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Feral swine (Sus scrofa) are a destructive invasive species widespread throughout

the United States that disrupt ecosystems, damage crops, and carry pathogens of

concern for the health of domestic stock and humans including Brucella suis—the

causative organism for swine brucellosis. In domestic swine, brucellosis results in

reproductive failure due to abortions and infertility. Contact with infected feral swine poses

spillover risks to domestic pigs as well as humans, companion animals, wildlife, and

other livestock. Genetic factors influence the outcome of infectious diseases; therefore,

genome wide association studies (GWAS) of differential immune responses among feral

swine can provide an understanding of disease dynamics and inform management to

prevent the spillover of brucellosis from feral swine to domestic pigs. We sought to

identify loci associated with differential antibody responses among feral swine naturally

infected with B. suis using a case-control GWAS. Tissue, serum, and genotype data

(68,516 bi-allelic single nucleotide polymorphisms) collected from 47 feral swine were

analyzed in this study. The 47 feral swine were culture positive for Brucella spp. Of these

47, 16 were antibody positive (cases) whereas 31 were antibody negative (controls).

Single-locus GWAS were performed using efficient mixed-model association eXpedited

(EMMAX) methodology with three genetic models: additive, dominant, and recessive.

Eight loci associated with seroconversion were identified on chromosome 4, 8, 9, 10,

12, and 18. Subsequent bioinformatic analyses revealed nine putative candidate genes

related to immune function, most notably phagocytosis and induction of an inflammatory

response. Identified loci and putative candidate genes may play an important role in

host immune responses to B. suis infection, characterized by a detectable bacterial

presence yet a differential antibody response. Given that antibody tests are used to

evaluate brucellosis infection in domestic pigs and for disease surveillance in invasive

feral swine, additional studies are needed to fully understand the genetic component of

the response to B. suis infection and to more effectively translate estimates of Brucella

spp. antibody prevalence among feral swine to disease control management action.
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INTRODUCTION

In the United States (U.S.) there are ∼6 million invasive feral
swine (Sus scrofa), which are defined as any released or escaped
domestic pigs, Eurasian wild boars, or hybrids of the two (1, 2).
Both the abundance of feral swine and extent of the geographic
range have increased rapidly over the past 30 years due to the high
reproductive potential of the species, limited predation pressure,
abundance of food (both native flora and fauna and agricultural
products), and human-mediated introduction into uninvaded
habitats (3, 4). As range and abundance have increased, so too
have the economic and ecological costs of feral swine. Feral swine
negatively impact the aesthetic and cultural value of landscapes,
with costs to tourism and silvicultural sectors; however, direct
costs to agriculture are most notable. In a survey of 10 of
the 38 states with established populations, feral swine cause an
estimated $190 million in crop damages annually (5). Feral swine
also damage pastures through rooting and trampling behaviors
that kill desired plant species and allow unpalatable species to
quickly spread (6). Among the broader costs associated with
the expansion of this invasive species, feral swine serve as an
important reservoir for a number of pathogens (e.g., Brucella
spp., pseudorabies virus, and trichinella) with the potential
for spillover to livestock, humans, companion animals, and
wildlife (7–9).

Of the pathogens commonly detected in feral swine, swine
brucellosis is among the most important, in large part because
of its broad host specificity (10). Brucella spp. are facultative
intracellular bacteria that primarily infect phagocytic cells
following infection of the host. Typical pathogen recognition
involves actin cytoskeletal remodeling in which membrane
protrusions extend and uptake the stimulatory particle, thus
generating a phagosome (11). The phagosome typically matures
and fuses with the lysosome to create a phagolysosome, which
destroys microorganisms. However, Brucella spp. have been
shown to disrupt this process within the host cell by modifying
the original phagosome into a membrane bound vesicle, referred
to as the Brucella-containing vacuole [BCV; (12)], which prevents
lysosome fusion. The BCV moves along the endocytic pathway
developing membrane markers associated with both the late
endosome and the endoplasmic reticulum. The Type IV secretion
system (T4SS) Vir B has been demonstrated to use effector
proteins to modulate secretory trafficking and promote bacterial
pathogenesis (13, 14). Knowledge of the infection pathway and
kinetics of Brucella spp. is crucial for interpreting diagnostic
results and understanding host pathophysiology.

Several species of Brucella have been isolated from feral
swine, including suis, abortus, and microti (15–17), respectively.
However, Brucella suis is the only species to cause systemic
or generalized infection in swine and can lead to reproductive
failure (18). Through federal, state, tribal, and industry
partnerships, brucellosis was eradicated from domestic pigs in
the U.S. in 2011 (19–21). However, brucellosis remains prevalent
among feral swine, as disease surveillance efforts throughout
the invaded range within the U.S. documented an apparent
Brucella spp. antibody prevalence of 4.3% (8). Prevalence rates
vary geographically, with highest antibody prevalence observed

among Hawaii, South Carolina, and Alabama [14.4, 11.6, and
10.8%, respectively; (21)]. The high prevalence of B. suis in feral
swine poses a risk of reemergence of this bacterial pathogen
in domestic pigs. Approximately 36.5% of commercial swine
facilities, maintaining 11.3% of the nation’s pork inventory, are
located in regions where feral swine are present (22). Further,
monitoring of feral swine fitted with Global Positioning System
(GPS) telemetry collars has demonstrated direct interactions with
livestock, with pasture-raised pigs at greatest risk for B. suis
exposure (23). United States pork production and processing is
estimated to contribute $39 billion to the gross domestic product
(24); however, reemergence of B. suis among commercial swine
could result in tremendous economic losses and trade restrictions
for pork producers (25).

Although swine are the primary host for B. suis, this bacterium
can infect a number of other species, including cattle (26).
Brucella suis generally causes few clinical signs and is not believed
to be transmitted among cattle (27). However, infection of
lactating cows results in shedding of bacteria in milk and the
development of antibodies, which cannot be differentiated from
B. abortus antibodies with current diagnostic serological tests
(28). Thus, bacterial spillover from feral swine to cattle creates
significant diagnostic challenges in addition to posing a public
health risk via consumption of raw milk (27). Furthermore,
as a zoonotic pathogen, B. suis has significant public health
implications with human cases of brucellosis in the U.S. most
often associated with exposure through feral swine hunting and
field dressing (29).

Immunity against intracellular pathogens, including Brucella
spp. relies on the induction of cell-mediated immunity, primarily
interferon gamma (IFN-γ)-producing CD4+ T cells, or T
helper 1 (TH1) responses. These responses can be measured
from blood samples; however, they require cellular isolation,
in vitro antigen stimulation, and can take days to obtain
results. Therefore, cell-mediated responses are not frequently
used for diagnostic purposes. Rather for Brucella suis, as with
other Brucella spp., infection is diagnosed using antigen and
antibody assays. However, culture and serological diagnostics for
B. suis often produce conflicting results (9, 28, 30, 31). Brucella
lipopolysaccharides (LPS) are generally less toxic than those of
other gram-negative bacteria, which are potent stimulators of
innate immune responses through pattern-recognition receptors
(32). However, the O-polysaccharide of the Brucella LPS is
immunodominant for humoral responses during infection in
most natural hosts. Therefore, the O-polysaccharide is the
primary antigen used in most serologic tests for detecting
infection with B. abortus, B. melitensis, or B. suis (33). In infected
swine, brucellosis serologic tests have lower sensitivity than in
other host species such that serologic testing is usually evaluated
on a herd, rather than an individual basis (26). Low sensitivity of
the assay may be due to the fact that most serologic tests were
developed and validated for cattle infected with B. abortus and
there may be structural differences between B. abortus and B. suis
LPS (34).

Genetic variation has been documented to play a role
in immune kinetics for numerous species and diseases (35–
39). For example, genetic variation in host resistance or
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TABLE 1 | Feral swine samples collected at two Texas abattoirs that were culture

positive for B. suis.

Sex

Serological Result Age Male Female

Positive Adult 10 5

Sub-adult 1 0

Negative Adult 14 11

Sub-adult 3 5

tolerance has been reported (scientifically and anecdotally) in
swine for African swine fever, foot-and-mouth disease, atrophic
rhinitis, pseudorabies, and brucellosis (36, 39). Similarly, we
sought to evaluate whether genetic factors may define variation
in seroconversion to B. suis infection with implications for
the reliability of antibody tests used for monitoring disease
prevalence among feral swine (9). We conducted case-control
genome-wide association studies (GWAS) in which allele
frequencies of single nucleotide polymorphisms (SNP) spanning
the genome were evaluated to identify loci associated with B. suis
seroconversion in wild-caught, naturally infected feral swine.

