section describing the

transcriptomics analysis and TEX-FBA parameters definition).

b. Store the csv file with transcriptomics or proteomics data in the PhenoMapping subfolder

tests/ref/modelname.

Software setup

Timing: 5–30 min

This section includes a suggestion on the setup of paths and preprocessing of the GEM for a Phe-

noMapping analysis using a sample script. There are many alternatives, and some are discussed

in more detail in the tutorials script within the PhenoMapping repository and in this protocol in

the Troubleshooting section.
STAR Protocols 2, 100280, March 19, 2021 7
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Note: PhenoMapping requires MATLAB, CPLEX, and the GitHub repositories matTFA, TEX-

FBA, and PhenoMapping. Links to these have been included in the Materials and equipment

section.

26. Prepare a settings script using as reference the templates provided in the PhenoMapping sub-

folder tests, i.e., settings_ipbeblood.m, settings_ipbeliver.m, settings_itgo.m.
REA

Dep

P. be
phen

P. be
phen

P. be
stage

P. be
stage

Com
from

GEM

T. go
phen

T. go

GEM

Softw

Phen

TEX-

matT

MAT

CPLE

COB
versi

8

a. Provide paths, file names, and variable names for the GEM and data to be used in Pheno-

Mapping.

b. Select whether the GEM should be thermodynamically curated. This is an input of the init-

TestPhenoMappingModel function.
27. Run the settings script to (1) verify that all paths to matTFA, TEX-FBA, and CPLEX are found, (2)

check that all data files are found, and (3) preprocess the GEM for PhenoMapping analysis.

CRITICAL: this step will highlight any problem to add paths to CPLEX, matTFA, or TEX-
FBA. This step will also spot any missing information or field in the GEM as required for

PhenoMapping; Troubleshooting 7.
KEY RESOURCES TABLE
GENT or RESOURCE SOURCE IDENTIFIER

osited data

rghei relative growth rate
otypes in blood stages

Bushell et al., 2017 https://doi.org/10.1016/j.cell.
2017.06.030

rghei relative growth rate
otypes in liver stages

Stanway et al., 2019 https://doi.org/10.1016/j.cell.
2019.10.030

rghei RNA-seq data in blood
s

Otto et al., 2014 https://doi.org/10.1186/s12915-
014-0086-0

rghei RNA-seq data in liver
s

Caldelari et al., 2019 https://doi.org/10.1186/s12936-
019-2968-7

piled metabolomics dataset
P. falciparum

Chiappino-Pepe et al., 2017 https://doi.org/10.1371/journal.
pcbi.1005397

of P. berghei iPbe Stanway et al., 2019 https://doi.org/10.1016/j.cell.
2019.10.030

ndii relative growth rate
otypes in tachyzoites

(Sidik et al., 2016) https://doi.org/10.1016/j.cell.
2016.08.019

ndii tachyzoite RNA-seq data (Hehl et al., 2015); ToxoDB v45 www.toxodb.org

of T. gondii iTgo Krishnan et al., 2020 https://doi.org/10.1016/j.chom.
2020.01.002

are and algorithms

oMapping www.github.com/EPFL-LCSB/
phenomapping

1.0

FBA www.github.com/EPFL-LCSB/texfba 1.0

FA www.github.com/EPFL-LCSB/matTFA 1.0

LAB Mathworks (https://www.mathworks.
com/products/matlab.html)

R2016a - R2019a

X https://www.ibm.com/analytics/
cplex-optimizer

12.8

RA Toolbox (used updated
on within matTFA)

www.github.com/EPFL-LCSB/matTFA 1.0
MATERIALS AND EQUIPMENT

Software

MATLAB (MathWorks: https://www.mathworks.com/products/matlab.html)
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Alternatives: While the current implementation of PhenoMapping is in MATLAB, the Pheno-

Mapping rationale and workflow is extendable to any other programming language like

python.

CPLEX (IBM: https://www.ibm.com/analytics/cplex-optimizer.html)

Alternatives: While the current implementation of PhenoMapping uses CPLEX, other avail-

able solvers like gurobi could be implemented and used.

matTFA (GitHub: www.github.com/EPFL-LCSB/matTFA)

Alternatives:An implementation of matTFA in python exists and it is called pyTFA (Salvy et al.,

2018).

TEX-FBA (GitHub: www.github.com/EPFL-LCSB/texfba)

Alternatives: While the current implementation of TEX-FBA is in MATLAB, the TEX-FBA

formulation is extendable to any other programming language like python.

PhenoMapping (GitHub: www.github.com/EPFL-LCSB/phenomapping)

CRITICAL: PhenoMapping only requires CPLEX, matTFA, and TEX-FBA to be on the MAT-
LAB path for optimization analysis. Further instructions on how to optimally handle paths in

PhenoMapping are available in Troubleshooting 7.
Data

The data used in PhenoMapping are collected from separate studies. Here, we summarize data

types for which a PhenoMapping analysis is currently implemented. We define two types of data de-

pending on their use in PhenoMapping: data type 1 involves phenotypic data used for a comparison

with the GEM predictions to assess the accuracy of the GEM; and data type 2 involves other datasets

like omics data andmedia data integrated into the GEM to contextualize it. None of the datasets but

the GEM is truly essential since one can perform a purely in silico analysis of phenotypes and bottle-

necks with a metabolic model in PhenoMapping. However, broader biological insights are achieved

when experimental data are integrated into the PhenoMapping pipeline. We define how essential

each dataset is (++++, necessary; +++, strong; ++, medium; +, low) for a PhenoMapping analysis,

and the suggested labels or values for the data.
Data (PhenoMapping data type)
Degree of
requirement Suggested labels

GEM ++++ MATLAB format with standard fields defined in constraint-
based modeling

Phenotypic data (data type 1) +++ essential; non-essential; (slowa)

Media data (data type 2) + available; non-available; (unknown)

Thermodynamic data (data type 2) ++ Thermodynamically curated GEM (Salvy et al., 2018)

Metabolomics data (data type 2) ++ Absolute values (mol/Lcell). Minimum and maximum
measured or allowed concentration values per metabolite

RNA-seq data (data type 2) ++ TPMs or absolute values. Unique RNA level per gene
aSome experimental datasets like those obtained for the blood and liver stages of the Plasmodium development (Bushell

et al., 2017; Stanway et al., 2019) may include ‘‘slow’’ phenotypes. These genes might be considered as essential or dispens-

able in PhenoMapping depending on the GEM context, as explained in the next sections.
CRITICAL: PhenoMapping identifies metabolic bottlenecks responsible for the essential-
ity of a gene. PhenoMapping can map bottlenecks to in silico essential genes but stronger
STAR Protocols 2, 100280, March 19, 2021 9
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biological insights can be obtained when experimentally observed essential genes or

phenotypic data (data type 1) are used in the pipeline.
10
Alternatives: To study context-specific functions of the cell, PhenoMapping integrates omics

and media data (data type 2) into a GEM. If no omics data are available, PhenoMapping will

only map context-specific essential genes to substrate availability. If omics data are available,

PhenoMapping will identify which minimum alternative sets of concentration levels (as

measured in the omics datasets) can explain an observed gene essentiality or phenotype

(data type 1).
STEP-BY-STEP METHOD DETAILS

To enable identification of cellular processes underlying phenotypes, PhenoMapping leverages all

available biochemical information of an organism as integrated into a GEM, as well as omics (e.g.,

metabolomic, transcriptomic) and phenotypic data in one or more conditions or life stages. These

measurements are used along with the metabolic model of the organism of interest to study

context-specific metabolic function and essentiality, identify sets of conditions that explain pheno-

types, and if necessary further curate the GEM. Comparison between essentiality predictions and

phenotypic data allows to assess accuracy of the GEM. Some of the steps have been extensively

described previously, and some were recently first introduced (Chiappino-Pepe et al., 2017; Stan-

way et al., 2019). Here, we present a comprehensive protocol describing the proper and practical

integration of all relevant PhenoMapping steps, as well as advice on checks and troubleshooting,

to allow efficient and accurate analysis of origin of phenotypes and curation of GEMs (Figure 2).

We define both setup and analysis steps. In a setup step, we conceptualize a study or perform

changes in the GEM that do not involve any analysis. These steps are GEM- and case-specific and

require mental or manual work. In an analysis step, we perform actual analysis on the GEM. All anal-

ysis steps are automatized within PhenoMapping. We emphasize the applications of this protocol to

study eukaryotic pathogens like malaria (Plasmodium) and toxoplasma (Toxoplasma) parasites for

which there is a higher uncertainty in the metabolism and growing conditions. This protocol can

be easily adjusted for other complex eukaryotic organisms like human cells and also prokaryotic

systems.
PhenoMapping study design

Timing: 1–30 min

The PhenoMapping workflow is summarized in Figure 2. The first step is a setup step and involves

the design of a PhenoMapping analysis. PhenoMapping classifies the information included in a GEM

in two classes: organism-specific and context-specific information. Each class has also its layers of

information that correspond to constraints in a GEM with different types of physico-chemical mean-

ing and hierarchy (Figure 3). In the PhenoMapping study design, we use the knowledge of these

layers to select pieces of information and data (among all datasets collected in the Before you begin

section) to integrate into a GEM for the next analyses.

Note: the hierarchy of the organism-specific layers in PhenoMapping makes it possible to

distinguish between two classes of incorrect essentiality predictions or false negatives: those

arising due to a lack of information in the model, like missing genome annotations, and those

arising due to an incorrectly defined pre-assumed transport/reaction directionality or enzy-

matic irreversibility (ad hoc constraints). PhenoMapping suggests adding first all possible

missing gene annotations and metabolite transports, and later introducing ad hoc irrevers-

ibility constraints when needed. The hierarchy of the context-specific layers in PhenoMapping

is suggested based on the uncertainty of the data and methodology to integrate such data

into the GEM. For example, data on media composition tend to be more reliable than
STAR Protocols 2, 100280, March 19, 2021
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Figure 2. The PhenoMapping workflow showing steps (colored boxes) and input data (boxes marked with databases)

A GEM is a necessary input (solid arrow) to the workflow and phenotypic and omics data are optional inputs (dashed arrows). When phenotypic data are

not available a purely in silico analysis of predicted phenotypes and bottlenecks will be performed. The PhenoMapping workflow involves five steps to

map phenotypes to bottlenecks: PhenoMapping study design (blue), metabolic model contextualization (lila), essentiality prediction (pink), accuracy

assessment (red), and bottleneck identification (green). An additional step can be added to curate the metabolic model if needed (yellow). The

PhenoMapping workflow is often iterative (feedback loop). We include an approximate assessment of the timing each step takes.
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measures of RNA levels. In addition, simulating the effect of a lack of substrate in the medium

is more straightforward than simulating the effect of an RNA level on the cellular physiology

using a GEM.

1. Select the type of PhenoMapping analysis to perform:

a. Organism-specific PhenoMapping analysis to identify unconditionally essential genes and

curate a generic GEM. This analysis also maps phenotypes to the following layers of informa-

tion: (1) metabolic functions annotated to the genome, (2) enzyme localization, (3) transport-

ability of metabolites between intracellular compartments, (4) enzymatic irreversibility, and (5)

a set of metabolic tasks related to biomass production (Figure 3).

b. Context-specific PhenoMapping analysis to study conditional essentiality and generate a

context-specific GEM. This analysis also maps phenotypes to the following layers of informa-

tion: the (6) media composition or uptakes, (7) thermodynamic feasibility at some given intra-

cellular conditions including metabolite concentrations, (8) gene expression, and (9) transcrip-

tional regulation or regulation of expression between isoenzymes (Figure 3).

2. Within an organism-specific or context-specific analysis, select the layer(s) of information to keep

within the GEM:

a. Biochemistry layer. Analysis of the biochemistry layer serves to identify essential genes as

defined uniquely by the genome annotation and metabolic capabilities included in the

GEM. This analysis will not account for any physiological constraint in cellular metabolism

and hence allows to identify metabolic gaps purely due to missing functional annotations.

b. Localization layer (in eukaryotes). A comparative analysis between the biochemistry and local-

ization layer will identify genes that become essential due to compartmentalization of en-

zymes and metabolic pathways. The localization layer includes (on the top of the biochemistry

layer) localization of enzymes and metabolites, and allows transport of all metabolites without

a phosphate, acyl-carrier protein (ACP), and CoA moiety between cytosol and other compart-

ments. If there is experimental evidence that there exists a transporter for a metabolite with a

phosphate, acyl-carrier protein, and CoA moiety, this should be allowed.
12
Note: there exists arguably some uncertainty in transport mechanisms and annotated trans-

porters in cells and cellular organisms. In PhenoMapping, as done before (Chiappino-Pepe

et al., 2017; Krishnan et al., 2020; Stanway et al., 2019; Tymoshenko et al., 2015), we assume

that any metabolite that contains a phosphate, acyl-carrier protein (ACP), and CoA moiety

might not easily diffuse (by simple diffusion) through lipid bilayer membranes and requires

a specialized transporter or transport mechanism. The exception is free phosphate that cells

normally take up.

c. Intracellular transportability layer (in eukaryotes). A comparative analysis between the local-

ization and intracellular transportability layers will highlight genes that become essential

when there exist constraints on intracellular transportability. Beside the localization informa-

tion, this analysis will integrate ad hoc directionalities for transporters or blocked

transports.

d. Enzymatic irreversibility layer. Analysis of the enzymatic irreversibility layer can be compared

to the biochemistry (in prokaryotes) or intracellular transportability (in eukaryotes). Such com-

parison suggests genes that become essential due to irreversible biotransformations (Ataman

and Hatzimanikatis, 2015). This layer includes ad hoc and pre-assigned reaction directional-

ities that should be applicable in every growing context and life-stage.
STAR Protocols 2, 100280, March 19, 2021



Figure 3. Layers of information or physico-chemical constraint types in a GEM and their hierarchy as suggested

within PhenoMapping
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Note: many GEMs tend to include pre-assumed reaction directionalities as ad hoc reaction

bounds.While this approachmight increase the prediction accuracy at a specific growth con-

dition, it can also limit the usage of such GEMs in a different scenario and the identification of

actual bottlenecks responsible for a phenotype. For example, there might be a set of metab-

olites whose concentrations are responsible for those reaction directionalities (see Metabo-

lomics layer); we would not identify these bottleneck metabolites when the source of the re-

action directionality is not TFA but ad hoc reaction bounds. We recommend defining generic

GEMs with the minimum information on a context such that they serve as platforms for inte-

gration ofmedia composition and omics data and generation of context-specific GEMs. Such

strategy was followed before (Krishnan et al., 2020; Stanway et al., 2019) with the generation

of generic GEMs like iPbe and iTgo and context-specific GEMs like iPbe-blood, iPbe-liver,

and iTgo-tachy.

e. Metabolic tasks.Metabolic tasks serve to evaluate in a modular way howmetabolism works, as

described before (Agren et al., 2013; Carey et al., 2017; Chiappino-Pepe et al., 2017; Richelle

et al., 2019; Tymoshenko et al., 2015; Wang et al., 2018). In an analysis of metabolic tasks, we

define a set of input molecules (extracellular nutrients or intracellular precursors) and expected

output molecules (biomass precursors or expected end products of a metabolic pathway).