MATERIALS AND METHODS

Sample Collection
Tissue (submandibular, parotid, medial retropharyngeal,
tracheobronchial, gastrohepatic, axillary or inguinal lymph
nodes, spleen, and reproductive tract) and serum samples were
collected from 376 feral swine at two Texas abattoirs in 2015 as
described by Pedersen et al. (9). Tissue cultures were conducted
at the U.S. Department of Agriculture’s Agricultural Research
Service in Ames, Iowa and at the College of Veterinary Medicine
at Texas A&M University in College Station, Texas. If any of the
tissue samples contained Brucella spp., the animal was considered
culture positive. In accordance with established protocols, the
following eight independent serological assays were completed
for each animal at the National Veterinary Services Laboratories
(NVSL): (1) buffered antigen plate agglutination test (BAPA), (2)
competitive enzyme-linked immunosorbent assay (cELISA), (3)
complement fixation, (4) fluorescence polarization assay (FPA),
(5) the rivanol test, (6) plate agglutination, (7) tube agglutination,
and (8) card test. Given the limitations of these serological assays,
feral swine were considered seropositive for B. suis if two or
more of these assays were positive (9). Forty-nine feral swine
were culture positive for Brucella spp. and, of these, 16 were
considered antibody positive (Table 1). Similarly, individuals
with one or zero positive results from the 8 serological assays
were classified as negative. In this study, animals that were both
culture positive and seropositive were defined as cases whereas
animals that were culture positive but seronegative were defined
as controls.

Misclassification of the serological status of an animal
could result from two potential sources of error—error due to
diagnostic test performance or the delay in immune response

once infected resulting in a false negative result. The probability
of an individual being misclassified as negative when positive due
to diagnostic test performance was calculated as the combined
probability of seven or eight false negative serological results
using the lowest previously published sensitivity value for
each serological diagnostic test (40, 41). False negative error
resulting from the delay in immune response was assessed using
data describing the serum antibody response of an infected
animal to the eight diagnostic tests [complete methods available
in Supplementary Material; (42, 43)]. Bayesian generalized
additive models were fit to these serological response data for
each of the eight diagnostic tests resulting in the predicted
increase and variation in serological response by day after
infection. Using these posterior predictions for serological
response, two simulations were conducted to determine the
probability that an individual animal will test positive. First,
the probability of at least two positive test results for each
day post-infection were simulated. Second, because the time
of infection is unknown for sampled animals in this study the
probability that our sample included serological true positive and
false negative animals was conservatively calculated assuming
infection occurred within 120 days of being sampled.

Genotype Data
Bi-allelic SNP genotypes for feral swine were generated using the
GeneSeek Genomic Profiler for Porcine bead array [68,516 loci;
Illumina BeadChip microarrays (San Diego, California) licensed
exclusive to GeneSeek, Neogen Corporation (Lincoln, Nebraska);
(44)]. Single nucleotide polymorphisms were mapped to the
Sscrofa11.1 reference genome assembly (45) and non-autosomal
loci were removed, leaving 62,128 loci available for analysis.
We then used SNP & Variation Suite (SVS; Golden Helix,
Bozeman, Montana) and PLINK 1.9 (46) to implement standard
quality control measures for GWAS analysis of SNP genotypes,
specifically pruning loci with call rates ≤0.90, minor allele
frequency <0.01, Hardy-Weinberg Equilibrium <1 × 10−6, and
removing samples with call rates ≤0.90 and heterozygosity rate
±3 standard deviations from the mean. After quality control,
47 swine (16 cases [seropositive]/31 [seronegative] controls) and
53,162 SNP were retained for analysis. As an additional quality
control step, we screened these 47 individuals for close familial
relationships (identical by descent [pi-hat] estimate >0.375).
Finding no dyads that exceeded this threshold, all 47 individuals
were retained.

Statistical Analysis
A single-locus mixed model GWAS was evaluated using
the efficient mixed-model association eXpedited (EMMAX)
methodology in SVS (Golden Helix, Bozeman, Montana).
Association analyses were conducted using three genetic models:
additive, dominant, and recessive. Given a bi-allelic locus with
two alleles (A and a), the additive model assumes that there is
a linear increase in disease risk with each copy of the A allele;
thus, the increase in disease risk from aa to Aa would again be
doubled among AA homozygotes. The recessive model assumes
that two copies of theA allele increases the risk of disease whereas
the dominant model assumes that one or more A alleles increases
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the risk of disease (47, 48). The mixed model was as follows:

y = Xβ + Zµ + ε

where, y was a vector of observations, X was a matrix of fixed
effects, β was a vector of fixed effects to be estimated, Z was a
matrix relating random effects to the observations in y, µ was a
vector of random effects to be estimated, and ε was a vector of
residual errors. It was assumed that σ 2

µ = σ 2
aK and σ 2

ε = σ 2
e I;

therefore, σ 2
y = σ 2

g ZKZ
′

+ σ 2
e I (49). K was a pre-computed

genomic relationship matrix to account for population structure.
Age (sub-adult vs. adult), sex, facility, and month in which
the samples were collected were examined as potential fixed
effects using an Akaike Information Criterion (AIC) approach
(50). After screening fixed effects with AIC, only age was
retained for additional model development. Association test
statistics can be inflated by underlying population stratification
(i.e., genetic structure associated with systematic differences
in allele frequencies among genetic (sub)populations included
in the sample) (51); therefore, genomic inflation factors (λ)
were estimated to ensure that each model sufficiently corrected
for population stratification. The genomic inflation factor is
expressed as the median of the observed distribution of the test
statistic divided by median of the expected distribution of the
test statistic, where λ < 1.01 suggests small test statistic inflation,
λ < 1.05 suggests moderate test statistic inflation, and λ > 1.1
suggests highly inflated test statistics (52). Our genomic inflation
factors were 1.03, 1.00, and 1.04 for the additive, dominant,
and recessive models, respectively; therefore, the models were
deemed appropriate for subsequent analyses.

Single nucleotide polymorphisms were considered associated
with B. suis seroconversion when their unadjusted P < 5 ×

10−5, moderately associated when their unadjusted P-value fell
between 5 × 10−7 and 1 × 10−5, and strongly associated when
unadjusted P< 5× 10−7 (53). To further examine the association
between these loci and B. suis seroconversion, an odds ratio (OR)
and 95% confidence interval were calculated for the major allele
at each locus (54) as follows:

OR =
(AxD)

(BxC)

where OR represents the odds ratio for the major allele at a
given locus, A represents the number of major alleles within the
cases, D represents the number of minor alleles within the control
group, B represents the number of minor alleles within the cases,
and C represents the number of major alleles in controls (55, 56).

Functional Annotation
Reference sequence (RefSeq) gene transcripts, annotated by
the National Center for Biotechnology Information (NCBI; Sus
scrofa annotation release 106), were used to identify genes
within 2Mb (1Mb upstream and 1Mb downstream) of the
candidate SNP (57–59). This interval was approximately twice
the average haplotype block size (394.88 kb) for swine (60).
The Pig Quantitative Trait Locus Database (Pig QTLdb; https://
www.animalgenome.org/cgi-bin/QTLdb/SS/index) was queried

to identify traits that were previously associated with the genes
of interest. Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Database (61) was used to identify disease-related
pathways within S. scrofa that contained the candidate genes.

RESULTS

Evaluation of the Misclassification of
Serological Status
The combined probability of eight false negative serological
results [P(x1,...,x8) = 2.03 × 10−6] or seven false negative
results and one positive result [P(x1,...,x7) = 2.98 × 10−4]
was low. The probability of accurately classifying an animal
as serologically positive increased logistically with time since
infection, approaching 1 at ∼32 days post-infection. Assuming
B. suis animals in this study were infected within 120 days of
sampling, the probability that the sample included an animal
misclassified as negative (false negative) was 0.13.

Additive Model
Three loci on chromosomes 9, 10, and 18 were associated with
B. suis seroconversion (Figure 1). The odds ratio for the major
allele at each locus was 0.10, 0.19, and 0.22 for rs339122633
(G), rs81477530 (C), and rs81469187 (A), respectively (Table 2).
This suggests that the major alleles, in these three cases, were
associated with a decreased likelihood of B. suis seroconversion.
The 2 megabase (Mb) regions encompassing these three loci
contained 26 annotated genes and 14 uncharacterized genes. A
thorough review of candidate gene function, infection kinetics,
and the immunologic response to B. suis infection reduced
the number of putative candidate genes from 40 to three:(1)
acyloxyacyl hydrolase (AOAH), (2) engulfment and cell motility
1 (ELMO1), and (3) prostaglandin synthase 2 (PTGS2). Locus
rs339122633 was located within an intron of Hemicentin 1
(HMCN1); however, based on our current understanding of the
functions ofHMCN1, there is no obvious link to B. suis infection.

AOAH

Expressed by monocytes, macrophages, neutrophils, and
dendritic cells (62), the AOAH enzyme (encoded by the
AOAH gene) removes secondary fatty acyl chains from
lipopolysaccharides (LPS) on the outer membrane of
Gram-negative bacteria, rendering the target bacterium
immunologically inert (63, 64). In general, exposure to LPS
induces a robust inflammatory response. This is followed by a
period of tolerance that is believed to have evolved to minimize
inflammation-induced damage during recovery from microbe
exposure (64, 65). Once AOAHdeacylates lipid A, the bioreactive
center of the LPS, the ability to elicit an inflammatory response
is greatly reduced (66, 67). Removal of fatty acid chains renders
the LPS biologically inactive and reestablishes sensitivity for
subsequent infections (64, 68).