Next, we evaluate whether the task is feasible. A task is feasible when it is possible to produce

all output molecules using the input molecules. We next evaluate what metabolic pathway was

used and which genes are essential to fulfill a task.
STAR Protocols 2, 100280, March 19, 2021 13
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f. Media layer. Analysis of in silico minimal media allows to study nutritional requirements, eval-

uate substrate substitutability, and identify genes that become essential upon substrate inac-

cessibility. The minimum sets of substrates that rescue essentiality when added to an in silico

minimal medium are bottleneck substrates (Stanway et al., 2019). The media layer study com-

prises a systematic analysis of in silico minimal media, essentiality at each minimal medium,

and identification of bottleneck substrates.

Note: media analysis with PhenoMapping is especially useful in organisms for which the

growing conditions (media composition) and nutritional requirements is uncertain. This is

the case in intracellular parasites (Chiappino-Pepe et al., 2017; Krishnan et al., 2020; Stanway

et al., 2019; Tymoshenko et al., 2015).

g. Metabolomics layer. Thermodynamics-based flux analysis will pinpoint genes that become

essential due to a set of reaction directionalities imposed by thermodynamic constraints. It

is possible to identify sets of metabolites whose concentration ranges determine such reaction

directionalities and these are called bottleneck metabolites (Chiappino-Pepe et al., 2017). The

metabolomics layer study involves a systematic integration of metabolomics data within the

TFA framework (Salvy et al., 2018), thermodynamically consistent essentiality analysis with

or without metabolomics, and identification of bottleneck metabolites.

h. Transcriptomics layer. Integrative analysis of RNA-seq data helps to identify genes that

become essential due to gene expression constraints. TEX-FBA (Pandey et al., 2019) will try

to maximize consistency between RNA levels and metabolic reaction fluxes. There will be

three classes of genes: highly, medium, and lowly expressed (defined by TEX-FBA parame-

ters; Troubleshooting 8). For reactions linked to highly expressed genes, TEX-FBA tries to in-

crease metabolic flux. For reactions uniquely linked to lowly expressed genes, TEX-FBA tries

to minimize metabolic flux. The maximum number of such type of agreements counts for a

consistency score. Reaction fluxes linked to genes with medium expression are free to vary.

PhenoMapping uses TEX-FBA to integrate RNA-seq data and calculate a maximum consis-

tency score. It next performs essentiality analysis at the maximum consistency score and iden-

tifies the metabolic fluxes that are responsible for a gene essentiality, also called bottleneck

reactions (Stanway et al., 2019).

i. Regulation layer. Transcriptomics data analysis also allows identifying isoenzymes that

become essential due to lack of transcriptional regulation of counterpart isoenzymes or

bottleneck isoenzymes. PhenoMapping regulation analysis include a systematic integration

of transcriptomics data within the TEX-FBA framework (Pandey et al., 2019), essentiality anal-

ysis with transcriptomics considering lack of regulation between isoenzymes, and identifica-

tion of bottleneck isoenzymes.

Metabolic model contextualization

Timing: 10–30 min

The second step in the PhenoMapping workflow (Figure 2) is a setup step and involves the contex-

tualization of the GEM as designed in the first step. Predictions from a GEM are the consequence of

the biochemical information and physico-chemical constraints integrated into the GEM (Figure 3).

Here, we define the protocol to define each layer of information in the GEM. We assume that the

initial GEM already includes all the corresponding organism-specific information and putatively

context-specific information like a medium composition.

3. Select one step between the followings to perform a PhenoMapping analysis at each iteration.

a. Generate a GEM with the ground biochemistry layer.
14
- Remove all constraints related to omics data integrated into the GEM.

- Define a rich medium and allow uptake and secretion of all metabolites in the medium.

- Remove ad hoc reaction (intracellular reactions and transports) directionalities in the GEM.
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- If applicable (eukaryotic organism), remove compartmentalization. This is done by

defining all reactions in the cytosol or by allowing all metabolites to be transported and

present in all intracellular compartments.

b. Generate a GEM with localization layer (in eukaryotes).

- Remove all constraints related to omics data integrated into the GEM.

- Define a rich medium and allow uptake and secretion of all metabolites in the medium.

- Remove ad hoc reaction (intracellular reactions and transports) directionalities in the GEM.

- If applicable (eukaryotic organism), allow all metabolites without a phosphate, acyl-carrier

protein (ACP), and CoA moiety to be transported between cytosol and other compart-

ments. If there is experimental evidence about a transporter for a metabolite with a phos-

phate, acyl-carrier protein, and CoA moiety, this should be allowed.

c. Generate a GEM with intracellular transportability layer (in eukaryotes).

- Remove all constraints related to omics data integrated into the GEM.

- Define a rich medium and allow uptake and secretion of all metabolites in the medium.

- Remove ad hoc directionalities only for intracellular reactions in the GEM.

Note: do not modify the directionalities of intracellular metabolite transportability from the

initial GEM.

d. Generate a GEM with enzymatic irreversibility layer.

- Remove all constraints related to omics data integrated into the GEM.

- Define a rich medium and allow uptake and secretion of all metabolites in the medium.

e. Prepare a GEM for metabolic tasks analysis.

- Decide whether an analysis with or without thermodynamic constraints should be per-

formed.

- Select the sets of metabolites whose production you want to test. By default, this will be all

biomass building blocks.

- Define an essentiality threshold (see section Essentiality definition).

f. Generate a thermodynamically curated GEM for subsequent context-specific PhenoMapping

analysis.

- Remove all constraints related to omics data integrated into the GEM.

- Define a rich medium and allow uptake and secretion of all metabolites in the medium.

- Define thermodynamically relevant information for each intracellular compartment: pH,

generic metabolite concentrations (minimum and maximum allowed values), generic ionic

strength (unique value), membrane potential.

- Curate the GEM thermodynamically within the TFA framework.

g. Generate a GEM for a media analysis.

- Select whether analysis of uptakes or secretions should be performed.

- Select the sets of transports of extracellular metabolites among which the minimal uptake

or secretion analysis will be performed; Troubleshooting 4. By default, all substrates in the

media will be selected. We indicate below two types of analysis (targeted or untargeted)

that one can perform depending on the substrates made available and the uptakes

selected for media analysis.

CRITICAL: it is important to note that the algorithm will not unblock uptakes or secre-
tions in the GEM. If uptakes and secretions were blocked in the GEM input to the Pheno-

Mapping media analysis, they will remain blocked in the media analysis. Hence, it is impor-

tant to properly define a media composition before one begins the PhenoMapping

analysis (see section Medium definition).
Recommended: For an untargeted analysis of in silico minimal media, one should have

defined a rich medium in the GEM (see the Medium definition section; Troubleshooting

4). At this stage, all uptakes should be selected for the media analysis. Following this setup,
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one will identify all alternative minimal sets of molecules required for in silico growth in the

correct combination. It was shown before (Chiappino-Pepe et al., 2017) that such an analysis

provides further understanding of the molecular substructures or backbone moieties that a

cell needs to scavenge. The requirement to scavenge such moieties occurs when the

biochemical information and further physio-chemical constraints defined in the GEM (that

probably represent the metabolic function of the organism) do not allow the biosynthesis

of such backbone moieties.

Alternatives: For a targeted analysis of in silico minimal media, one should have defined a

specific medium in the GEM before beginning the PhenoMapping analysis. In this medium

the GEM should be feasible. At this stage, one defines the subset of substrates of interest

for the media analysis. This analysis identifies within the subset of substrates, the minimum

number of substrates required to achieve a minimum value of the objective (e.g., growth).

- Perform the in silico minimal medium analysis.

- Define in the GEM a combinedminimal medium comprising all substrates identified across

all alternative in silico minimal media. We use minimal media alternatives that contain the

same number of substrates.

CRITICAL: defining here a combined minimal medium simplifies the process to infer the
medium of a context-specific GEM. Check the section Quantification and statistical anal-

ysis (Results of a PhenoMapping analysis of bottleneck substrates) for more details on

the importance of this last step to optimally guide the definition of the media in the

context-specific GEM.
h. Generate a GEM for a metabolomics analysis.

- Integrate the metabolomics dataset into the GEM.

- Verify that the GEM is feasible within TFA when metabolomics data are integrated; Trou-

bleshooting 9.

i. Generate a GEM for a transcriptomics and regulation analysis.

- Decide whether or not to plot the distribution of gene expression values.

- Select the TEX-FBA parameters defining the percentile of lowly and highly expressed

genes in the distribution of gene expression values; Troubleshooting 8.

- Select the TEX-FBA parameters defining the bounds assigned to lowly and highly ex-

pressed reactions; Troubleshooting 8.

- Select the reactions for which gene expression constraints should not be defined

- Decide which transcriptomics profile an output GEM should include.

Note: upon integration of transcriptomics data, TEX-FBA will identify all alternative tran-

scriptomic profiles that render a maximum consistency score between gene and reaction

levels. One can select one specific transcriptomic profile for the subsequent analysis. Alter-

natively, one can also select a combined expression profile, which will account uniquely for

the expression constraints common to all transcriptomic profiles.

- Integrate the transcriptomics dataset into the GEM.

j. Define the following inputs common to any context-specific PhenoMapping analysis.

- Remove all constraints related to omics data integrated into the GEM. This is not necessary

if one uses a generic GEM.

- Define the expected value of the selected objective function (normally growth) at the con-

ditions to study.

- Define the selected essentiality threshold (see section Genetic background and essential-

ity definition).

Note: a value of the selected objective function and essentiality threshold will be used to

identify a minimum required objective value. For example, in the media analysis, we first

identify the in silicominimal media or the minimum number of substrates required to achieve
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at least a required value of the objective. Such value is given by the input values of the objec-

tive function and essentiality threshold.

- Select a time limit (in seconds) for the CPLEX solver. By default, none.

- Define whether one wants to identify uniquely alternatives for the optimal value of the

objective function (preferred). Alternatively, one can look for suboptimal solutions. For

example, one can find an in silico minimal media with 19 substrates and identify all alter-

native combinations of 19 substrates that allow growth. One can also identify alternative

combinations with 20 or more substrates.

- Select a maximum number of alternative solutions to obtain. This is applicable every time a

mixed integer formulation is defined. For example, for the identification of alternative in

silico minimal media and alternative bottleneck substrates.

Note: it is preferred to select a high number of alternatives like 5,000; check Troubleshooting

10 for suggestions when the optimization crashes or the number of alternatives selected was

not enough.
Essentiality prediction

Timing: 1–10 min

The third step in an analysis step and involves a prediction of gene essentiality with the contextual-

ized GEM. If one performs a context-specific PhenoMapping analysis, the set of essential genes will

be compared with the unconditionally essential genes or genes predicted as essential with the gen-

eral GEM input to the PhenoMapping workflow. If one performs an organism-specific PhenoMap-

ping analysis, onemight compare the set of essential genes with the ones obtained in the immediate

previous layer of information. Predictions of gene essentiality are expected to vary between the

contextualized GEMs. Here, we define the suggested steps to identify essential genes in any

GEM within PhenoMapping.

Note: check Troubleshooting 11 if infeasibilities arise when calculating essentialities.

Optional: In a transcriptomic analysis, one can perform two types of essentiality analysis

consistent with transcriptomics: (a) fix a unique transcriptomic profile; this is done by fixing

the integer variables linked to all up and down reaction levels; (b) fix an assembly of transcrip-

tomic profiles that satisfy a maximum consistency score. The maximum consistency score is a

variable within TEX-FBA and defines the number of reactions that can carry low or high fluxes

and are consistent with the classification of lowly and highly expressed genes, respectively.

Theremay exist multiple alternative transcriptomic profiles that share the samemaximum con-

sistency score. These alternatives are an assembly of transcriptomic profiles. To fix such an as-

sembly, we define the lower bound of the maximum consistency score with a value that is

some decimals below the optimal objective value. This is to avoid problems with the precision

of the solver; Troubleshooting 12. To provide some flexibility around the transcriptomic pro-

files, one can further relax the lower bound of the maximum consistency score by some inte-

gers. This option-b only differs from option-a if there is more than one alternative transcrip-

tomic profile for the maximum consistency score within TEX-FBA.

4. Define the objective function chosen for the GEM; Troubleshooting 5.

5. Double check that the contextualized GEM is feasible; Troubleshooting 6.

6. Perform the in silico essentiality study.

Optional: An essentiality analysis per growth associated metabolic task can be performed.

This will identify which biomass building block is responsible for the observed essentiality

(Chiappino-Pepe et al., 2017) (Figure 4).
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Figure 4. Schema of growth simulation using a GEM

(A)The GEM uses a set of substrates or nutrients to produce molecules required for growth or biomass building blocks in the stoichiometrically required

amounts (hi). Biomass building blocks are monomers of macromolecules required for the cellular function. The stoichiometric coefficients of the

biomass building blocks satisfy the concentration of macromolecules in the cell (v, w, x, y, z).

(B) Predicted growth upon single knockout of each gene in the blood-stage-specific P. berghei GEM (iPbe-blood). We classify genes based on the

essentiality threshold (dashed line bottom) and growth reduction threshold (dashed line top) into essential, growth reducing, and dispensable. The

essentiality threshold (here 10%) and growth reducing threshold (here 90%) define which genes are essential and growth reducing, respectively, based

on the predicted growth upon knockout (KO growth) compared to the predicted wild-type growth (WT growth). iPbe-blood predicts 146 essential

genes, 9 growth reducing genes, and 273 dispensable genes (with solver version CPLEX 12.8.1 or above). Acronyms: AAs, amino acids; PG,

phosphatidylglycerol; PE, phosphatidylethanolamine; PS, phosphatidylserine; PC, phosphatidylcholine; free FA, free fatty acids; TAG, triacylglycerol;

DAG, diacylglycerol.
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7. Select an output to identify essential genes:

a. Ratio of optimal value of the objective function between the input (normally wild-type) GEM

and the single gene knockout GEM.

b. Absolute value of the objective function in the single gene knockout GEM.

Note: both approaches if compared with the corresponding reference values (as described in

the next point) ultimately result in the same set of essential genes. However, selecting the ab-

solute value of the objective function to identify essential genes allows to define an arbitrary

value of the objective function as reference. This latter option might be more appropriate in a

situation of high uptake rates (very unconstrained model) and high growth.

8. Identify all knockouts rendering a value below the essentiality threshold chosen (Figure 4)

a. If the ratio is below the essentiality threshold the gene is considered as essential.

b. If the predicted value of the objective function is below the product of the essentiality

threshold and the initial value of the objective function the gene is considered as essential.

Note: by default, in PhenoMapping all infeasible solutions (NaN) upon a gene knockout

consider the gene essential. However, a lack of convergence in the optimization and problems

with the solver might also render infeasible solutions; Troubleshooting 12.

Accuracy assessment

Timing: 1–5 min
18 STAR Protocols 2, 100280, March 19, 2021



Figure 5. Contingency matrix for the blood-stage-specific P. berghei GEM (iPbe-blood) compared to the blood-

stage-specific PlasmoGEM phenotypes

The accuracy values for this contingency matrix are: MCC = 0.63, overall accuracy = 0.79, NPR = 0.96, PPR = 0.67,

sensitivity = 0.96, and specificity = 0.67.
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The fourth step is an analysis step and involves an accuracy assessment of the gene essentiality pre-

diction with the contextualized GEM. This step is possible when there are phenotypic data available

in the PhenoMapping workflow (Figure 2). In this step, a contingency matrix is generated (Figure 5)

and the set of correct and incorrect predictions is identified.

9. Compare the list of in silico essential and non-essential genes with the experimentally observed

(in vivo) phenotypes.

10. Classify all compared genes in the GEM in four groups: TPs, TNs, FPs, and FNs.

Note: if ‘‘slow’’ phenotypes are available, one should decide how to treat them, i.e., as essential,

or dispensable. This decision might be determined by the layer of information analyzed within

PhenoMapping. For example, during a PhenoMapping analysis of the biochemistry layer, slow

phenotypes might be better considered as dispensable. This is because one expects that slow

phenotypes arise due to the presence of a redundant and non-optimal function that can partially

compensate for the loss of the slow-phenotype gene. However, during a PhenoMapping analysis

of the transcriptomics layer, slow phenotypes might be well considered as essential. This is

because a GEM with transcriptomics data integrated identifies genes that are essential to main-

tain the defined (optimal) transcriptomic state. Hence, knocking out such a gene might render a

transition to a different (suboptimal) transcriptomic or physiological state.

Optional: one can also add a classification for genes without data, blocked, or with slow phe-

notypes (Figure 5). The genes classified as blocked and without data are not considered for

the computation of the accuracy. The treatment of the slow phenotypes may vary depending

on the context of the GEM.

Note: Blocked genes are genes linked to reactions that cannot carry any flux in the reference

conditions, also called blocked reactions. This occurs when any of the metabolites
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participating in the linked reactions cannot be mass balanced. Blocked reactions are identi-

fied with a flux variability analysis (Mahadevan and Schilling, 2003). We recommend perform-

ing a flux variability analysis in the generic GEM (in a rich medium and without any data inte-

grated) and without any growth requirement. That way, there are no conditional or context-

specific constraints leading to the non-function of the gene.

11. Generate a contingency matrix by defining the number of TPs, TNs, FPs, and FNs.

12. Compute the selected metric to assess the accuracy using the numbers defined in the contin-

gency matrix.

Note: there might be situations in which the number of available in vivo phenotypes is very

low compared to the number of genes in the GEM or with in silico phenotypes. Such cases

decrease the confidence on the accuracy of the model. Although there is little that a user

can do to improve such a situation regarding the availability of phenotypes, the user can

choose how to evaluate the FPs and FNs to better assess the accuracy of the GEM’s predic-

tions. FNs arise when the model misses biochemical information or gene annotations or has

incorrectly defined constraints. FPs arise when the model misses the definition of a context

or constraints. As previously mentioned in this protocol, one can argue that (if the data are

fully trustable) having more FNs than FPs in a GEM is worse than having more FPs than FNs.

This is because one does not want to include false constraints into the GEM. In many situ-

ations a single constraint in the GEM (as identified with PhenoMapping) can be responsible

for the essentiality of a FN and a TN. In such a case, we recommend not blindly integrating

such constraint to increase the TNs (since that will also increase the FNs). We recommend

first adding missing information into the GEM like new biochemistry or gene annotations

such that later the named constraint becomes responsible uniquely for the essentiality of

the TN. This means we recommend focusing first on correcting or reducing FNs (increasing

TPs) and then on reducing FPs (increasing TNs) using PhenoMapping. See the follow-up dis-

cussion in the section Quantification and statistical analysis. The fact that PhenoMapping

maps phenotypes to constraints may also increase the confidence on the prediction of

genes without phenotype. If a constraint is responsible for one or more TNs and a gene

for which no in vivo phenotype is available, we might feel more confident on the essentiality

of the gene – primarily if the TNs and the gene without phenotype share metabolic path-

ways or tasks.

Bottleneck identification

Timing: 5–60 min

The fifth and last step of the PhenoMapping workflow is an analysis step and involves themapping of

bottlenecks to phenotypes. After new genes are identified as essential in the contextualized GEM,

PhenoMapping will identify the bottlenecks or underlying cellular processes responsible for that es-

sentiality. This is done by performing one-by-one a knockout of the essential genes in the contextu-

alized GEM and identifying the conditions that rescue growth (Figure 6). Here, we define the steps to

identify bottlenecks as followed within the systematic bottleneck analysis of each layer of

information.

13. Knockout the essential gene in the contextualized GEM.

14. Identify all alternative bottlenecks or the minimum set of information (e.g., substrates, metabo-

lite concentrations, reaction levels) that should be relaxed to rescue the gene knockout

(Figure 6).

Note: bottleneck substrates are those that can rescue essentiality of the gene when added to

the in silico minimal medium. Bottleneck metabolites are those whose concentrations ranges
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Figure 6. Representation of bottlenecks studies in PhenoMapping

(A–C) (A) Bottleneck substrates, (B) bottleneck metabolites, and (C) bottleneck reaction levels. PhenoMapping first simulates with the GEM some

conditions (here: (A) in silico minimal media, (B) metabolomics data integrated, and (C) transcriptomics data integrated) and identifies in silico a

phenotype (here single gene essentiality for growth). Next, PhenoMapping looks for the bottlenecks responsible for the predicted phenotype (here: (A)

missing substrates in the media, (B) sets of metabolite concentration ranges, and (C) sets of levels of reaction fluxes and their corresponding RNA

levels). The color code is consistent with the related step in the main PhenoMapping workflow (Figure 2).
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should be relaxed (with respect to the experimentally measured concentration ranges) to

rescue essentiality of the gene. Bottleneck reactions are those whose levels (considered to

be high or low within the feasible flux range) should be relaxed to rescue essentiality of the

gene.
Metabolic model curation

Timing: 1–60 days

Note: the timing to curate a GEM varies radically depending on the available GEM and data

and the experience and endurance of the user. Many aspects of the GEM can require curation.

The problems in a GEM can range from being badly elementally balanced tomissing a consid-

erable amount of gene annotations and associated reactions; see Troubleshooting 2 to iden-

tify all elements that an ideal GEM may include. This section aims to define a pipeline to spot

and solve those problems faster.

This is a step that combines both setup and analysis steps. We curate a metabolic model when we

change the biological and biochemical information it contains. Such information involves genes,

gene functions, protein associations (protein complexes or isoenzymes), biochemical reactions,

transporters, and biomass building blocks. Since GEMs are normally constructed following a bot-

tom-up approach, it is more likely that a metabolic model curation involves adding missing informa-

tion. However, curation of a GEM might also involve removing incorrectly defined ad hoc

constraints.

The curation of the GEM is an optional step in the iterative PhenoMapping workflow (Figure 2). The

information achieved by mapping in silico bottlenecks to phenotypes facilitates and accelerates the

identification of missing biological and biochemical information in the GEM, as well as incorrectly

defined ad hoc constraints.

A suggested workflow to curate the GEM using PhenoMapping is defined in Figure 7. This workflow

is primarily manual. Here, we suggest conceptually how to perform a GEM curation in combination

with the main PhenoMapping workflow (Figure 2). We propose analyzing one-by-one the incorrect

gene predictions: first the FNs and then the FPs. Onemay follow the steps below in the order defined

and select the steps depending on the type of inconsistency (FN or FP) for the gene of study. If the
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Figure 7. Suggested workflow to curate a metabolic model in combination with the PhenoMapping workflow

This workflow identifies missing biological and biochemical information in a GEM.

(A) The workflow to curate false negatives (FNs) involves four steps.

(B) The workflow to curate false positives (FPs) includes three steps. The curation of a GEM requires collecting and using different types of datasets. The

color code is consistent with the related step in the main PhenoMapping workflow (Figure 2).
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GEM is modified, one may perform a new essentiality analysis and accuracy assessment to evaluate

the impact of the curation on the GEM performance.

Note: Adding information around true predictions may prevent mismatches in a more con-

strained scenario. For instance, one needs to identify isoenzymes linked to a reaction (even

if the reaction is true positive) to prevent it from being false negative in a constrained scenario.

When one supposedly has all information mapped to the GEM, we may wait until a false pre-

diction arises to introduce corrective measures. False predictions arise normally in the Pheno-

Mapping analysis with layers of information that are hierarchically higher. Alternatively, we

may perform an unbiased integration of alternative information around true predictions and

screen the performance of the model in a more constrained scenario for selection of the

best corrective measure. This later option is not discussed here.

In this section, we do not consider the integration of context-specific information (like definition of

uptake rates and integration of metabolomics and transcriptomics data) as part of the metabolic

model curation. We consider that the integration of context-specific information is part of the meta-

bolic model contextualization. The section Quantification and statistical analysis explains how to

contextualize a GEM based on the bottleneck information from a context-specific PhenoMapping

analysis.

Note: curating a metabolic model can be a daunting and time-consuming task. Be patient, do

sports, eat healthy, and talk with friends and family to remain mentally ok.
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15. (FN) Perform an essentiality analysis per metabolic task.
a. If there is a metabolic task uniquely responsible for a set of FNs and no true prediction, re-

move the biomass building block from the biomass reaction.

b. If a biomass building block was removed, update the stoichiometric coefficients of the re-

maining biomass building blocks accordingly (Chan et al., 2017).
16. (FN) Perform a reannotation of the genome definingmore relaxed parameters, e.g., E-values, or

look in databases for genes with the same function that are not part of the GEM.
a. If there exists a potential gene with the same function, add the gene to the GEM with an OR

relation in the gene-protein-reaction association.
17. (FN) Perform a gap-filling with the gene knocked out to identify missing alternative biochemistry

in the GEM.
a. Select a proper database to look for alternative biochemistry. We distinguish three classes

of databases: (1) GEMs of closely related organisms, which can be found in databases for

GEMs like BiGG (King et al., 2015), modelSEED (Devoid et al., 2013), KBase (US Depart-

ment of Energy Systems Biology Knowledgebase, http://kbase.us), publications, etc.; (2)

databases of biological reactions like KEGG (Kyoto University, 1995), MetaCyc (Caspi

et al., 2018), BRENDA (Jeske et al., 2019), etc.; (3) the upper bound of biochemistry

with hypothetical biochemical reactions between known compounds based on known

enzyme reaction rules, i.e., the ATLAS of Biochemistry (Hadadi et al., 2016; Hafner et al.,

2020).