As this SNP was associated with a decreased likelihood of
seroconversion, modification of AOAH function may result in a
phenotype in which the LPS of B. suis is not effectively processed
in porcine phagocytes. Thus, LPS antigens, such as the O side-
chain, may not be expressed as well withmajor histocompatibility
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FIGURE 1 | Manhattan plot of genome-wide association study for seroconversion following Brucella suis infection in feral swine using the EMMAX-GRM additive

model. The black line [–log10(P-value) = 4.3] denotes an association with B. suis.

complex (MHC) IImolecules on the surface of antigen presenting
cells, making them less available for immune recognition. As
cell wall-derived polysaccharides and glycol lipids are not readily
digested by lysososomal enzymes, they can be retained for long
periods of time inside macrophages (69). Others have reported
that Brucella LPS can form ternary complexes with MHC class
II molecules that are sequestered in the macrodomains at the
cell surface, which prevents immunologic presentation (70).
The phenotype associated with the SNP may lead to more
ternary complexes that decrease immunologic presentation by
phagocytic cells, thereby facilitating reduced humoral responses.

ELMO1

The Engulfment and Cell Motility 1 gene encodes ELMO1, a
host-signaling molecule in phagocytic and T cells that modulates
cellular activities through activation of small Rac GTPases
(71, 72). Rac cycles between active and inactive states based
on binding of guanosine diphosphate (GDP) from guanine
nucleotide exchange factors (GEF). The cytosolic region of brain
angiogenesis inhibitor 1 (BAII, a receptor that recognizes the
core carbohydrate of lipopolysaccharide) interacts with ELMO1
leading to Rac activation (72). This suggests a role for ELMO1 in
innate immunity detection and response to bacterial pathogens
(73). ELMO1 stimulated responses occur largely from within the
cell after phagocytosis engulfment of the target, resulting in an
amplified signal from the concentration of bacterial pathogen-
associated molecular patterns within phagosomes (73).

In lymphocytes, ELMO1 appears to primarily function by
regulating Dock2, a GEF for activating Rac GTPase (71). The
Dock2.ELMO1 complex is essential for chemokine dependent
migration of primary T and B cells and for key steps in the
interactions between T cells and target cells. ELMO1 regulates

polarization and migration in response to chemokine signals, but
a lack of ELMO1 does not appear to impair normal homeostatic
migration of peripheral T cells (71). After activation of the T cell
receptor, a filamentous actin ring is part of the immunological
synapse that forms between a T cell and the surface of a target
cell. This provides a structural framework for effector function
including directional secretion of cytokines and cytolytic factors
(74). The Dock2.ELMO1 complex and Rac activation are
important in formation of the filamentous actin ring as part of the
T cell activation process. Dock2 has also been shown to be critical
for T cell cytotoxicity (74), which may be important because
of the intracellular localization of Brucella spp. Regulators of
Rac GTPase signaling, such as ELMO1 and Dock2, continue to
be of interest for understanding their roles in regulating T cell
activation and function. As this SNP was also associated with
a decreased likelihood of seroconversion, ELMO1 may function
to decrease the humoral response by reducing internalization
of Brucella spp. into phagocytic cells, reducing degradation
of bacterial antigens in phagosomes, and/or decreasing pro-
inflammatory immune responses following infection.

PTGS2

The Prostaglandin-Endoperoxide Synthase 2 (PTGS2) gene
encodes the PTGS2 enzyme that catalyzes the breakdown of
arachidonic acid from cell wall phospholipids to bioactive
eicosanoid compounds (75, 76). PTGS2 is expressed by a
wide range of cells including macrophages, fibroblasts, vascular
endothelial cells, and smooth muscle cells (77) and exposure
of immune cells (dendritic or monocytes) to B. abortus or its
LPS increases expression of prostaglandins (78, 79). Previous
studies suggest that increased prostaglandin concentrations favor
prolonged survival of Brucella within host cells. Cyclooxygenase
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TABLE 2 | Single nucleotide polymorphisms associated with seroconversion following Brucella suis infection in feral swine sampled at two Texas slaughterhouses.

CHRa RS IDb Locationc (bp) Modeld P-valuee Odds Ratiof

(95% C.I.)

Genesg

4 rs80941838 76,298,218 Dominant 4.22 × 10−5 7.97 (2.50–25.42) ATP6V1H, CHCHD7, LOC100626876,

LOC100627466, LOC102166699, LOC102166862,

LOC106510084, LOC106510085, LOC110260293,

LOC110260295, LOC110260483, LYN, LYPLA1,

MOS, MRPL15, PENK, PLAG1, RGS20, RP1,

RPS20, SDR16C5, SOX17, TCEA1, TGS1,

TMEM68, XKR4

8 rs81404101 121,799,317 Dominant 3.59 × 10−5 0.23 (0.09–0.57) ADH1C, ADH4, ADH5, C8H4orf17, EIF4E,

LOC100512795, LOC102160109, LOC102162205,

LOC110261964, LOC110262184, LOC110262185,

LOC110262186, LOC110262187, METAP1, MTTP,

RAP1GDS1, STPG2, TRMT10A, TSPAN5

9 rs81413617 78,187,445 Recessive 2.29 × 10−5 0.30 (0.12–0.74) ASNS, C1GALT1, COL28A1, GLCCI1, ICA1,

LOC102161092, LOC102161282, LOC106504961,

LOC106504962, LOC110255476,

LOC110262233, LOC110262296, MIOS, NXPH1,

RPA3, TAC1, UMAD1

9 rs339122633 126,945,973 Additive

Dominant

5.60 × 10−5

1.53 × 10−6

0.10 (0.03–0.35) C9H1orf27, EDEM3, FAM129A, HMCN1,

IVNS1ABP, LOC100627489, LOC102159064,

LOC106505035, LOC110262256, LOC110262257,

PDC, PLA2G4A, PRG4, PTGS2, RNF2, SWT1,

TPR, TRMT1L

10 rs81477530 2,523,688 Additive 5.58 × 10−5 0.19 (0.07–0.48) BRINP3, LOC102166310, LOC102158399,

LOC102166515, LOC110255734, LOC110255623,

LOC110255624, RGS18

12 rs81329776 17,391,711 Dominant 3.94 × 10−5 0.03 (0–0.22) ACBD4, ARF2, ARHGAP27, CDC27, CRHR1,

DCAKD, FMNL1, GOSR2, HEXIM1, HEXIM2,

ITGB3, KANSL1, LOC100516640, LOC100524336,

LOC100624995, LOC100626147, LOC102159591,

LOC102160528, LOC102165973, LOC102167583,

LOC102167870, LOC106504254, LOC110255897,

LOC110255991, LOC110255993, LOC110255994,

LYZL6, MAP3K14, MAPT, MYL4, NMT1, NSF,

PLCD3, PLEKHM1, RPRML, SPATA32, SPPL2C,

TRNAA-CGC, WNT3, WNT9B

18 rs81469187 38,333,198 Additive

Dominant

3.08 × 10−5

1.37 × 10−5

0.22 (0.09–0.0.54) ANLN, AOAH, DPY19L1, DPY19L2, EEPD1,

ELMO1, HERPUD2, KIAA0895, LOC102161969,

LOC110257555, LOC110257625, NPSR1, SEPT7,

TBX20

18 rs338961194 38,506,661 Dominant 3.69 × 10−5 0.25 (0.10–0.60) BMPER, LOC102163798, LOC106508214

aAutosome in which the locus was located according to Sscrofa 11.1 reference assembly.
bReference SNP cluster identification assigned by the National Center for Biotechnology Information (NCBI).
cAutosome position in which the locus was located according to Sscrofa 11.1 reference assembly.
dGenetic models examined: additive, dominant, and recessive.
eUnadjusted P-value for the SNP associated with B. suis.
fOdds ratio for the major allele of the locus associated with B. suis.
gGenes located within the 2Mb region encompassing the SNP associated with B. suis. Bold font indicates that the SNP was located within the gene.

inhibition reduces Brucella colonization in a murine model (78)
and has been shown to have suppressive effects on several other
immune-modulating effectors.

Prostaglandins are also potent immune modulators for T
cells and can block T cell proliferation and promote cytokines
associated with TH-2 responses (80, 81). As previous studies
suggest that Brucella uses the prostaglandin pathway to subvert
immune responses and enhance persistence in infected cells, it
would be logical to hypothesize PTGS2 affects immune responses
through inhibiting the synthesis of prostaglandins, thereby

reducing stimulation of TH-2 responses associated with antibody
production. As animals with this SNP were culture positive, it
would suggest that factors other than prostaglandin synthesis
have critical roles in in vivo clearance of B. suis in pigs.

Dominant Model
Six loci on chromosomes 4, 8, 9, 12, and 18 were associated
with B. suis seroconversion (Figure 2). Of the six loci, two
were previously identified using the additive model: rs339122633
(PTGS2) and rs81469187 (AOAH). Three of the four SNP
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FIGURE 2 | Manhattan plot of genome-wide association study for seroconversion following Brucella suis infection in feral swine using the EMMAX-GRM dominant

model. The black line [–log10(P-value) = 4.3] denotes an association and the red line [–log10(P-value) = 5.0] denotes a moderate association with B. suis according to

guidelines set forth by the Wellcome Trust Case Control Consortium (53).

identified exclusively using the dominant model had OR < 1
which suggests that the major alleles at these loci (rs81404101
[major allele G], rs81329776 [major allele C], and rs338961194
[major allele G]) were associated with a decreased likelihood of
B. suis seroconversion (Table 2). In contrast, the major allele (T
nucleotide) for rs80941838 on chromosome 4 had an OR > 1
which suggests an increased likelihood of B. suis seroconversion.
The two Mb genomic regions surrounding the significant SNP
contained 55 annotated genes and 33 uncharacterized genes. Five
putative candidate genes were identified after an extensive review
of gene function and brucellosis infection: (1) Integrin Subunit
Beta 3 (ITGB3), (2) Lysozyme Like 6 (LYZL6), (3) Mitogen-
Activated Protein Kinase 14 (MAP3K14), (4) Tetraspanin 5
(TSPAN5), and (5) LYN Proto-oncogene, Src Family Tyrosine
Kinase (LYN).