CRITICAL: the compatibility of metabolite identifiers between the GEM and the database
plays a critical role in the selection of the database. Metabolite identifiers need to match to

assure the proper connectivity of the metabolic networks of the GEM and database. It is

also important to consider which version of the database to use. We would recommend

working with the latest version, but that might create conflicts with metabolite identifiers

or other identifiers like genes. For this reason, the user might consider working with an

earlier version.
b. Identify a gap-filler that suits the GEM, database, computational power available, and

desired gap-filling strategy.

- There exist multiple examples of gap-fillers, as summarized before (Pan and Reed, 2018).

Some recent examples are: gapseq (Zimmermann et al., 2020) or OptFill (Schroeder and

Saha, 2020).

c. If there exists an alternative biochemistry that rescues the knockout, integrate it into the

GEM.
18. (FN) Investigate the possibility of a metabolite in the GEM being scavenged to rescue the KO.
a. If there is evidence that the metabolite selected might be available at the cellular state stud-

ied, and the transport of suchmetabolite is possible (by any transport mechanism), define the

transport in the GEM.
19. (FP) Search for a missing metabolic task downstream of the FP gene.
a. If there is a downstream product that could be a biomass precursor and its definition as a

metabolic task does not create inconsistencies, add it to the biomass reaction.

b. If a biomass building block was added, update the stoichiometric coefficients of the remain-

ing biomass building blocks accordingly (Chan et al., 2017).
20. (FP) Perform a flux variability analysis with a non-zero lower bound for the objective function.
a. If the reactions linked to the gene cannot carry flux, perform a gap-filling (next step).
21. (FP) Perform a gap-filling with the objective function redefined to require flux through the FP

gene.
a. Select a proper database to search for missing biochemistry.

b. Identify a gap-filler that suits the GEM, database, computational power available, and

desired gap-filling strategy.
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- There exist multiple examples of gap-fillers, as summarized before (Pan and Reed, 2018).

Some recent examples are: gapseq (Chan et al., 2017) or OptFill (Schroeder and Saha,

2020).

c. If there exist biochemical steps that can connect the metabolic network defined in the GEM

with the FP gene, define it.

Note: The order in which these steps are applied affects the definition of the GEM and later

the identification of bottlenecks. We recommend following the order of steps defined in this

section. The steps to curate FNs and FPs are defined in this order to identify first issues on

which the user has more confidence. For example, to curate FNs we first check if there is an

error in the objective function (a fact). Then we evaluate whether a gene is missing from the

GEM (an E-value defines the confidence of the annotation). If no gene is found, we perform

a gap-filling (a hypothetical non-annotated biochemical function). If no gap-filling reaction

is found, we allow uptake of a metabolite (GEMs show the highest uncertainty in the definition

of metabolite transports).
The PhenoMapping workflow is often iterative

Timing: variable

One would perform as many passages through the PhenoMapping workflow as layers of informa-

tion one desires to analyze (feedback in Figure 2). The layers of information can be analyzed inde-

pendently or in a cumulative fashion. An independent analysis is recommended for the first Phe-

noMapping iterations and in a generic GEM. A cumulative analysis is recommended after an

independent analysis and in a context-specific GEM. The order of the analysis would be hierarchi-

cal as suggested in Figure 3 and argued in the section PhenoMapping study design. In addition,

more iterations through the PhenoMapping workflow might be required when a curation of the

GEM is selected.

22. Perform an independent, individual, and separate analysis of each layer of context-specific in-

formation to identify individual bottlenecks responsible for phenotypes. In an independent

analysis of constraint types, a generic GEM is used to integrate each dataset independently,

identify new essential genes, and map gene essentiality to bottlenecks.

23. Perform also a cumulative and hierarchical integration of constraint types (Figure 3). In such

a cumulative analysis, new essentialities might be identified at each integration step and can

be mapped to sets of constraints within the last layer of information considered. The inde-

pendent analysis of constraint types may limit the set of predicted phenotypes. A cellular

phenotype is the product of a cumulative rather than individual effect of physico-chemical

constraints. Hence, a cumulative analysis is recommended to analyze a context-specific

GEM.
EXPECTED OUTCOMES

Here, we present an example to aid in the definition of a PhenoMapping analysis and understanding

of its output. We use the example of blood-stage and liver-stage P. berghei to illustrate the iterative

workflow of PhenoMapping (Figure 8). The same analysis was performed for tachyzoite T. gondii.

Themetabolic models of P. berghei (iPbe) and T. gondii (iTgo), the P. berghei blood- and liver-stage

relative growth phenotypes, the tachizoyte T. gondii genome-wide screen, and all integrated omics

data are available in www.github.com/EPFL-LCSB/phenomapping. The scripts with all input values

used for the analyses are also available in the GitHub repository. These files are enough to enable

the user to follow along and repeat all computational steps of these examples with PhenoMapping.

We present the results obtained for both examples. Additional analyses of the outputs were done as

explained in the following section.
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Figure 8. Schema of preparatory steps as applied to study blood and liver-stage phenotypes with iPbe and PhenoMapping

The preparatory steps are shown in Figure 1. Color code is consistent with related steps in the main PhenoMapping workflow (Figure 2).
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Preparatory steps for a PhenoMapping analysis of genome-wide blood and liver-stage

phenotypes in P. berghei

All preparatory steps for the PhenoMapping analysis of iPbe were performed as follows (Figure 8),

and the result (models and data) are available in www.github.com/EPFL-LCSB/phenomapping.
Organism and cellular state choice

In the PhenoMapping analysis of P. berghei two conditions were selected for study and comparison,

i.e., the blood and liver stages of the malaria life cycle. The time points at each life-stage, i.e., 24 h in

the blood stages and 48 h in the liver stages, were selected to represent the highest metabolically

active state during each developmental stage. Similarly, in the PhenoMapping analysis of T. gondii

the highly metabolically active state, i.e., tachyzoite, was selected.
Metabolic model selection

There was no GEM available for P. berghei, and we constructed a GEM as explained in detail before

(Stanway et al., 2019). We used as reference a previously developed GEM for P. falciparum (iPfa)

(Chiappino-Pepe et al., 2017) and applied the PhenoMapping principles discussed here and multi-

ple iterations through the Metabolic model curation loop (Stanway et al., 2019). This construction

rendered the life-stage agnostic GEM of P. berghei called iPbe.
Thermodynamic curation

We collected thermodynamic data for iPbe specific to the liver and blood stages (Table S3 in (Stan-

way et al., 2019)). We added such data in the ‘‘CompartmentData’’ field in iPbe.

We mapped metabolite SEED IDs where available to all metabolites, as required in the current

version of matTFA (Salvy et al., 2018) for a thermodynamic curation of the GEM. We saved such

data in the ‘‘metSEEDID’’ field in iPbe.

Note: in the current PhenoMapping repository, a thermodynamic curation and setup of the

GEM for PhenoMapping analysis can be done with the function initTestPhenoMappingModel.

In such function, one should define the input tagThermo as 1 or true. An example is provided

in the ‘‘settings’’ scripts (see section Software setup).
Phenotypic, media, and omics data collection

Phenotypic data: we used the values of relative growth rate upon single gene knockout obtained

with the PlasmoGEM technology in the blood stages (Bushell et al., 2017) and liver stages (Stanway

et al., 2019).
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Metabolomics data: as an in silico study case, we used the values of metabolite concentration ranges

obtained in P. falciparum (Teng et al., 2009, 2014; Vo Duy et al., 2012). However, we did not inte-

grate such values in the final blood- and liver-stage specific GEMs.

Transcriptomics data: we used previously reported RNA-seq values for the blood-stage (Otto et al.,

2014) and liver-stage (Caldelari et al., 2019) P. berghei. We computed the average of the replicates

at the time point of highly active metabolic state.

Medium definition

For the blood-stage-specific PhenoMapping analyses, we allowed the uptake of all 248 metabolites

present in the extracellular space of iPbe.

For the liver-stage-specific PhenoMapping analyses, we allowed the uptake of 247 metabolites,

which includes all 248 extracellular metabolites in iPbe but oxyhemoglobin.

Genetic background and essentiality definition

We preserved the wild-type genetic background (without any gene knockout) for all context-specific

PhenoMapping analyses. We selected a single gene knockout essentiality analysis.

Cellular objective definition

Since we selected a highly proliferative and metabolically active state both in the blood and liver

stages, we defined as cellular objective the desire to maximize growth.

Accuracy metric definition

We used the MCC and overall accuracy as the final metrics of accuracy assessment. To generate

iPbe-blood and iPbe-liver, we tried to increase the positive prediction rate while keeping the nega-

tive prediction rate constant. This rationality was followed in the selection of constraints to integrate

into iPbe after each passage through the PhenoMapping workflow.

Note: in the current PhenoMapping repository, an accuracy assessment can be done with the

function accuracyAssessment. An example is provided in test_accuracyAssessment.

Data setup

GEM setup: we saved the two versions of iPbe, i.e., with thermodynamic and medium data for the

blood and liver stages, in the ‘‘models’’ folder of the GitHub repository as ‘‘tipbe4blood.mat’’ and

‘‘tipbe4liver.mat.’’

We generated a ‘‘pbe’’ folder in the directory ‘‘tests/ref’’, where we saved all data in the format

defined.

Software setup

We adapted the settings script to iPbe for blood and liver-stage analyses, i.e., settings_ipbeblood,

settings_ipbeliver. These are saved in the ‘‘tests’’ folder. We next run them to add all relevant direc-

tories to the path and prepare iPbe for PhenoMapping.

PhenoMapping workflow applied to study genome-wide blood and liver-stage phenotypes in

P. berghei

These steps and results could be generated automatically by running the tutorial_basics script in

www.github.com/EPFL-LCSB/phenomapping v1.0 (Figure 9, entry point 1). One can also work

with the individual test scripts for an analysis of each layer of information within PhenoMapping.

Running the ‘‘analysis steps’’ of the Step-by-step section (using the tutorial_basics script) for the

liver-stage PhenoMapping analysis of iPbe takes approximately 4 h in a MacBook Pro 2.2 GHz Intel
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Figure 9. Schema of the PhenoMapping workflow

Schema of the PhenoMapping workflow applied to (1) analyze genome-wide blood and liver-stage phenotypes with

iPbe and (2) generate the blood-stage-specific iPbe (blood-iPbe) and liver-stage-specific iPbe (liver-iPbe). We first

performed an independent PhenoMapping media, metabolomics, and transcriptomics analysis to identify bottleneck

substrates, metabolites, and reaction levels, respectively. The mapping of phenotypes to bottlenecks guided the

definition of the media composition and consideration of highly and lowly expressed genes in the final life-stage

specific models, as explained in the section Quantification and statistical analysis.
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Core i7 16 GB 1,600 MHz DDR3. The time it takes to perform a PhenoMapping analysis is GEM-spe-

cific and it does not necessarily correlate with the size of the metabolic network but rather with the

inherent complexity or connectivity of the network.

This script will save all results in a temporary result folder called ‘‘tmpresults.’’ The script test_io can

be used to extract all data from the temporary results folder and save it in a text format.
Generic considerations for all context-specific PhenoMapping analyses

The life-stage agnostic model iPbe does not contain any constraint related to omics data. Hence, we

did not have to remove them.

We selected a value of 0.12 h-1 and 0.35 h-1 of optimal growth for the blood and liver analyses,

respectively.

Note: we calculated the growth value assuming that 16 and 30,000 merozoites of P. berghei

are exponentially formed from a single cell in 24 and 30 h in the blood and liver stages,

respectively.

gr =
ln Nt

N0

t

, where Nt and No are the initial and final number of cells and gr is the growth rate.
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The essentiality threshold was 10% or 0.1 across all analyses.

We did not select a CPLEX time limit.

We looked only for alternative solutions of optimal value (tagMin=1) when analyzing in silicominimal

media. The analysis of in silicominimal media is amixed integer linear programming (MILP) problem.

This means we identified all alternative in silico minimal media with the same number of substrates.

Such number is the minimal possible to achieve at least 10% (value of the essentiality threshold) of

the optimal growth.

The bottleneck analyses in PhenoMapping are also MILP formulations and we looked for all alterna-

tive bottleneck sets (of optimal and suboptimal integer count). This is done by default in the identi-

fication of bottleneck substrates and reaction levels, and we specified it (tagMax=0) in the analysis of

bottleneck metabolites.

We selected a maximum value of 5,000 alternatives.
Results of a single gene knockout analysis in the life-stage agnostic iPbe

A single gene knockout in iPbe with TFA yields 109 in silico essential genes, as obtained with the

test_core_essentiality script. These genes are considered unconditionally essential.

Note: in the current PhenoMapping repository, an essentiality analysis can be done with the

function thermoSingleGeneDeletion. An example is provided in the test_core_essentiality

script. Each PhenoMapping layer calls this function automatically within its own set of func-

tions. The thermoSingleGeneDeletion function performs a prediction of essential genes using

the FastSL formulation (Pratapa et al., 2015) and additionally accounting for thermodynamic

constraints.
Results of a PhenoMapping analysis of bottleneck substrates

The PhenoMapping results for a bottleneck substrate analysis are saved in the form of tables, as pre-

sented in Table 1. This table is a subset of all bottleneck results obtained with the test_core_sub-

strates and test_core_substrates_joint scripts. In the first column, there is a list of genes identified

as essential at in silico minimal media. The second and third column map the experimentally

observed phenotype to the in silico essential gene. The subsequent columns are alternative solu-

tions of bottleneck substrates.

Bottleneck substrates are those that can rescue the essentiality of the gene (column 1) when added

to the in silico minimal medium. Hence, the absence of all of those alternative sets of substrates in

the minimal medium is responsible for the essentiality of the gene.
Table 1. Subset of PhenoMapping result of bottleneck substrates

Essential gene
at IMMa

Blood
phenotypeb

Liver
phenotypec Bottleneck substrates, Alt 1 Bottleneck substrates, Alt 2 Bottleneck substrates, Alt 3

PBANKA_0516900 essential no info spermine S-adenosyl-methioninamine|
N-methyl-putrescine

aminopropyl-cadaverine|
N-methyl-putrescine

PBANKA_0522400 Dispensable essential (9Z)-octadecenoic acid

PBANKA_0608000 Dispensable slow coproporphyri-nogen III heme protoporphy-rinogen IX

PBANKA_0613600 Dispensable dispensable pantetheine N-((R)-pantothe-noyl)-L-cysteine

PBANKA_0621800 Slow dispensable 14-dihydroxy-2-naphthoate 2-succinyl-benzoate
aEssential gene at in silico minimal medium.
bPlasmoGEM phenotypes for blood-stage development of P. berghei.
cPlasmoGEM phenotypes for liver-stage development of P. berghei.
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Note: an example of PhenoMapping analysis of the media is provided in the scripts

test_core_substrates and test_core_substrates_joint. These scripts include functions for anal-

ysis of in silico minimal media (function: analysisIMM), generation of alternative

solutions (function: findDPMax), identification of essential genes at each in silicominimal me-

dium (function: getEssGeneIMM), and identification of bottleneck substrates (function:

linkEssGeneIMM2Subs). All substeps defined in the section Metabolic model contextualiza-

tion are inputs to these functions. These inputs are also defined in the scripts to facilitate their

identification.

Note: all results are available in Table S3.4 from (Stanway et al., 2019).
Results of a PhenoMapping analysis of bottleneck metabolites

The PhenoMapping results for a bottleneck metabolite analysis look as presented in Table 2. In the

first column, there is a list of genes identified as essential when metabolomics data are integrated.

The second and third column map the experimentally observed phenotype to the essential gene.

The subsequent columns are alternative solutions of bottleneck metabolites.

Bottleneck metabolites are those whose concentrations ranges should be relaxed (with respect to

the experimentally measured concentration ranges) to rescue the essentiality of the gene (column

1). Hence, any of those alternative sets of metabolite concentrations is responsible for the essenti-

ality of the gene.

Note: an example of PhenoMapping metabolomics analysis is provided in the script test_cor-

e_metabolomics. This script includes functions for integration of metabolomics data (function:

prepMetabCons), identification of essential genes when metabolomics data are integrated

(function: thermoSingleGeneDeletion), and identification of bottleneck metabolites (function:

linkEssGeneMetab2Mets). All substeps defined in the section Metabolic model contextualiza-

tion are inputs to these functions. These inputs are defined in the test_core_metabolomics

script to facilitate their identification.

Note: all results are available in Table S3.7 from (Stanway et al., 2019).
Results of a PhenoMapping analysis of bottleneck reactions

The PhenoMapping results for a bottleneck reaction analysis look as presented in Table 3. In the first

column, there is a list of genes identified as essential when transcriptomics data are integrated. The
le 2. Subset of PhenoMapping result of bottleneck metabolites

ential gene
t]a

Blood
phenotypeb

Liver
phenotypec Bottleneck metabolites, Alt 1 Bottleneck metabolites, Alt 2 Bottleneck metabolites, Alt 3

NKA_0507400 slow dispensable UDP-N-acetyl-D-glucosamine[c]|
UDP-N-acetyl-D-glucosamine[r]|
UMP[c]

UDP-N-acetyl-D-glucosamine[c]|
UMP[c]|UMP[r]

UDP-N-acetyl-D-glucosamine[c]|
UDP-N-acetyl-D-glucosamine[r]|
UMP[r]

NKA_0918200 slow essential UDP-N-acetyl-D-glucosamine[c]|
UDP-N-acetyl-D-glucosamine[r]|
UMP[r]

UDP-N-acetyl-D-glucosamine[c]|
UMP[c]|UMP[r]

UDP-N-acetyl-D-glucosamine[c]|
UDP-N-acetyl-D-glucosamine[r]|
UMP[c]

NKA_1112400 no info no info UDP-N-acetyl-D-glucosamine[c]|
UDP-N-acetyl-D-glucosamine[r]|
UMP[r]

UDP-N-acetyl-D-glucosamine[c]|
UDP-N-acetyl-D-glucosamine[r]|
UMP[c]

UDP-N-acetyl-D-glucosamine[c]|
UMP[c]|UMP[r]

NKA_1232300 dispensable dispensable UDP-glucose[c]|UMP[r] UDP-glucose[c]|UDP-glucose[r]|
UMP[c]

sential gene when metabolomics data are integrated.

smoGEM phenotypes for blood-stage development of P. berghei.

smoGEM phenotypes for liver-stage development of P. berghei.
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Table 3. Subset of PhenoMapping result of bottleneck reaction levels

Essential gene RNA-seqa Blood phenotypeb Liver phenotypec Bottleneck reactions, Alt 1

PBANKA_0107400 Dispensable dispensable UP_R00667_c

PBANKA_0516900 Essential no info UP_R00670_c|UP_R00178_c

PBANKA_1346500 Dispensable essential UP_R07761_r
aEssential gene when transcriptomics data are integrated.
bPlasmoGEM phenotypes for blood-stage development of P. berghei.
cPlasmoGEM phenotypes for liver-stage development of P. berghei.
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second and third column map the experimentally observed phenotype to the essential gene. The

subsequent columns are alternative solutions of bottleneck reaction.

Bottleneck reactions are those whose levels (considered to be UP or DOWN within the feasible flux

range) should be relaxed to rescue the essentiality of the gene (column 1). Hence, any of those alter-

native sets of reactions is responsible for the essentiality of the gene.

Note: an example of a PhenoMapping transcriptomics and regulation analysis is provided in

the scripts test_core_transcriptomics and test_core_transcriptomics_noregulation, respec-

tively. This script includes functions for integration of transcriptomics data (function: integra-

teGeneExp), identification of essential genes when transcriptomics data are integrated (func-

tions: getEssGeneExp and getEssReg), and identification of bottleneck reactions due to RNA

levels (function: linkEssGene2Exp). All substeps defined in the section Metabolic model con-

textualization are inputs to these functions. These inputs are defined in the test_core_tran-

scriptomics script to facilitate their identification.

Note: all results are available in Table S3.8 from (Stanway et al., 2019).
QUANTIFICATION AND STATISTICAL ANALYSIS

Here, we discuss a methodology to handle PhenoMapping results (Figure 9, entry point 2), i.e.,

phenotype-bottleneck mapping. This interpretation can aid in the understanding of context-specific

physiology and the generation of a context-specific GEM. Following, we analyze the results pre-

sented in the section Expected outcomes (Tables 1, 2, and 3).
Results of a PhenoMapping analysis of bottleneck substrates

Here, we explain how to use the bottleneck substrate information from PhenoMapping and pheno-

typic data to infer the composition of the media and substrate availability in the context of study.

The bottleneck substrate analysis links genes identified as essential at an in silico minimal medium

(here referred to as IMM-genes) and substrates (Table 1). The absence of all alternative sets of bottle-

neck substrates from the in silico minimal medium is responsible for the essentiality of the IMM-

gene. This means, we should avoid the presence of any of the mapped combinations of bottleneck

substrates in the in silico medium if the IMM-gene is experimentally defined as essential. When an

alternative contains more than one bottleneck substrate, it is enough to remove one of the sub-

strates in the set from the medium to avoid the presence of the combined set. Otherwise, if the

IMM-gene is experimentally observed to be dispensable, we should add any alternative combina-

tion of bottleneck substrates to the in silico minimal medium to rescue the IMM-gene essentiality.

1. Define a minimal medium composition in the GEM – to be consistent with the medium defined in

the section Metabolic model contextualization. This medium is also the one on which we per-

formed the analysis of bottleneck substrates.

a. If we did not apply the last optional step in the media analysis, we select and define one alter-

native in silico minimal medium.
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b. If we applied the last optional step in the media analysis (preferred), we define the combined

minimal media. As described before, such media comprises all substrates identified across all

alternative in silico minimal media. We combine substrates of all alternative in silico minimal

media that contain the same total number of substrates.

Note: what should be the starting in silico minimal medium composition given that there are

many alternatives?

To avoid the need to select one of the alternative in silico minimal medium and be biased toward a

selected minimal medium composition, we suggest to use a joint in silicominimal medium. This me-

dium comprises all substrates identified in all alternative in silico minimal media. One can perform

first the bottleneck substrate analysis at each in silico minimal medium (test_core_substrates script)

and later perform a bottleneck substrate analysis at a joint in silicominimal medium (test_core_sub-

strates_joint script). This is part of the last optional step in the media analysis included in the section

Metabolic model contextualization.

2. Identify genes with essential phenotype at in silico minimal media or IMM-genes.

Example: in Table 1, an IMM-gene is PBANKA_0516900.

3. Identify each alternative set of bottleneck substrates linked to the IMM-gene.

Example: the IMM-gene PBANKA_0516900 is mapped to three sets of bottleneck substrates

(Table 1): 1) spermine, 2) S-Adenosyl-methioninamine and N-Methyl-putrescine, and 3) Amino-

propyl-cadaverine and N-Methyl-putrescine.

4. Identify the experimental phenotype of the IMM-gene.

Example: in the blood stages, PBANKA_0516900 is essential. There is no available phenotype for

the liver stages (Table 1).

5. Decide whether the alternative sets of substrates should be added or not to the (joint) in silico

minimal media based on the experimental phenotype information.

a. If the IMM-gene is essential based on experiments, do not add any of the alternative sets of

substrates in its full definition to the (joint) in silico minimal medium.

Note: an alternative set of bottleneck substrates may contain more than one substrate (see

Table 1 alternative solutions 2 and 3 for IMM-gene PBANKA_0516900). This result means

that the combined and simultaneous presence of all substrates within the set rescues the in

silico essentiality of the IMM-gene. In other words, one can rescue the in silico essentiality

of the IMM-gene when one adds simultaneously all substrates within a set to the in silico min-

imal medium. Hence, these substrates should not be present simultaneously in the medium of

the final context-specific model to assure the in silico conditional essentiality of the gene.

b. If the IMM-gene is dispensable based on experiments, we should add at least one of the alter-

native sets of substrates to the in silico minimal medium.

c. If there is no available experimental phenotype for the IMM-gene, decide about the availabil-

ity of the mapped bottleneck substrates using information from the other IMM-genes.

Note:what happens if a set of bottleneck substrates is linked both to a dispensable and essen-

tial experimental phenotype?

Based on our definition of the accuracy metric, we prioritize to avoid a new FN rather than to correct

a FP. Hence, we will add bottleneck substrates to the medium when they correct FPs without
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generating FNs. Bottleneck substrates linked both to FPs and FNs might not be real metabolic bot-

tlenecks underlying the observed phenotypes. However, such scenarios might suggest more careful

consideration and further curation of the GEM is necessary.

6. Decide which bottleneck substrates to add to the in silico minimal medium.

a. If the IMM-gene is essential or based on experiments, we can add as many bottleneck sub-

strates as desired as long as they do not combine as identified in any of the alternative solu-

tions of bottleneck substrates.

b. If the IMM-gene is dispensable or growth reducing based on experiments, we select one or

more alternative sets of bottleneck substrates. These sets will be added to the medium.

c. If the IMM-gene is growth reducing based on experiments, we may limit the uptake rate of

such bottleneck substrates.

7. Define the media as selected in the previous step

a. Select a set of bottleneck substrates linked to dispensable and growth reducing IMM-genes

(based on experimental phenotypes). Any alternative set of bottleneck substrates linked to

an IMM-gene is equally valid. Hence, when possible, select sets of bottleneck substrates

that are not mapped to IMM-genes that are experimentally essential.

b. Assemble a media composition that includes the joint minimal media and the selected set of

bottleneck substrates linked to dispensable and growth reducing genes.

c. Define that media composition in the GEM.

d. Verify that the GEM identifies now new context-specific essentiality predictions (decreasing

FPs) while not increasing FNs. If this is not the case, one might want to reevaluate the medium

definition to include those bottleneck substrates that are responsible for the FNs.

Note: can we gain information about the function of the metabolic pathways from a bottle-

neck substrates analysis?

Yes, from the bottleneck substrates analysis one can infer flux coupling between genes/reactions.

Coupled genes/reactions might be those sharing alternative combinations of bottleneck substrates.

Example: PhenoMapping suggests that the essentiality of PBANKA_0516900 is due to the simulta-

neous absence in the media of all combinations of bottleneck substrates. Hence, the media for iPbe-

blood should not contain any such combinations of bottleneck substrates.We should eliminate sper-

mine from the medium, and we can select any substrate from the alternatives two and three.

There is no available phenotype for the liver stages, so we should decide first what is the media

composition based on the remaining genes. If no gene with available phenotype is linked to these

bottleneck substrates, we may allow them or not to be taken up in iPbe-liver.