ITGB3

Integrins are transmembrane receptors important for cell
adhesion and can be exploited by a number of pathogens for
binding to host cells and internalization (82). ITGB3, encoded
by the ITGB3 gene, is a fibrinogen and vitronectin receptor that
is expressed on platelets and monocytes with diverse roles in cell
migration, adhesion, and signaling (83–85). ITGB3 (also known
as αVβ3) can bind to adhesive proteins resulting in endothelial
cell migration, angiogenesis, and TGF-B1 signaling (86).

Prostaglandin E2 suppresses the expression and activity of
ITGB3 in human endometrial epithelial and stromal cells (87),
suggesting a possible link with Prostaglandin-Endoperoxide
Synthase 2, another gene identified in the current study. ITGB3
is also a marker and regulator of cellular senescence, a process
that prevents propagation of damaged cells in tissue. In human

primary fibroblasts under in vitro conditions, ITGB3 accelerates
the onset of senescence by activating transforming growth factor
beta [TGF-B; (88)]. Although senescent cells are metabolically
active, the immune system senses these cells and eliminates them.
The observed SNP could also have influenced N-glycosylation
sites as these sites play a key role in regulating adhesive functions
of integrins (89). Loss of certain individual N-glycan sites either
reduce or enhance integrin activation, indicating that N-linked
glycosylation can exert both positive and negative effects on
integrin function.

Although the connection between ITGB3 and reduced
humoral responses was not evident, a possible link is with
prostaglandin synthase, cellular senescence with immunologic
elimination of targeted cells, or the role of this integrin in cell-to-
cell adhesion and communication are all possible mechanisms.

LYZL6

Lysozymes are proteins that catalyze the hydrolysis of
peptidoglycan on the bacterial cell wall. This results in
bacteriolysis and the release of bacterial products, including
cell wall peptidoglycan, which activates pattern recognition
receptors in host cells (90, 91). Phagocytosis is an important
innate immune function, which results in the fusion of bacteria
within phagosomes with lysosomes and leads to acidification and
degradation through proteases and oxidants. Through a poorly
understood mechanism, Brucella spp. that are localized within
phagosomes prevent fusion with lysosomes (92, 93). However,
almost 90% of internalized bacteria in Brucella-containing
phagosomes are killed, most likely through cellular processes
such as acidification and oxidation that results from fusion with
lysosomes (94). In antigen-presenting cells (especially dendritic
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cells), the bactericidal process could lead to expression of
cleaved bacterial products on the phagocytic cell surface through
exogenous antigen processing.

A probable hypothesis for the reduced likelihood of
seroconversion associated with LYZL6 would be that the
compromised lysozyme results in reduced hydrolysis of the
bacterial cell wall. This would result in peptidoglycan not being
cleaved for antigen presentation and stimulation of cellular
activation processes that result from interaction with pathogen
pattern receptors.

MAP3K14

Mitogen-activated protein kinase 14 (MAP3K14) encodes NF-
κB inducing kinase, a family of transcription factors that play
important roles in the regulation of various cellular processes
including cell growth, cell survival, cell development, and
many aspects of immune function [e.g., immune responses
and inflammation; (95–97)]. There are two major signaling
pathways by which NF-κB activation can occur: canonical
and non-canonical. Both are involved in immune stimulation
and regulation; however, the non-canonical pathway functions
include formation and architecture of secondary lymphoid
organs, humoral immunity, dendritic cell maturation, and
osteoclast and T cell differentiation. Additionally, the role
of the non-canonical pathway in inflammatory diseases has
been studied including rheumatoid arthritis, systemic lupus
erythematosus, nephropathy, metabolic inflammation, and
multiple sclerosis [reviewed in (98)].

While both pathways function in immunity and
inflammation, the non-canonical pathway appears to be
more selective than the canonical pathway, which could be
partly attributed to the restricted type of receptors that can
trigger its activation. However, certain pathogens have been
shown to induce activation of the non-canonical NF-κB pathway
including influenza virus (99), vesicular stomatitis virus (100),
respiratory syncytial virus (101), and various herpesviruses
(102–104). Some bacteria, such as Helicobacter pylori (105) and
Legionella pneumophila (106), are also capable of activating the
non-canonical pathway. Manipulation or modulation of host cell
signaling serves as a virulence mechanism, which could enhance
pathogen survival. Although some studies have shown the
role of the canonical NF-κB pathway during Brucella infection
(107, 108), there is no available information on the role of the
non-canonical pathway during Brucella infection.

TSPAN5

Tetraspanins are conserved proteins that span the membrane
of eukaryotic cells as membrane scaffolds, bringing together
surface molecules such as integrins and cell-specific receptors
into plasma membrane microdomains (109–112). Through
their function as molecular scaffolds, tetraspanins contribute
to development, reproduction, intracellular trafficking, and
immunity (113, 114).

Our analysis identified a SNP in Tetraspanin 5, a gene that
encodes TSPAN5 - a broadly distributed protein with reported
physiologic functions in neurons, cartilage, osteoclasts, and
the cardiovascular system (115–118). TSPAN5 is a member

of a subgroup of tetraspanins (TspanC8) that interact closely
with ADAM10 and regulate several functional aspects. Exit of
ADAM10 from the endoplasmic reticulum, trafficking to either
late endosomes or the plasma membrane, and specificity of
ADAM10 relative to positive or negative regulation of Notch
signaling is all modulated by TSPAN5 (111). ADAM10 is a
transmembranemetalloproteinase that is responsible for cleaving
off the ectodomain of various transmembrane proteins, which
allows the intracellular domain to enter the cell nucleus and
modulate gene expression, including those of cytokines (111,
119). Dendritic cells from mice in which ADAM10 has been
knocked out have dramatic reductions in IgE production and
do not develop significant TH2 immune responses (120). A role
for ADAM metalloproteinases, sometimes through activation of
Notch 1, has been demonstrated in both B cells (thymocyte
and B cell development, function, antigen presentation), T
cells (proliferation, activation, expression of CD44 adhesion
molecules) and activation of NK cells suggesting an important
role for this class of proteases in immune function [reviewed in
(121)]. The role of TSPAN5 in reduced humoral responses in feral
swine after Brucella infection is not yet known, but it could be
hypothesized that the effect may have been mediated through
reduced activation of ADAMmetalloproteinases.

LYN

Tyrosine-protein kinase Lyn, encoded by the LYN gene, is
a member of the Src family of intracellular membrane-
associated tyrosine kinases (SFK). Regulation of Lyn signaling is
mediated by protein interactions through its Src homology (SH)
domains, SH2/SH3, and its phosphorylation status. Although
originally identified within the hematopoietic compartment,
Lyn is expressed in many tissues and transmits signals from
a variety of receptors, including the B cell receptor (122,
123). Downstream, Lyn can phosphorylate various targets
including immunoreceptor tyrosine-based inhibitory/activation
motifs (ITIM/ITAM) (124, 125), PI3 kinase (126), STAT5
(127), and MAP kinases, among others, resulting in both
positive and negative regulatory signals. Lyn deficiency and
Lyn overexpression both result in defects in the myeloid and
lymphoid systems (122, 123, 128, 129).

In B cells, Lyn is the main SFK and has both positive and
negative roles in B cell receptor signaling (124, 130). Within
the BCR complex, Lyn is associated with IgM/IgD as well
as CD19, and it is rapidly phosphorylated upon BCR cross-
linking. Lyn can also positively and negatively influence toll-
like receptor 4 (TLR4) signaling, a pattern recognition receptor,
which recognizes bacterial LPS and plays a critical role in the
initiation of innate immune responses (131). Lyn acts on TLR4
signaling, in part, by interfering with the activity of interferon
regulatory factor-5 (IRF5), a molecule central to the downstream
signaling of TLRs (132). Inmurinemodels, macrophages deletion
of Lyn is associated with greater production of TNF-α, IL-6, and
type I interferons after LPS stimulation (133).

Our data would suggest that the LYN gene may be involved
in regulation of the humoral response to Brucella infection. Due
to the role of Tyrosine-protein kinase Lyn in both BCR and
TLR4 signaling, its effects could be mediated directly on B cells
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or through activation of innate immune danger signals. The
crucial function of Lyn as both an activator and regulator of B
cell responses, makes it an interesting target given the observed
humoral phenotype in this study.

Recessive Model
The recessive model revealed one locus associated with B.
suis seroconversion (Figure 3). The odds ratio for the major
allele (nucleotide T) at this locus (rs81413617) was 0.30, which
indicates that this allele is associated with a decreased likelihood
of B. suis seroconversion (Table 2). Seven uncharacterized genes
as well as 10 annotated genes were located within the two Mb
genomic region encompassing this SNP. The SNP, rs81413617,
was located on chromosome 9 within an uncharacterized gene
LOC110262233; however, one of the genes located 0.35Mb
upstream of rs81413617 was linked to immune response:
Collagen Type XXVIII Alpha 1 Chain (COL28A1).

COL28A1

The collagen superfamily covers a variety of subclasses and
collagens that can be found in all tissues throughout the vertebral
body and are important for tissue integrity (134). COL28A1
collagen is believed to have greatest expression in the nervous
system and encodes a von Willebrand factor A domain that
facilitates protein-protein interactions. Genome-wide association
analyses have previously identified an association between this
type of collagen with Interleukin 1 beta (IL-1β) secretion in
African Americans following smallpox vaccination (135) and
resistance to clinical mastitis in cattle (136). The gene was also
found to be down regulated in a rat model of lipopolysaccharide-
induced epididymitis (137) and upregulated in a bleomycin lung
injury murine model (138).

Current knowledge does not readily explain how COL28A1
would influence humoral responses to B. suis in pigs; however,
the possible tie to IL-1β secretion is of interest. IL-1β plays a
crucial role in modulating host immune responses to inhaled
pathogens through expression of chemokines and adhesion
molecules, enhancing phagocytic activities of neutrophils and
monocytic cells, and increasing production of reactive oxygen
species (139, 140). In addition, mice lacking IL-1β receptors have
increased pulmonary colonization after intratracheal infection
with Brucella abortus (141).

DISCUSSION

In evaluating the physiological response of feral swine to B. suis
infection with case-control GWAS, we identified eight variants
and 145 positional candidate genes suggesting seroconversion
following B. suis infection of feral swine may be under polygenic
control. A review of the current understanding of gene function
and infection kinetics reduced the number of plausible candidate
genes involved in the immunologic response of feral swine to
B. suis from 145 to nine. This aligns with previous studies
that evaluated the genetic architecture of immune response
in domestic swine (39, 142, 143). The nine genes that were
thoroughly explored were all related to immune function—
most notably phagocytosis and induction of an inflammatory
response. Brucella spp. are intracellular bacteria that utilize
various methods to evade and modulate the host immune
response. The identified loci and putative candidate genes may
play an important role in host immune responses to B. suis
infection, characterized by a detectable bacterial presence yet a
differential antibody response.

FIGURE 3 | Manhattan plot of genome-wide association study for seroconversion following Brucella suis infection in feral swine using the EMMAX-GRM recessive

model. The black line [–log10(P-value) = 4.3] denotes an association with B. suis.
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The candidate loci mapped to non-coding regions of the
swine genome, suggesting involvement in regulation of gene
expression. Non-coding variants can modulate transcription
factor binding within promoter and enhancer regions,
methylation, targeted recruitment of transcriptional activators
and repressors, gene splicing, microRNA (miRNA) binding to
3
′

UTR, and expression of long non-coding RNAs [lncRNA;
(144–147)]. Studies suggest that changes in gene expression can
dysregulate immune pathways that are fundamental in disease
outcomes (146, 148). For instance, SNP found within cytokine
promoters have been linked to susceptibility to Mycobacterium
tuberculosis—a pathogenic intracellular bacteria that causes
tuberculosis (149).

Several genes associated with host resistance or susceptibility
to Brucella spp. have been identified in cattle, goats, and humans.
For example, previous studies have reported associations
between SNP in natural resistance-associated macrophage
protein 1 (NRAMP1) and B. abortus resistance or susceptibility
in cattle (150–152). Another gene previously linked to B.
abortus in cattle is Toll-like receptor 4 [TLR4; (152)]. In goats,
Rossi et al. (153, 154) associated an intronic polymorphism
(rs657542977) in protein tyrosine phosphatase receptor type
T (PTPRT) and an insertion/deletion polymorphism (InDels;
rs660531540) in interferon regulatory factor 3 (IRF3) with
host resistance. A study of human patients infected with
Brucella revealed a SNP within interferon gamma (IFNG)
associated with increased susceptibility to B. melitensis
(155). However, brucellosis is caused by multiple species
of Brucella that exhibit preferential host specificity [e.g.,
B. abortus [cattle, bison, and buffalo], B. melitensis [sheep
and goats], B. suis [pigs], B. ovis [sheep], B. canis [dogs], B.
neotomae [mice], B. pinnipedia [seals, sea lions, walruses],
and B. cetacea [whales, porpoises and dolphins]; (156, 157)].
Therefore, brucellosis disease dynamics may differ in swine
relative to other species due differences among hosts and
Brucella spp.

Although genes previously associated with Brucella spp.
resistance/susceptibility are conserved across species, we
did not find associations of these genes in our survey of
naturally infected feral swine. This discordance may be due
to the fact that our analysis focused on the seroconversion
of culture-positive animals as opposed to resistant (non-
infected) or susceptible (infected) phenotypes such as IFN-γ
responses. Also, the genotyping array used in this study did
not contain SNP within three of the five genes previously
associated with brucellosis infections. Future research
could use targeted resequencing to evaluate the influence
of genes previously associated with immune response to
Brucella spp. that were not effectively evaluated with this
SNP array.

With this analysis we identified statistical associations between
loci and seroconversion in infected feral swine; however, GWAS
are ineffective for determining the causal variant and the
mechanism in which the variant affects biological pathways
contributing to seroconversion (158, 159). Further, our limited
sample represented naturally infected animals opportunistically

identified from a broader disease surveillance study (9).
Therefore, follow-up experimental infection studies are needed
to fully elucidate the genetic drivers of differential host responses
to swine brucellosis and provide additional understanding of
epidemiological processes.

Although brucellosis was eradicated from U.S. commercial
swine, in some regions of the U.S. there has been a shift
from biosecure commercial operations to pasture systems,
thus, presenting an increased opportunity for disease spillover
through contact with feral swine. Re-emergence of B. suis
in domestic pigs would have enduring effects on production
systems and the pork export market. Currently, the prevalence
of brucellosis among feral swine, and the concomitant risk of
disease transmission to domestic pigs, is interpreted through
serological assays as a component of a nationwide disease
surveillance program. The underestimation of infection using
routine serological diagnostics is problematic and creates
substantial challenges in estimating true disease prevalence,
which is critical for effective management (160). Understanding
genetic determinants of seroconversion following infection
with B. suis across the invaded range would enable better
interpretation of serologic diagnostic results, optimal allocation
of surveillance efforts, and focused elimination efforts on feral
swine populations that pose the greatest risk of spillover to
domestic pigs (161).

DATA AVAILABILITY STATEMENT

Data presented in this study are available through the European
Variation Archive under accession: PRJEB40856.

ETHICS STATEMENT

Ethical review and approval was not required for the animal study
because previously published data was used (9) and genotyping
was conducted ancillary to sample collection.

AUTHOR CONTRIBUTIONS

CP and TS contributed to the development of the idea,
collection of the data, data analysis and interpretation, and
preparation of the document. VB and SS contributed to the
development of the idea, data analysis and interpretation, and
preparation of the document. SO and PB contributed to data
analysis and interpretation and preparation of the document.
KP contributed to collection of the data, data analysis and
interpretation, and preparation of the document. RM contributed
to data analysis and preparation of the document. All authors
contributed to the article and approved the submitted version.

FUNDING

This research was supported by the U.S. Department
of Agriculture, National Feral Swine Damage

Frontiers in Veterinary Science | www.frontiersin.org 10 November 2020 | Volume 7 | Article 554674

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Pierce et al. Loci for Brucella suis Seroconversion

Management Program, and the National Wildlife
Research Center.

ACKNOWLEDGMENTS

We thank Antoinette Piaggio, Holly Neibergs, and Milton
Thomas for feedback on the manuscript. The findings and
conclusions in this publication are those of the authors and

should not be construed to represent any official USDA or U.S.
Government determination or policy.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fvets.
2020.554674/full#supplementary-material

REFERENCES

1. Lewis JS, Corn JL, Mayer JJ, Jordan TR, Farnsworth ML, Burdett CL,
et al. Historical, current, and potential population size estimates of invasive
wild pigs (Sus scrofa) in the United States. Biol Invasions. (2019) 21:2373–
84. doi: 10.1007/s10530-019-01983-1

2. Smyser TJ, Tabak MA, Slootmaker C, Robeson MS II, Miller RS, Bosse
M, et al. Rapid expansion of an invasive ungulate driven by bridgehead
populations of admixed wild and domestic lineages. Mol Ecol. (2020)
29:1103–19. doi: 10.1111/mec.15392

3. Tabak MA, Piaggio AJ, Miller RS, Sweitzer RA, Ernest HB. Anthropogenic
factors predict movement of an invasive species. Ecosphere. (2017)
8:e01844. doi: 10.1002/ecs2.1844

4. Hernández FA, Sayler KA, Bounds C, Milleson MP, Carr AN,
Wisely SM. Evidence of pseudorabies virus shedding in feral
swine (Sus scrofa) populations of Florida, USA. J Wildl Dis. (2018)
4:45–53. doi: 10.7589/2017-04-071