The gene PBANKA_0522400 is mapped to a single bottleneck substrate (Table 1), i.e., (9Z)-Octade-

cenoic acid. In the blood stages, PBANKA_0522400 is dispensable. Based on PhenoMapping, (9Z)-

Octadecenoic acid should be available in the blood stages to avoid a false essentiality prediction.

However, in the liver stages, PBANKA_0522400 is essential. Therefore, based on PhenoMapping,

(9Z)-Octadecenoic acid should be inaccessible in the liver stages to correctly predict the IMM-

gene as essential.

The gene PBANKA_0613600 is dispensable both in the blood and liver stages (Table 1). Hence any

set of the bottleneck substrates should be accessible in both stages. We decide to keep both alter-

native sets in the medium, i.e., N-((R)-Pantothe-noyl)-L-cysteine and Pantetheine.

Results of a PhenoMapping analysis of bottleneck metabolites

Here, we explain how to use the bottleneck metabolites information from PhenoMapping together

with metabolomic and phenotypic data to identify sets of metabolites whose concentrations are key
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determinants of the phenotype in the context of study. We did not integrate this dataset into iPbe to

generate iPbe-blood or iPbe-liver. We only used this dataset as a study case to identify putative

bottleneck metabolites.

The bottleneck metabolite analysis links genes identified as essential when metabolomics data are

integrated (here referred to as Met-gene) and intracellular metabolite concentrations (Table 2). The

presence of any alternative set of bottleneck metabolite concentrations is responsible for the essen-

tiality of the Met-gene. This means, we should keep any of the mapped combinations of bottleneck

metabolite concentrations if the Met-gene is experimentally defined as essential. Otherwise, if the

Met-gene is experimentally observed to be dispensable, we should prohibit the simultaneous defi-

nition of bottleneck metabolite concentrations identified in every alternative. When an alternative

contains more than one bottleneck metabolite, it is enough to remove one metabolite in each alter-

native set from the whole metabolomics dataset to avoid the Met-gene essentiality prediction.

8. Identify essential genes when metabolomics data are integrated into the GEM or Met-gene.

Example: in Table 2, an example of Met-gene is PBANKA_1232300.

9. Identify each alternative set of bottleneck metabolites linked to the Met-gene.

Example: the bottleneck metabolites mapped to the Met-gene PBANKA_1232300 are: 1) a set of

two metabolites, i.e., UDP-glucose in the cytosol and UMP in the endoplasmic reticulum, and 2) a

set of three metabolites, i.e., UDP-glucose in the cytosol and in the endoplasmic reticulum, together

with UMP in the cytosol (Table 2).

10. Identify the experimental phenotype of the Met-gene.

Example: the gene PBANKA_1232300 is dispensable both in the liver and blood stages of the ma-

laria infection based on the experimental PlasmoGEM screen data (Table 2).

11. Decide whether the alternative sets of metabolites should be kept or not in the metabolomics

dataset based on the experimental phenotype information.
a. If the Met-gene is essential based on experiments, integrate at least one of the alternative

sets of metabolite concentrations into the GEM.

b. If the Met-gene is dispensable based on experiments, do not add any of the alternative sets

of metabolites in its full definition to the metabolomics dataset.

c. If there is no available experimental phenotype for theMet-gene, preferably keep the bottle-

neck metabolite concentration data in the metabolomics dataset unless it creates conflict

with other Met-genes.
Example: only the simultaneous presence of the concentrations of metabolites within a set renders

the Met-gene essential. Hence, cytosolic UDP-glucose is the metabolite that should be removed

from the whole metabolomics dataset to render PBANKA_1232300’s knockout dispensable

in silico. This is because, UDP-glucose in the cytosol is the only metabolite that participates in all al-

ternatives (Table 2).

PBANKA_0918200 is dispensable in the blood and essential in the liver stages (Table 2). There are three

sets of bottleneck metabolites mapped to it. A priori, these concentration ranges should be absent in

the blood-stage GEM and present in the liver-stage GEM. However, these bottleneck metabolite con-

centrations are also mapped to dispensable genes in the liver stages, e.g., PBANKA_0507400.

Since we want to prevent the increase in false rate prediction, we would not integrate these concen-

trations into the liver-stage GEM. This is an example of a bottleneck that individually but not
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holistically can explain a phenotype. Hence, it is probable this is not the correct biological marker of

the gene essentiality.
Results of a PhenoMapping analysis of bottleneck reactions

Here, we explain how to use the bottleneck reactions information from PhenoMapping together with

transcriptomic and phenotypic data to identify sets of reaction levels whose concentrations are key

determinants of the phenotype in the context of study.

The bottleneck reaction analysis links genes identified as essential when transcriptomics data are in-

tegrated (here referred to as RNA-gene) and reaction flux levels (Table 3). The presence of any alter-

native set of bottleneck reactions is responsible for the essentiality of the RNA-gene. This means, we

should keep any of the mapped combinations of bottleneck reaction levels if the RNA-gene is exper-

imentally defined as essential. Otherwise, if the RNA-gene is experimentally observed to be dispens-

able, we should prohibit the simultaneous definition of bottleneck reaction levels identified in every

alternative. When an alternative contains more than one bottleneck reaction, it is enough to remove

one reaction in each alternative set from the whole transcriptomics dataset to avoid the RNA-gene

essentiality prediction.

12. Identify essential genes in the GEM when transcriptomics data are integrated or RNA-gene.

Example: in Table 3, an example of RNA-gene is PBANKA_0107400.

13. Identify each alternative set of bottleneck reaction levels linked to the RNA-gene.

Example: PhenoMapping maps the essentiality of the gene to a high flux through cytosolic reaction

R00667 (Table 3).

14. Identify the experimental phenotype of the RNA-gene.

Example: the RNA-gene PBANKA_0107400 is dispensable both in the blood and liver stages

(Table 3).

15. Decide whether the alternative sets of reaction levels should be kept or not in the transcriptom-

ics dataset based on the experimental phenotype information.
34
a. If the RNA-gene is essential based on experiments, integrate at least one of the alternative

sets of reaction levels to the GEM.

b. If the RNA-gene is dispensable based on experiments, do not add any of the alternative sets

of reaction levels in its full definition to the transcriptomics dataset.

c. If there is no available experimental phenotype for the RNA-gene, preferably keep the

bottleneck reactions data in the transcriptomics dataset unless it creates conflict with other

RNA-genes.
16. Integrate the updated RNA-seq data into the GEM.
a. List the set of bottleneck reaction levels for which we will not consider a direct correlation of

gene level to reaction level.

b. Define this set of reactions as input for the integration of RNA-seq data with TEX-FBA. This is

the input called rxnLevelOUT of the TEX-FBA function integrateGeneExp. This input is a cell

of reaction identifiers.
Example: we should not keep the high gene expression level to high flux correlation assumption

through the bottleneck reaction R00667 in the GEM (neither iPbe-blood or iPbe-liver). We can infer

the bottleneck reaction does not necessarily carry a high flux in the blood and liver stages in

Plasmodium.
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PBANKA_0516900 is essential in the blood stages (Table 3). PhenoMappingmaps the essentiality to

a combined pair of cytosolic reactions, i.e., R00670 and R00178, that carry high flux. A priori, we can

keep these two high reaction fluxes in iPbe-blood to predict PBANKA_0516900 as essential. How-

ever, the presence of R00670 will increase the incorrect prediction of essentiality for

PBANKA_0107400. We hence decide not to allow these constraints in iPbe-blood.

PBANKA_1346500 is dispensable in the blood and essential in the liver stages (Table 3). The respon-

sible reaction is R07761 in the endoplasmic reticulum. R07761’s high flux should not be imposed in

the blood stages and should be present in the liver stages.

LIMITATIONS

We enumerate below some limitations of PhenoMapping. We explain the source of these limita-

tions, their putative effect on the predictions, and the possibility to overcome these limitations

with future work.

Limited information about regulation

PhenoMapping only considers the possibility of lack of regulation of gene expression between iso-

enzymes. Other regulatory processes that control gene expression and, with it, the cell functions

available for the phenotype of study are not part of GEMs yet. This lack of information about regu-

latory processes, determines that PhenoMapping misses conditional essentiality (conditional TNs).

When our knowledge about the regulation of gene expression increases, we will be able to include

these interactions in mathematical models of the cell function. Next, PhenoMapping can be

expanded to map phenotypes to those regulatory processes.

Limited biochemical information

GEMs are databases of the metabolic function. However, we still lack knowledge about gene func-

tions. The limited biochemical information available determines incorrect essentiality predictions

(both FNs and FPs). Computational predictions of novel biochemistry (as available in the ATLAS

of Biochemistry (Hadadi et al., 2016; Hafner et al., 2020)) and experimental characterization of pro-

tein functions are invaluable to expand our knowledge of biochemistry and better defineGEMs. Phe-

noMapping can be combined with gap-fillers and databases of novel biochemistry to reduce the

number of FNs and FPs (in preparation). The databases and GEMs should be updated as we increase

our biochemical knowledge.

Limited information about metabolite transportability

The information about metabolite transportability is limited, mostly in less characterized organisms.

Metabolite transportability is relevant in the prediction of essential functions in GEMs. Missing trans-

porters might lead to incorrect essentiality predictions (both FNs and FPs). To handle this situation,

in PhenoMapping we suggest allowing the simple diffusion of metabolites without phosphate, CoA,

and acyl-carrier protein (ACP) moieties, unless experimentally invalidated. PhenoMapping can later

map conditionally essential gene functions to the (non-)function of a subset of transporters. When

our knowledge of metabolite transportability increases, we can integrate this information into Phe-

noMapping to validate or invalidate the predictions.

Limited information about metabolite concentrations

When metabolomics data are not available for a thermodynamically consistent analysis, it is

assumed that intracellular metabolite concentrations can vary between 1 mM and 50 mM. This range

covers the intracellular concentrations of a wide set of metabolites in various cells and conditions

(Bennett et al., 2009; Ishii et al., 2007; Teng et al., 2009, 2014; Vo Duy et al., 2012). Such broad con-

centration ranges might allow some reactions to work bidirectionally, while in reality the reactions

might be unidirectional. In this regard, PhenoMapping might be missing the prediction of essential

genes (TNs) and the mapping to the responsible sets of metabolite concentrations. A sensitivity

analysis of metabolite concentrations (Kiparissides and Hatzimanikatis, 2017) can help identify
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sets of metabolites relevant for a phenotype. Ultimately, a broader coverage in metabolomics

studies and the integration of these datasets into PhenoMapping will allow better predictions of es-

sentiality and mapping of essentiality to metabolite concentrations.
Assuming correlation between gene expression (mRNA) and reaction flux levels

In the TEX-FBA framework and PhenoMapping, we assume a priori that higher and lower mRNA

levels correlate with higher and lower reaction fluxes, respectively. TEX-FBA and PhenoMapping

do not impose such correlation as other methods do, but rather try to maximize the number of re-

actions for which this assumption is possible (quantified in the form of amaximum consistency score).

It is known that mRNA levels and flux levels do not fully correlate, and hence we might encounter

wrong essentiality predictions when transcriptomics data are integrated. PhenoMapping allows to

identify those FNs or reactions for which the mRNA-flux correlation is not valid. These reactions

can be ignored in a subsequent integration of transcriptomics data within PhenoMapping. A

preferred option is to integrate proteomics data into PhenoMapping, since the correlation of protein

and flux levels is higher.
Assuming essentiality with omics data integrated represents essentiality for growth

PhenoMapping contextualizes GEMs by integrating omics data and later identifies new condition-

ally essential genes. We say these genes are conditionally essential for the objective function

defined (normally growth). However, they are rather essential to maintain the cellular state defined

by the omics data and methodology used. It might happen that upon knockout of such a condition-

ally essential gene, a cell can rapidly achieve another cellular state that also sustains growth and

hence that gene is not truly essential for survival. Non-linear dynamic models will be necessary to

predict transitions betweenmetabolic states and changes in metabolite concentrations and reaction

fluxes upon perturbations. These dynamic models as well as metabolic control analysis help to rank

essential genes based on how sensitive growth is to a perturbation of the enzyme function.

Note: some of these assumptions are inherited from the methodologies used to integrate

data into the GEMs, i.e., matTFA (Salvy et al., 2018) and TEX-FBA (Pandey et al., 2019).
TROUBLESHOOTING

Problem 1: There is no GEM available

You do not have a GEM for the organism and strain of interest, but you do have a draft GEM. We

define a draft GEM as ametabolic model that has not been extensively curated. Draft GEMs normally

show varying degrees of genome annotation, metabolite connectivity, and medium and biomass

definition. FBA can be performed to a certain extent in such GEMs. Draft GEMs could be generated

automatically with available systematic construction pipelines, as recently shown with paraDIGM

(Carey et al., 2019).
Potential solution 1

A detailed explanation on the reconstruction steps of a GEM is out of the scope of this protocol, but

we provide here some references that might be of guidance. A protocol for guidance on high-quality

reconstruction of GEMs following a bottom-up approach is available (Thiele and Palsson, 2010).

Such bottom-up reconstructions could be performed with available toolboxes like COBRA (Becker

et al., 2007; Ebrahim et al., 2013; Heirendt et al., 2019; Schellenberger et al., 2011), RAVEN (Agren

et al., 2013; Wang et al., 2018), modelSEED (Devoid et al., 2013), KBase (US Department of Energy

Systems Biology Knowledgebase, http://kbase.us), etc. GEMs can also be constructed following a

top-down approach, as suggested with CarveMe (Machado et al., 2018). GEMs can also be

adaptded from other strains, as recently suggested (Norsigian et al., 2020).