5. Anderson A, Slootmaker C, Harper E, Holderieath J, Shwiff SA. Economic
estimates of feral swine damage and control in 11 US states.Crop Prot. (2016)
89:89–94. doi: 10.1016/j.cropro.2016.06.023

6. Bankovich B, Boughton E, Boughton R, Avery ML, Wisely SM. Plant
community shifts caused by feral swine rooting devalue Florida rangeland.
Agric Ecosyst Environ. (2016) 15:45–54. doi: 10.1016/j.agee.2015.12.027

7. Hutton T, Deliberto T, Owen S, Morrison B. Disease Risks Associated with

Increasing Feral Swine Numbers and Distribution in the United States.
Midwest Association of Fish andWildlife Agencies, Wildlife and Fish Health
Commission, 15. (2006). Available online at: https://www.aphis.usda.gov/
wildlife_damage/nwdp/pdf/Hutton_Pig_Paper_177657_7.pdf

8. Bevins SN, Pedersen K, Lutman MW, Gidlewski T, Deliberto TJ.
Consequences associated with the recent range expansion of nonnative feral
swine. BioScience. (2014) 64:291–9. doi: 10.1093/biosci/biu015

9. Pedersen K, Bauer NE, Olsen S, Arenas-Gamboa AM, Henry AC, Sibley
TD, et al. Identification of Brucella spp. in feral swine (Sus scrofa)
at abattoirs in Texas, USA. Zoonoses Public Health. (2017) 64:647–
54. doi: 10.1111/zph.12359

10. Godfroid J, Scholz HC, Barbier T, Nicolas C, Wattiau P, Fretin
D, et al. Brucellosis at the animal/ecosystem/human interface
at the beginning of the 21st century. Prev Vet Med. (2011)
102:118–31. doi: 10.1016/j.prevetmed.2011.04.007

11. Pauwels AM, Trost M, Beyaert R, Hoffmann E. Patterns, receptors, and
signals: Regulation of phagosome maturation. Trends in Immunol. (2017)
38:407–22. doi: 10.1016/j.it.2017.03.006

12. Celli J. The intracellular lifecycle of Brucella spp.Microbiol Spectr. (2019) 7:1–
17. doi: 10.1128/microbiolspec.BAI-0006-2019

13. Wallden K, Rivera-Calzada A, Waksman G. Type IV secretion systems:
versatility and diversity in function. Cell Microbiol. (2010) 12:1203–
12. doi: 10.1111/j.1462-5822.2010.01499.x

14. Myeni S, Child R, Ng TW,Kupko JJ III,Wehrly TD, Porcella SF, et al. Brucella
modulates secretory trafficking via multiple type IV secretion effector
proteins. PLoS Pathog. (2013) 9:e1003556. doi: 10.1371/journal.ppat.10
03556

15. Stoffregen WC, Olsen SC, Wheeler CJ, Bricker BJ, Palmer MV,
Jensen AE, et al. Diagnostic characterization of a feral swine herd
enzootically infected with Brucella. J Vet Diagn Invest. (2007)
19:227–37. doi: 10.1177/104063870701900301

16. Higgins J, Stuber T, Quance C, Edwards WH, Tiller RV, Linfield T, et al.
Molecular epidemiology of Brucella abortus isolates from cattle, elk, and
bison in the United States, 1998 to 2011. Appl Environ Microbiol. (2012)
78:3674–84. doi: 10.1128/AEM.00045-12

17. Rónai Z, Kreizinger Z, Dán Á, Drees K, Foster JT, Bányai K, et al. First
isolation and characterization of Brucella microti from wild boar. BMC Vet

Res. (2015) 11:147. doi: 10.1186/s12917-015-0456-z
18. Olsen SC, Palmer MV. Advancement of knowledge of Brucella over the past

50 years. Vet Pathol. (2014) 51:1076–89. doi: 10.1177/0300985814540545
19. Validated Brucellosis-Free States, 9 C.F.R Sect. 78.43 (2011).
20. USDA APHIS. What Is Swine Brucellosis? (2018). Available online at:

https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-
information/swine-disease-information/swine-brucellosis (acessed April 1,
2020).

21. Pedersen K, Bevins SN, Schmit BS, Lutman MW, Milleson MP, Turnage
CT, et al. Apparent prevalence of swine brucellosis in feral swine in the
United States. Hum-Wildl Interact. (2012) 6:38–47.

22. Miller RS, Sweeney SJ, Slootmaker C, Grear DA, DiSalvo PA, Kiser D, et al.
Cross-species transmission potential between wild pigs, livestock, poultry,
wildlife, and humans: Implications for disease risk management in North
America. Sci Rep. (2017) 7:7821. doi: 10.1038/s41598-017-07336-z

23. Wyckoff AC, Henke SC, Campbell TA, Hewitt DG, Vercauteren KC.
Feral swine contact with domestic swine: a serological survey and
assessment of potential for disease transmission. J Wildl Dis. (2009) 45:422–
9. doi: 10.7589/0090-3558-45.2.422

24. National Pork Producer’s Council (n.d) Pork facts. Available online at: http://
nppc.org/pork-facts/ (accessed April 1, 2020).

25. Witmer GW, Sanders RB, Taft AC. “Feral swine – are they a disease threat to
livestock in the United States?” In: The 10th Wildlife Damage Management

Conference Proceedings: Hot Springs, AR, April 6-9. Hot Springs, AR: The
10th Wildlife Damage Management (2003). p. 316–25.

26. Olsen SC, Tatum FM. Swine brucellosis: current perspectives. Vet Med Res

Rep. (2017) 8:1–12. doi: 10.2147/VMRR.S91360
27. Ewalt DR, Payeur JB, Rhyan JC, Geer PL. Brucella suis biovar 1 in naturally

infected cattle: a bacteriological, serological, and histological study. J Vet
Diagn Invest. (1997) 9:417–20. doi: 10.1177/104063879700900414

28. Musser JM, Schwartz AL, Srinath I, Waldrup KA. Use of serology and
bacterial culture to determine prevalence of Brucella spp. in feral swine (Sus
scrofa) in proximity to a beef cattle herd positive for Brucella suis and Brucella
abortus. J Wildl Dis. (2013) 49:215–20. doi: 10.7589/2012-06-169

29. Giurgiutiu D, Banis C, Hunt E, Mincer J, Nicolardi C, Weltman
A, et al. Brucella suis infection associated with feral swine hunting-
Three States, 2007-2008. MMWR Surveill Summ. (2009) 58:618–21.
doi: 10.1016/j.tmaid.2017.03.006

30. Ferris RA, Schoenbaum MA, Crawford RP. Comparison of serologic tests
and bacteriologic culture for detection of brucellosis in swine from naturally
infected herds. J Am Vet Med Assoc. (1995) 207:1332–3.

31. Pedersen K, Quance CR, Robbe-Austerman S, Piaggio AJ, Bevins SN,
Goldstein SM, et al. Identification of Brucella suis from feral swine in
selected states in the USA. J Wildl Dis. (2014) 50:171–9. doi: 10.7589/201
3-09-235

32. Kianmehr Z, Ardestani SK, Soleimanjahi H, Fotouhi F, Alamian S,
Ahmadian S. Comparison of biological and immunological characterization
of Lipopolysaccharides from Brucella abortus RB51 and S19. Jundishapur J
Microbiol. (2015) 8:e24853. doi: 10.5812/jjm.24853

Frontiers in Veterinary Science | www.frontiersin.org 11 November 2020 | Volume 7 | Article 554674

https://www.frontiersin.org/articles/10.3389/fvets.2020.554674/full#supplementary-material
https://doi.org/10.1007/s10530-019-01983-1
https://doi.org/10.1111/mec.15392
https://doi.org/10.1002/ecs2.1844
https://doi.org/10.7589/2017-04-071
https://doi.org/10.1016/j.cropro.2016.06.023
https://doi.org/10.1016/j.agee.2015.12.027
https://www.aphis.usda.gov/wildlife_damage/nwdp/pdf/Hutton_Pig_Paper_177657_7.pdf
https://www.aphis.usda.gov/wildlife_damage/nwdp/pdf/Hutton_Pig_Paper_177657_7.pdf
https://doi.org/10.1093/biosci/biu015
https://doi.org/10.1111/zph.12359
https://doi.org/10.1016/j.prevetmed.2011.04.007
https://doi.org/10.1016/j.it.2017.03.006
https://doi.org/10.1128/microbiolspec.BAI-0006-2019
https://doi.org/10.1111/j.1462-5822.2010.01499.x
https://doi.org/10.1371/journal.ppat.1003556
https://doi.org/10.1177/104063870701900301
https://doi.org/10.1128/AEM.00045-12
https://doi.org/10.1186/s12917-015-0456-z
https://doi.org/10.1177/0300985814540545
https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/swine-disease-information/swine-brucellosis
https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/swine-disease-information/swine-brucellosis
https://doi.org/10.1038/s41598-017-07336-z
https://doi.org/10.7589/0090-3558-45.2.422
http://nppc.org/pork-facts/
http://nppc.org/pork-facts/
https://doi.org/10.2147/VMRR.S91360
https://doi.org/10.1177/104063879700900414
https://doi.org/10.7589/2012-06-169
https://doi.org/10.1016/j.tmaid.2017.03.006
https://doi.org/10.7589/2013-09-235
https://doi.org/10.5812/jjm.24853
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Pierce et al. Loci for Brucella suis Seroconversion

33. Lee JJ, Simborio HL, Bernardo-Reyes AW, Kim DG, Hop HT, Min
W, et al. Immunoproteomic identification of immunodominant antigens
independent of the time of infection in Brucella abortus 2308-challenged
cattle. Vet Res. (2015) 46:17. doi: 10.1186/s13567-015-0147-6

34. Cloeckaert A, Weynants V, Godfroid J, Verger JM, Grayon M, Zygmunt
MS. O-Polysaccharide epitopic heterogeneity at the surface of Brucella spp.
studied by enzyme-linked immunosorbent assay and flow cytometry. Clin
Diagn Lab Immunol. (1998) 5:862–70. doi: 10.1128/CDLI.5.6.862-870.1998

35. Frank SA. Genetic variability of hosts. In: Frank SA, editor. Immunology and

Evolution of Infectious Disease. New Jersey, NJ: Princeton University Press
(2002). p. 111–23. doi: 10.1515/9780691220161-009

36. Bishop SC, De Jong M, Gray D. Opportunities for incorporating genetic
elements into the management of farm animal diseases: policy issues. In:
Food and Agriculture Organization of the United Nations (FAO) Study

Paper. Food and Agriculture Organization of the United Nations (FAO)
(2002). 18:1–36. Available online at: http://www.fao.org/3/a1250e/annexes/
Thematic%20Studies/bsp18e.pdf

37. Bishop SC. Disease resistance: genetics. In: Pond WG, Bell AW, editors.
Encyclopedia of Animal Science. New York, NY: Marcel Dekker, Inc. (2005)
288–90. doi: 10.1201/9781482276664-87

38. Nicholas FW. Animal breeding and disease. Philos Trans R Soc Lond B Biol

Sci. (2005) 360:1529–36. doi: 10.1098/rstb.2005.1674
39. Garry Adams L, Schutta CJ. Natural resistance against brucellosis: a review.

Open Vet Sci J. (2010) 4:61–7. doi: 10.2174/1874318801004010061
40. Fosgate GT, Adesiyun AA, Hird DW, JohnsonWO, Hietala SK, Schurig GG,

et al. Comparison of serologic tests for detection of Brucella infections in
cattle and water buffalo (Bubalus bubalis). Am J Vet Res. (2002) 63:1598–
605. doi: 10.2460/ajvr.2002.63.1598

41. Nielsen K. Diagnosis of brucellosis by serology.VetMicrobiol. (2002) 90:447–
59. doi: 10.1016/S0378-1135(02)00229-8

42. Jungersen G, Sørensen V, Giese S, Stack J, Riber U. Differentiation between
serological responses to Brucella suis and Yersinia enterocolitica serotype
O[ratio]9 after natural or experimental infection in pigs. Epidemiol Infect.
(2006) 134:347–57. doi: 10.1017/S095026880500511X

43. Brown, V.R., Bowen, R.A., Ledesma, N., Hartwig, A., Gordy, P., Pierce, C.F.,
et al. (2020). Pathogenesis and Immune Responses of Heritage Breed Pigs

to Experimental Inoculation with Brucella suis (Manuscript submitted for
publication). Department of Biomedical Sciences, Colorado State University,
Fort Collins, CO, United States.

44. Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, Beever
JE, et al. Design of a high density SNP genotyping assay in the pig
using SNPs identified and characterized by next generation sequencing
technology. PLoS ONE. (2009) 4:e6524. doi: 10.1371/journal.pone.00
06524

45. Warr A, Affara N, Aken B, Beiki H, Bickhart DM, Billis K, et al. An improved
pig reference genome sequence to enable pig genetics and genomics
research. Gigascience. (2020). 9:giaa051. doi: 10.1093/gigascience/gi
aa051

46. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-
generation PLINK: Rising to the challenge of larger and richer datasets.
GigaScience. (2015) 4:7. doi: 10.1186/s13742-015-0047-8

47. Clarke GM, Anderson CA, Pettersson FH, Cardon LR, Morris AP,
Zondervan KT. Basic statistical analysis in genetic case-control studies. Nat
Protoc. (2011) 6:122–33. doi: 10.1038/nprot.2010.182

48. Bush WS, Moore JH. Genome-wide association studies. PLOS Comput Biol.
(2012) 8:e1002822. doi: 10.1371/journal.pcbi.1002822

49. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, et al.
Variance component model to account for sample structure in genome-
wide assocation studies. Nature Genet. (2010) 42:348–54. doi: 10.1038/
ng.548

50. Bozdogan H. Model selection and Akaike’s information criterion (AIC): the
general theory and its analytical extensions. Psychometrika. (1987) 52:345–
70. doi: 10.1007/BF02294361

51. Devlin B, Roeder K. Genomic control for association studies.
Biometrics. (1999) 55:997–1004. doi: 10.1111/j.0006-341X.1999.
00997.x

52. Aulchenko YS. GWA analysis in presence of stratification: theory. In:
GenABEL Tutorial. GenABEL project contributors (2015). p. 137–66.

53. Wellcome Trust Case Control Consortium. Genome-wide association study
of 14,000 cases of seven common disease and 3,000 shared controls. Nature.
(2007) 447:661. doi: 10.1038/nature05911

54. Morris JA, Gardner MJ. Calculating confidence intervals for relative risks
(odds ratios) and standardised ratios and rates. Brit Med J. (1988) 296:1313–
6. doi: 10.1136/bmj.296.6632.1313

55. Altman DG. Comparing groups – categorical data. In: Altman DG, editor.
Practical Statistics for Medical Research. Florida, FL:CRC Press (1991). p.
229–76. doi: 10.1201/9780429258589

56. Kiser JN, White SN, Johnson KA, Hoff JL, Taylor JF, Neibergs HL.
Identification of loci associated with susceptibility to Mycobacterium avium

subspecies paratuberculosis (MAP) tissue infection in cattle. J Anim Sci.
(2017) 95:1080–91. doi: 10.2527/jas.2016.1152

57. Onteru SK, Gorbach DM, Young JM, Garrick DJ, Dekkers JCM,
Rothschild MF. Whole genome association studies of residual
feed intake and related traits in the pig. PLoS ONE. (2013)
8:e61756. doi: 10.1371/journal.pone.0061756

58. Horodyska J, Hamill RM, Varley PF, Reyer H, Wimmers K. Genome-wide
association analysis and functional annotation of positional candidate genes
for feed conversion efficiency and growth rate in pigs. PLoS ONE. (2017)
12:e0173482. doi: 10.1371/journal.pone.0173482

59. Tang Z, Xu J, Yin L, Yin D, Zhu M, Yu M, et al. Genome-wide association
study reveals candidate genes for growth relevant traits in pigs. Front Genet.
(2019) 10:302. doi: 10.3389/fgene.2019.00302

60. Veroneze R, Lopes PS, Guimarães SEF, Silva FF, Lopes MS, Harlizius B, et al.
Linkage disequilibrium and haplotype block structure in six commercial pig
lines. J Anim Sci. (2013) 91:3493–501. doi: 10.2527/jas.2012-6052

61. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG:
Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. (1999) 27:29–
34. doi: 10.1093/nar/27.1.29

62. Staab JF, Ginkel DL, Rosenberg GB, Munford RS. Saposin-like domain
influences the intracellular localization, stability, and catalytic activity of
human acylosyacyl hydrolase. J Biol Chem. (1994) 269:23736–42.

63. Feulner JA, Lu M, Shelton JM, Zhang M, Richardson JA, Munford RS.
Identification of acycloxyacyl hydrolase, a lipopolysaccharide-detoxifying
enzyme, in the murine urinary tract. Infect Immun. (2004) 72:3171–
8. doi: 10.1128/IAI.72.6.3171-3178.2004

64. Gorelik A, Illes K, Nagar B. Crystal structure of the mammalian
lipopolysacharide detoxifier. Proc Nat Acad Sci USA. (2018) 115:E896–
905. doi: 10.1073/pnas.1719834115

65. Lu M, Varley AW, Ohta S, Hardwick J, Munford RS. Host inactivation
of bacterial lipopolysaccharide prevents prolonged microbial tolerance
following Gram-negative bacterial infection. Cell Host Microbe. (2008)
4:293–302. doi: 10.1016/j.chom.2008.06.009

66. Hagen FS, Grant FJ, Kuijper JL, Slaughter CA, Moomaw CR, Orth K,
et al. Expression and characterization of recombinant human acyloxyacyl
hydrolase, a leukocyte enzyme that deacylates bacterial lipopolysaccharides.
Biochem. (1991) 30:8415–23. doi: 10.1021/bi00098a020

67. Lu M, Zhang M, Takashima A, Weiss J, Apicella MA, Li XH, et al.
Lipopolysaccharide deacylation by an endogenous lipase controls innate
antibody responses to Gram-negative bacteria. Nat Immunol. (2005) 6:989–
94. doi: 10.1038/ni1246