Once a draft GEM is available, one should improve its performance iteratively by using available

frameworks. Among those we highlight:
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1. RAVEN: one can perform analysis of metabolic tasks in the draft GEM. Such analysis identifies

gaps in metabolism and guides the definition of reactions that render functional metabolic path-

ways (Agren et al., 2013; Wang et al., 2018).

2. MEMOTE: one can systematically identify missing standard information and major flaws in the

GEM like elemental imbalance or a wrongly defined biomass reaction (Lieven et al., 2020).

3. AMMADEUS: one can use an ensemble of draft GEMs and unsupervised learning to generate

models that are consistent with experimental data (Medlock and Papin, 2020).

4. NICegame: one can fill metabolic gaps with metabolic reactions, like hypothetical reactions from

the ATLAS of Biochemistry (Hadadi et al., 2016; Hafner et al., 2020), and annotate orphan reac-

tions with BridgIT (Hadadi et al., 2019). The NICegame workflow works with any objective func-

tion (in preparation).

5. PhenoMapping: this protocol can also be followed to refine GEMs in a modular fashion.
Problem 2: There are multiple GEMs available for the organism of interest

There are multiple GEMs available for the organism and strain of interest, and you need to choose

one.
Potential solution 2

The selection of a GEM is critical for the subsequent analysis.

1. Use available tools like MEMOTE (Lieven et al., 2020) to systematically evaluate a series of bench-

marks that assure the GEM is properly elementally balanced and defined following community

standards. MEMOTE will generate a report with a score that serves as a quantitative basis for

comparison.

2. Compare the GEMs based on the following criteria. These are elements that an ideal GEM may

include:

a. An available history of its development, e.g., a GitHub history as available for Yeast 8 (Lu et al.,

2019).

b. Elementally balanced reactions.

c. The metabolic pathways of interest.

d. Compatibility of metabolite identifiers with a desired reference database.

e. Fully defined metabolites vs generic metabolites with R groups.

f. The highest genome annotation coverage.

g. A curated electron transport chain pathway with proper ratios between protons (H+) pumped,

reacting cofactors, and ATP formed.

h. A curated gene-protein-reaction definition. Especial attention should be given to reactions

catalyzed by a protein complex, since these genes should be linked with an ‘‘AND’’ rule.

i. A broad and non-context-specific set of biomass building blocks with stoichiometric coeffi-

cients properly defined to produce 1 g of biomass (Chan et al., 2017).

j. The broadest set of intracellular compartments.

k. A curated and unbiased localization of reactions. If there is uncertainty in the localization of an

enzyme, a multi-localization might be preferred to avoid biased metabolic flux distributions

and false essentiality predictions (FNs).

l. A curation of reactions occurring at the membrane interphase.

m. A list of metabolic tasks used to evaluate the performance and coverage of the model.

n. A minimum set of ad hoc and pre-assigned reaction directionalities. Pre-assigned direction-

alities should aim to define the enzymatic irreversibility of reactions and not a pre-assumed

thermodynamically feasible directionality (Ataman and Hatzimanikatis, 2015).

o. Thermodynamic data for the extracellular environment and intracellular compartments, i.e.,

pH, as well as membrane potential and ionic strength.

p. Thermodynamic properties of compounds, i.e., ranges of Gibbs free energy of formation

(DfG0) at the corresponding extracellular of intracellular conditions (Jankowski et al., 2008).
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q. Thermodynamic properties and curation of reactions, i.e., balancing with protons (H+) and

computation of ranges of Gibbs free energy of reaction (DrG0) at the defined conditions (Hen-

ry et al., 2006, 2007; Jankowski et al., 2008; Salvy et al., 2018).

r. Definition of metabolic channeling when applicable and verified that separately the individual

reactions are not thermodynamically feasible (Chiappino-Pepe et al., 2017).

s. Multiple identifiers and 2D structure information linked to a metabolite to facilitate compar-

ison with other models and databases.

t. Properly mapped metabolic subsystems to reactions.

u. E.C. numbers linked to reactions.

v. Information about the sources and methodology used for the gene-function annotation,

including reference genome or protein sequences, software, annotation parameters, and re-

action databases.

w. A summary of the orphan reactions (reactions that are not linked to any gene), their source

database, and the metabolic tasks that motivated their inclusion in the GEM.

x. The criteria followed to define transports and transport mechanisms, since these constitute

the set of reactions with the highest uncertainty in the annotation.

y. Information about the sources and methodology used for the localization: reference protein

sequences, software, parameters.

3. Analyze reaction fluxes (when the conditions of interest are defined in the GEMs) and compare

the GEMs in terms of:

a. Blocked reactions.

b. Disconnected or dead-end metabolites.

c. Gene and reaction essentiality and comparison with available phenotypes for a pre-assess-

ment of the GEM accuracy. At this point it is recommended that the number of FNs is the

lowest possible.

d. Metabolic tasks fulfilled.

e. Other analyses that you may be interested in should be included in this list.

Problem 3: The GEM is not thermodynamically curated

You would like to perform a thermodynamically consistent analysis within PhenoMapping, which

uses matTFA (Salvy et al., 2018), but the GEM is not thermodynamically curated.

Potential solution 3

1. If you want to perform a PhenoMapping analysis accounting for thermodynamic constraints, you

additionally need to assemble and include the following information and fields in the GEM, i.e.,

the COBRA model structure:

a. metSEEDID: list of SEED IDs mapped to the metabolites. It shares length with metabolites.

This field does not include compartment information and hence it might contain duplicated

seed identifiers.

b. CompartmentData: includes thermodynamic data related to compartments.

c. CompartmentData.compSymbolList: row cell with one letter as defined for each compart-

ment.

d. CompartmentData.compNameList: row cell with names of compartments.

e. CompartmentData.membranePot: square matrix containing membrane potential information

between compartments. It shares length with compartment.

f. CompartmentData.pH: row vector with pH values for each compartment. It shares length with

compartment.

g. CompartmentData.ionicStr: row vector with ionic strength values in each compartment. It

shares length with compartment.

h. CompartmentData.compMaxConc: row vector with maximum default molar concentration

values (M or mol/Lcell) allowed for metabolites in each compartment. It shares length with

compartment.
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i. CompartmentData.compMinConc: row vector with minimum default molar concentration

values (M or mol/Lcell) allowed for metabolites in each compartment. It shares length with

compartment.

j. metCompSymbol: list of one letter compartment symbols defining localization of eachmetab-

olite. It should be of the same length and order as the ‘‘mets’’ and corresponding fields. It is

not strictly necessary to include this field, since PhenoMapping will attempt to generate it

based on the compartmentalization information provided in themetabolite identifiers. Pheno-

Mapping will extract the compartment letter provided after any of the following symbols ‘‘_,’’ ‘‘

[’’, or ‘‘(’’ appearing among the last three characters of the metabolite identifier in ‘‘mets.’’ Me-

tabolites without such tags will be automatically assigned to the cytosol. A manual check is

recommended to assure such assumption is correct or to define a tag to the metabolites

that miss it.

Note: one can automatically generate the metCompSymbol structure within PhenoMapping.

The metabolite SEED identifiers and thermodynamic information included in the remaining

fields is GEM- and context-specific and should be gathered and mapped by the user.

2. Perform a systematic thermodynamic curation within PhenoMapping.

Alternatives: if you want to provide your own thermodynamically curated GEM (skipping the

systematic thermodynamic curation within PhenoMapping), verify it contains the following

TFA-specific fields (Salvy et al., 2018):

a. constraintNames: list of constraints included in the model.

b. varNames: list of variables included in the model.

c. var_lab: lower bound of variables. It shares length with variables.

d. var_ub: upper bound of variables. It shares length with variables.

e. A: matrix of constraints (rows) and variables (columns).

f. f: vector defining objective function. It shares length with variables.

g. rhs: vector containing values of the right hand side of the linear problem. It shares length with

constraints.

h. constraintType: type of constraint. It shares length with constraints.

i. vartypes: type of variable. It shares length with variables.

j. objtype: �1 if it is a maximization problem, and +1 if it is a minimization problem.

Note: for further reference, please check the structure of these fields in the iPbe model avail-

able in the PhenoMapping repository.

Problem 4: Unfamiliar with the process to define a medium composition within

PhenoMapping

How to define a media composition in a GEM within PhenoMapping.

Potential solution 4

1. Familiarize with the definition of uptakes in a GEM for a PhenoMapping analysis:

Note: for every optimization problem, PhenoMapping (as matTFA) will take into account the

lower reaction bounds (var_lb) and upper reaction bounds (var_ub) defined for each reaction

variable. We recommend working with net fluxes of reactions (tagged with NF_ and followed

by the reaction name) included in the list of variables of the GEM (varNames).

The definition of bounds of net reaction fluxes follows standards defined in the COBRA Toolbox

(Heirendt et al., 2019):
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For a general reaction defined as A5 B, a negative lower bound of the net reaction flux implies that

the enzyme can produce metabolite A by catalyzing the reaction in the backward direction. Analo-

gously, a positive upper bound of the net reaction flux implies that the enzyme can produce metab-

olite B by catalyzing the reaction in the forward direction. Bounds defined as zero block a specific

reaction directionality. These can be known enzymatic irreversibilities and as ad hoc / pre-assumed

reaction directionalities, which are not desired (Ataman and Hatzimanikatis, 2015).

We suggest defining a medium composition through the definition of bounds of exchange or

boundary reactions:

Exchange or boundary reactions should be defined as A 5 B. For this definition, a negative lower

bound for the net flux of the exchange reaction implies that the uptake of the metabolite A is al-

lowed. Uptakes are blocked when the lower bound is zero or positive. A positive upper bound for

the net flux of the reaction allows secretion of the metabolite A.

CRITICAL: PhenoMapping will automatically define as A 5 B any exchange or boundary
reaction that is inversely defined as B 5 A. This is done within the functions initTestPhe-

noMappingModel and analysisIMM.
2. Allow uptake of all metabolites in the medium by defining an arbitrary negative lower bound

(e.g., �50 mmol/g-DW/h) for the corresponding exchange reactions and transporters in the lb

field of the GEM.

Note: beware some GEMs block transports of molecules (from the extracellular space to the

cytosol) and not the exchange or boundary reactions of those molecules. Both the transport

and exchange of a molecule should be open for molecules to be allowed to be consumed.

CRITICAL: transport of metabolites that follow a specific mechanism different from simple
diffusion should be treated carefully. If no thermodynamic constraints are taken into ac-

count, it might be better to keep pre-assigned directionalities for such transporters to

avoid major flaws. For example, there might exist imports of molecules that consume

ATP. Such imports might end up generating ATP through secretion of molecules if their

pre-assigned directionalities are relaxed in a pure FBA.
3. Convert the model to a PhenoMapping friendly format using initTestPhenoMappingModel.

4. Select the metabolites whose uptake will be allowed.

5. Select the uptake rate (in mmol/g-DW/h) for those metabolites.

Note: the uptake rate could be obtained from experimental data. This value is normally con-

strained for the carbon sources defined in the medium. For example, the uptake rate of

glucose in the GEM of Escherichia coli is normally 10 mmol/g-DW/h. Some molecules like ox-

ygen can easily diffuse through cellular membranes. Others have not been measured. In such

cases, one could define a default large value like 50 mmol/g-DW/h.

6. Identify all exchange reactions. This can be done with standard COBRA functions included in

matTFA like findExcRxns.

7. Block the uptake of all metabolites by defining a lower bound (var_lb) of value zero for the net

flux of the exchange reactions (in varNames).

8. Among all exchange reactions, identify those corresponding to the metabolites for uptake.

9. Allow the uptake of this set of metabolites by defining a negative lower bound (var_lb) for the net

flux of their exchange reactions (in varNames).

10. Refine the lower bounds with the (negative) values of uptake rate selected for the set of metab-

olites.
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11. Optimize and check if the GEM is feasible in the defined medium composition.

12. If the GEM remains infeasible perform the analysis of missing substrates in the medium as

described in Troubleshooting 6.

Problem 5: There is no objective function defined in the GEM

There is no objective function defined in the GEM, and you would like to define one.

Potential solution 5

For every optimization problem, PhenoMapping (as matTFA) will optimize the value of the variables

(varNames) defined as objective in the vector f. The problem will be a maximization if the objtype is

�1 and a minimization if the objtype is +1. PhenoMapping will define both maximization (see

findDPMax function) and minimization (see findDPMin function) problems.

1. Verify that the variable(s) (varNames) to optimize are the only ones marked with a 1 in the corre-

sponding row of the vector f.

2. Definition of maximization of growth as the objective function implies having a 1 in the row of the

forward biomass reaction. The forward biomass reaction is defined with the tag F_ and followed

by the biomass reaction name in varNames.

3. Verify that the GEM is feasible, else proceed to Troubleshooting 6.

Problem 6: The GEM is not feasible

The GEM is not feasible for the objective function selected.

Potential solution 6

1. List the potential reasons that make the GEM infeasible. We define here two general sources of

infeasibility:

a. The GEM includes context-specific information (constraints) under which the selected objec-

tive function is not feasible.

b. The GEM lacks the biochemistry or metabolite transportability capabilities to perform the

selected objective function.

2. Evaluate whether the GEM contains the biochemistry and transport capabilities to render the

objective function feasible.

a. Define the biochemistry layer as defined in the PhenoMapping workflow. This can also be

done by removing all ad hoc constraints from the GEM and defining a rich medium.

b. Evaluate the feasibility of the GEM. If the GEM is feasible, proceed to step 3. Otherwise, jump

to step 5.

3. If the GEM became feasible in the biochemistry layer, identify the minimum number of initial pre-

assigned directionalities that should be relaxed to render a feasible GEM.

a. Use as input the GEM with the biochemistry layer.

b. Define MILP constraints linked to each pre-assigned directionality.

c. Define a requirement for the objective function.

d. Identify alternative sets of minimum number of reactions whose pre-assigned directionalities

should be relaxed.

Note: the rationality defined in step 3 is followed in the analysis of in silico minimal media or

minimal secretion. An analysis of in silico minimal media identifies the minimum number of

substrates that we should add to the medium to allow growth. Similarly, an analysis of in silico

minimal secretion identifies the minimum number of growth by-products that we should allow

to be secreted in the GEM to satisfy mass balances and allow growth. Point 4 defines step-by-

step how to perform the in silico minimal media analysis. An analogous procedure applies to

the in silicominimal secretion analysis and all other analyses that follow the rationality defined

in step 3.
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4. Application of step 3 for the analysis of missing substrates in the medium.

a. List the set of uptakes that are blocked in the infeasible GEM.

b. Define an in silico rich medium in the infeasible GEM, in which all uptakes are open.

c. Set a requirement for the objective function (non-zero lower bound).

d. Define only the set of blocked uptakes as input for the analysis of in silico minimal media.

e. Identify the minimum number of substrates required to render the GEM feasible.

f. Include the additional set of substrates in the medium of the previously infeasible GEM.

g. Verify that the GEM is now feasible.

5. If the objective function in the infeasible GEM is growth or growth is set as a requirement (with a

fixed non-zero lower bound), evaluate the individual production of biomass building blocks

(within the analysis of metabolic tasks).

a. Using the infeasible GEM, identify the biomass building blocks that cannot be produced indi-

vidually.

b. Verify that removing those from the biomass reaction turns the GEM feasible.

Note: the result of the metabolic task analysis will also allow to connect a non-produced

biomass building block with a set of substrates or pre-assigned directionalities. One can verify

that the substrates and metabolic pathways identified are meaningful for the production of

the biomass building block.

6. We follow this step if the GEM did not become feasible in the biochemistry layer or the set of pre-

assigned directionalities identified should not be violated. Such scenario requires a curation of

the GEM by adding new biochemistry or transport capabilities.

a. Use as input the infeasible GEM.

b. Set a requirement for the objective function (non-zero lower bound).

c. Identify a database of biochemical reactions.

d. Merge the infeasible GEM with the database of biochemical reactions.

e. Identify alternative biochemistry to render the GEM feasible.

f. Define the hypothetical biochemistry in the GEM.

Note:NICegame (in preparation) is an example of an approach to follow in this scenario since

it fills metabolic gaps with hypothetical reactions and annotates genes to orphan reactions.

7. If no biochemistry was found to render the GEM feasible in step 6, one may:

a. Use as input the GEM with the biochemistry layer and repeat step 6.

b. Identify the furthest metabolic precursor of the non-produced biomass building block (as

identified in step 5) and define a transport and exchange in the GEM to allow its uptake.

c. Identify a by-product in the metabolic pathway of the non-produced biomass building block

(as identified in step 5) whose secretion is not possible. Define a transport and exchange in the

GEM to allow its secretion.

d. Completely eliminate the non-produced biomass building block from the biomass reaction.

This last option implies redefining the objective function by normalizing the stoichiometric co-

efficients (Chan et al., 2017).
Problem 7: The MATLAB paths to initialize the GEM and PhenoMapping are not found

The paths to initialize the GEM and PhenoMapping are not found.
Potential solution 7

There are multiple alternatives to initialize paths.

We recommend setting up the repositories to capitalize on the systematic identification of paths as

predefined in PhenoMapping:
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1. Clone the matTFA, TEX-FBA, and PhenoMapping repositories in the same path, i.e., sharing the

same root or directory.

2. Identify the directory of the CPLEX folder called CPLEX_StudioVersion. For example, CPLEX_Stu-

dio128.

3. Run the script settings.

4. When the following message arises: "Please provide your cplex path and press enter," paste the

whole path to the CPLEX folder of point 2. Press enter.

In the script tutorial_basics you can find other suggestions on how to set up the repositories matTFA,

TEX-FBA, and PhenoMapping. You could also adapt the function initPhenoMappingPaths. For

example, one may want to include personalized paths or directories to be added automatically.
Problem 8: The default TEX-FBA parameters for a transcriptomics analysis with

PhenoMapping result in many FNs

You would like to adjust the TEX-FBA parameters before integrating transcriptomics data.
Potential solution 8

Alternatives: adjust the percentiles of lowly and highly expressed genes.

1. Plot the distribution of gene expressions for all genes in the GEM.

2. Select the percentiles of lowly and highly expressed genes based on the distribution.

CRITICAL: the selection of percentiles should be adjusted based on the transcriptomics
dataset and GEM. The identification of bottleneck reaction levels can guide the definition

of a better set of lowly and highly expressed genes. We have seen those percentile values

that cut the tails of the distribution at the inflection point lead to low number of bottleneck

reaction levels with incorrect in silico essentiality.
Alternatives: adjust the flux limits assigned to lowly and highly expressed genes.

3. To relax flux limits, decrease the lower bound required for highly expressed genes (ph parameter)

and increase the upper bound required for lowly expressed genes (pl parameter).

Note: TEX-FBA performs a flux variability analysis and defines flux limits within the feasible

range of fluxes. Manymethodologies can be followed to define flux limits. These require slight

adjustments of the TEX-FBA formulation.
Problem 9: The GEM is infeasible when metabolomics data are integrated

You integrated metabolomics data into the GEM within the TFA framework or PhenoMapping, and

the GEM is infeasible.
Potential solution 9

This happens because there is a set of metabolite concentrations that define a set of infeasible re-

action directionalities. These new reaction directionalities block flux through an essential reaction or

set of redundant reactions. Hence, one can identify bottleneck metabolites that render the GEM

infeasible. This can be done by linking a priori dispensable genes with bottleneck metabolites.

1. Use the function linkEssGeneMetab2Mets for which an example implementation is defined in the

script test_core_metabolomics.

2. Identify all genes that are dispensable in the GEM prior to metabolomics data integration. This

set of genes will be the input essTFAmetab to the function linkEssGeneMetab2Mets.
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3. The rest of the inputs to linkEssGeneMetab2Mets are defined as in the sample script test_core_-

metabolomics.

4. Obtain the solution of bottleneck metabolites linked to all dispensable genes.

5. Identify the minimum number of metabolites that appear in all solutions of bottleneck metabo-

lites.

6. Delete those bottleneck metabolites from the input metabolomics dataset.

7. Integrate the new metabolomics dataset into the GEM.

8. Verify the GEM with a reduced metabolomics dataset is feasible now. This should always be the

case.

9. If the GEM is not feasible, you have probably not selected a complete minimum set of bottleneck

metabolites to be removed from the input metabolomics dataset. Return to step 5 from this Po-

tential Solution 9.
Problem 10: The PhenoMapping analysis stopped and you had not generated all alternative

MILP solutions

Your PhenoMapping analysis involving a mixed integer linear programming (MILP) formulation

stopped. It could have stopped for any reason, e.g., the number of alternatives defined was low

and you did not identify all alternative solutions of the optimal size, or you stopped the optimization,

or the solver crashed, etc. You would like to continue the optimization without regenerating all pre-

vious solutions.
Potential solution 10

To avoid regenerating solutions of a MILP problem one should regenerate the integer cut con-

straints. PhenoMapping integrates integer cuts into the GEM every time a new solution for a MILP

is generated (see function findDPMax and findDPMin). Those intermediate solutions are saved in

the PhenoMapping directory (tmpresults subfolder) and can be an input for the steps below to

regenerate the cut constraints.

Here, we show how to restore integer cuts for all MILP maximization problems within PhenoMap-

ping, which use the function findDPMax to generate alternative solutions. An example of MILP maxi-

mization problem is the media analysis. The media analysis tend to involve many solutions (thou-

sands) and hence this troubleshooting pipeline might become handy.

1. Use the function recoverModel4DPMax. This function restores integer cut constraints in the GEM.

Integer cut constraints avoid the repeated prediction of a solution to a MILP.

2. Identify the model that you used as input for the function findDPMax before it stopped. This will

be the first input for recoverModel4DPMax.

Note: PhenoMapping saves in the folder tmpresults a matrix with intermediate solutions for

every problem. The intermediate MILP solutions are tagged with ‘‘_DPs,’’ as defined within

findDPMax. The name of the file before the tag ‘‘_DPs’’ is an input to the findDPMax

function.

CRITICAL: intermediate solutions are deleted at the end of every example script, with the
function elimIntermPMFile. It is wise not to delete intermediate solutions if the number of

alternatives is low and you expect to use those intermediate solutions later.
3. Identify the name of the file where the intermediate solutions are saved.

4. Load the matrix saved in the file. This will be the second and last input for the function recover-

Model4DPMax.

5. Run the function recoverModel4DPMax and the output is the new model with the cut constraints

regenerated.
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Problem 11: The essentiality analysis fails although the GEM is feasible

Your essentiality analysis shows error but your GEM is feasible.

Potential solution 11

This occurs because PhenoMapping uses a thermodynamically consistent implementation of FastSL

(Pratapa et al., 2015) to accelerate the identification of essential genes. This formulation identifies

the optimal value of the objective function, e.g., growth, and sets a requirement of the objective

value. Next, it minimizes flux through all reactions in the GEM. The first solution achieved (a single

solution among all possible alternative flux solutions) is used to identify fluxes with zero value, as

done in the parsimonious FBA or pFBA (Lewis et al., 2010). Reactions that do not carry flux are by

definition not essential and hence do not need to be tested afterward in an essentiality analysis.

A strict definition of the required objective value can render the next problem infeasible. Hence,

one might need to relax this value.

CRITICAL: the required objective value should not be lower than (1 - essentiality
threshold). The essentiality threshold should have been previously defined for a Pheno-

Mapping analysis.
Note: the thermodynamically consistent implementation of pFBA is included in the function

optimizeThermoModel.

1. Identify the requirement of the objective value defined within optimizeThermoModel.

2. Reduce the requirement of the objective value but do not define a requirement < (1 - essentiality

threshold).

3. You may need to round the required objective value to avoid problems with the precision of the

solver.

Problem 12: You obtain solver-related infeasible solutions

You obtain solver-related infeasible solutions. These are infeasible solutions that arise due to prob-

lems with the solver or problem-definition rather than the GEM per se. For example, the solver may

not converge fast enough to a solution and returns a NaN.

Potential solution 12

Infeasible solutions are unfortunately common when working with optimization problems and

solvers. There can be multiple reasons for these infeasibilities, and the resolution is very case-spe-

cific. Here, we provide a check list with some common troubleshooting approaches we have used

to face solver-related infeasibilities.

1. Consider as essential any gene knockout rendering an infeasible solution in the essentiality anal-

ysis with TEX-FBA.

2. Verify that the GEM is feasible by evaluating it as defined in Troubleshooting 6.

3. Tighten the reaction flux bounds with the minimum and maximum feasible solutions as identified

with a flux variability analysis (FVA) (Mahadevan and Schilling, 2003). This is done by defining the

FVA solution as lower and upper bound of the net fluxes. The FVA should account for thermody-

namic constraints if the infeasibility arises within TFA. Round the fluxes to have less than five dec-

imals. These rounded values should fall outside the flux range accounting for all decimals.

4. Tighten the bounds of the Gibbs free energy of reaction (DrG0) with the minimum and maximum

feasible solutions as identified with a thermodynamically consistent Variability Analysis for these

variables. These rounded values should fall outside the DrG0 range accounting for all decimals.

5. If you defined a time limit for the solver, increase it.

6. Verify that the feasibility tolerance of the solver is low enough. By default, in matTFA and Pheno-

Mapping the feasibility tolerance is 10�9. This value of tolerance for CPLEX is defined in the func-

tion changeToCPLEX_WithOptions within the matTFA package.
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7. Evaluate any other parameter specific to the solver like the time limit, integrality tolerance,

emphasis on precision, or scaling. An example of how these parameters are defined and the

default values within matTFA is provided in the function changeToCPLEX_WithOptions within

the matTFA package.

8. Round all reaction bounds to have less than five decimals.

9. Verify that the product of any stoichiometric coefficient (e.g., in the biomass reaction) and the cor-

responding reaction flux (e.g., growth) is not below the tolerance of the solver.

10. If applicable, round the metabolomics data integrated to have less than five decimals.

11. Round any right-hand-side value (rhs) to have less than five decimals.
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the Lead Contact, Anush Chiappino-Pepe (anush.chiappinopepe@alumni.epfl.ch).
Materials availability

Outputs generated with this protocol are provided in previous publications (Krishnan et al., 2020;

Stanway et al., 2019). These outputs are reproducible as described here.
Data and code availability

Documented implementation of the PhenoMapping workflow in MATLAB is available on www.

github.com/EPFL-LCSB/phenomapping.

PhenoMapping requires the matTFA toolbox (Salvy et al., 2018) for TFA and the TEX-FBA toolbox

(Pandey et al., 2019) for the integration of gene expression data.

The metabolic models of P. berghei (iPbe) and T. gondii (iTgo), the P. berghei blood-stage relative

growth phenotypes, the tachizoyte T. gondii genome-wide screen, and all integrated omics data are

available in www.github.com/EPFL-LCSB/phenomapping v1.0. These files are enough to enable the

user to follow along and repeat all computational steps of the examples presented in this Pheno-

Mapping protocol.
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