68. Zou B, Jiang W, Han H, Li J, Mao W, Tang Z, et al. Acyloxyacyl hydrolase
promotes the resolution of lipopolysaccharide-induced acute lung injury.
PLoS Pathogen. (2017) 13:e1006436. doi: 10.1371/journal.ppat.1006436

69. Leyva-Cobian FR, Unanue ER. Intracellular interference with antigen
presentation. J Immunol. (1988) 141:1445–50.

70. Forestier C, Moreno E, Méresse S, Phalipon A, Olive D, Sansonetti
P, et al. Interaction of Brucella abortus Lipopolysaccharide with major
histocompatibility complex class II molecules in B lymphocytes. Infect

Immun. (1999) 67:4048–54. doi: 10.1128/IAI.67.8.4048-4054.1999
71. Stevenson C, de la Rosa G, Anderson CS, Murphy PS, Capece T, Kim M,

et al. Essential role of Elmo1 in Dock2-dependent lymphocyte migration. J
Immun. (2014) 192:6062–70. doi: 10.4049/jimmunol.1303348

72. Sarkar A, Tindle C, Pranadinata RF, Reed S, Eckmann L, Stappenbeck
TS, et al. ELMO1 regulates autophagy induction and bacterial clearance
during enteric infection. J Infect Dis. (2017) 216:1655–66. doi: 10.1093/infdis/
jix528

Frontiers in Veterinary Science | www.frontiersin.org 12 November 2020 | Volume 7 | Article 554674

https://doi.org/10.1186/s13567-015-0147-6
https://doi.org/10.1128/CDLI.5.6.862-870.1998
https://doi.org/10.1515/9780691220161-009
http://www.fao.org/3/a1250e/annexes/Thematic%20Studies/bsp18e.pdf
http://www.fao.org/3/a1250e/annexes/Thematic%20Studies/bsp18e.pdf
https://doi.org/10.1201/9781482276664-87
https://doi.org/10.1098/rstb.2005.1674
https://doi.org/10.2174/1874318801004010061
https://doi.org/10.2460/ajvr.2002.63.1598
https://doi.org/10.1016/S0378-1135(02)00229-8
https://doi.org/10.1017/S095026880500511X
https://doi.org/10.1371/journal.pone.0006524
https://doi.org/10.1093/gigascience/giaa051
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1038/nprot.2010.182
https://doi.org/10.1371/journal.pcbi.1002822
https://doi.org/10.1038/ng.548
https://doi.org/10.1007/BF02294361
https://doi.org/10.1111/j.0006-341X.1999.00997.x
https://doi.org/10.1038/nature05911
https://doi.org/10.1136/bmj.296.6632.1313
https://doi.org/10.1201/9780429258589
https://doi.org/10.2527/jas.2016.1152
https://doi.org/10.1371/journal.pone.0061756
https://doi.org/10.1371/journal.pone.0173482
https://doi.org/10.3389/fgene.2019.00302
https://doi.org/10.2527/jas.2012-6052
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1128/IAI.72.6.3171-3178.2004
https://doi.org/10.1073/pnas.1719834115
https://doi.org/10.1016/j.chom.2008.06.009
https://doi.org/10.1021/bi00098a020
https://doi.org/10.1038/ni1246
https://doi.org/10.1371/journal.ppat.1006436
https://doi.org/10.1128/IAI.67.8.4048-4054.1999
https://doi.org/10.4049/jimmunol.1303348
https://doi.org/10.1093/infdis/jix528
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Pierce et al. Loci for Brucella suis Seroconversion

73. McCormick BA. ELMO1: more than just a director of phagocytosis. Cell Mol

Gastroenterol Hepatol. (2015) 1:262–3. doi: 10.1016/j.jcmgh.2015.04.002
74. Franciszkiewicz K, Le Floc’h A, Boutet M, Vergnon I, Schmitt A,

Mami-Chouaib F. CD103 or LFA-1 engagement at the immune
synapse between cytotoxic T cells and tumor cells promotes
maturation and regulates T-cell effector functions. Cancer Res. (2013)
73:617–28. doi: 10.1158/0008-5472.CAN-12-2569

75. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: Structural,
cellular, and molecular biology. Annu Rev Biochem. (2000) 69:145–
82. doi: 10.1146/annurev.biochem.69.1.145

76. Cox DG, Pontes C, Guino E, Navarro M, Osorio A, Canzian F,
et al. Polymorphisms in prostaglandin synthase 2/cyclooxygenase 2
(PTGS2/COX2) and risk of colorectal cancer. Brit J Cancer. (2004) 91:339–
43. doi: 10.1038/sj.bjc.6601906

77. Rocca B, Spain LM, Pure E, Langenbach R, Patrono C, Fitzgerald GA.
Distinct roles of prostaglandin H synthases 1 and 2 in T-cell development.
J Clin Invest. (1999) 103:1469–77. doi: 10.1172/JCI6400

78. Gagnaire A, Gorvel L, Papadopoulos A, Von Bargen K, Mège JL, Gorvel
JP. COX-2 inhibition reduces Brucella bacterial burden in draining lymph
nodes. Front Microbiol. (2016) 7:1987. doi: 10.3389/fmicb.2016.01987

79. López-Urrutia L, Alonso A, Bayón Y, Nieto ML, Orduña A, Crespo
MS. Brucella lipopolysaccharides induce cyclooxygenase-2 expression
in monocytic cells. Biochem Biophys Res Commun. (2001) 289:372–
5. doi: 10.1006/bbrc.2001.5995

80. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP. Prostaglandins
as modulators of immunity. Trends Immunol. (2002) 23:144–
50. doi: 10.1016/S1471-4906(01)02154-8

81. Woolard MD, Wilson JE, Hensley LL, Jania LA, Kawula TH, Drake JR, et al.
Francisella tularensis-infected macrophages release prostaglandin E2 that
blocks T cell proliferation and promotes a Th2-like response. J Immunol.
(2007) 178:2065–74. doi: 10.4049/jimmunol.178.4.2065

82. Scibelli A, Roperto S, Manna L, Pavone LM, Tafuri S, Della Morte R, et al.
Engagement of integrins as a celular route of invasion by bacterial pathogens.
Vet J. (2007) 173:482–91. doi: 10.1016/j.tvjl.2006.01.010

83. Switala-Jelen K, Dabrowska K, Opolski A, Lipinska L, Nowaczyk M, Gorski
A. The biological functions of β3 integrins. Folia Biol. (2004) 50:143–52.

84. Langsenlehner U, Renner W, Yazdani-Biuki B, Eder T, Wascher
TC, Paulweber B, et al. Integrin alpha-2 and beta-3 gene
polymorphisms and breast cancer risk. Breast Cancer Res Treat. (2006)
97:67–72. doi: 10.1007/s10549-005-9089-4

85. Thompson EE, Pan L, Ostrovnaya I, Weiss LA, Gern JE, Lemanske RF
Jr, et al. Integrin β3 genotype influences asthma and allergy phenotypes
in the first 6 years of life. J Allergy Clin Immuno. (2007) 119:1423–
9. doi: 10.1016/j.jaci.2007.03.029

86. Rivera-Soto R, Dissinger NJ, Damania B. Kaposi’s sarcoma-
associated herpesvirus viral interleukin-6 signaling upregulates
integrin β3 levels and is dependent on STAT3. J Virol. (2020)
94:e01384–19. doi: 10.1128/JVI.01384-19

87. Lee J, Banu SK, Burghardt RC, Starzinski-Powitz A, Arosh JA.
Selective inhibition of prostaglandin E2 receptors EP2 and EP4 inhibits
adhesion of human endometriotic epithelial and stromal cells through
suppression of integrin-mediated mechanisms. Biol Reprod. (2013)
88:1–11. doi: 10.1095/biolreprod.112.100883

88. Rapisarda V, Borghesan M, Miguela V, Encheva V, Snijders AP, Lujambio A,
et al. Integrin beta 3 regulates cellular senescence by activating the TGF-β
pathway. Cell Rep. (2017) 18:2480–93. doi: 10.1016/j.celrep.2017.02.012

89. Cai X, Thinn AM, Wang Z, Shan H, Zhu J. The importance of N-
glycosylation on β 3 integrin ligand binding and conformational regulation.
Sci Rep. (2017) 7:4656. doi: 10.1038/s41598-017-04844-w

90. Zhang K, Gao R, Zhang H, Cai X, Shen C, Wu C, et al. Molecular cloning
and characterization of three novel lysozyme-like genes, predominantly
expressed in the male reproductive system of humans, belonging to the
C-type lysozyme/alpha-lactalbumin family. Biol Repro. (2005) 73:1064–
71. doi: 10.1095/biolreprod.105.041889

91. Ragland SA, Criss AK. From bacterial killing to immune modulation:
Recent insights into the functions of lysozyme. PLoS Pathog. (2017)
13:e1006512. doi: 10.1371/journal.ppat.1006512

92. Pizarro-Cerdá J, Moreno E, Gorvel JP. Invasion and intracellular trafficking
of Brucella abortus in nonphagocytic cells. Microbes Infect. (2000) 2:829–
35. doi: 10.1016/S1286-4579(00)90368-X

93. Omotade TO, Roy CR. Manipulation of host cell organelles by intracellular
pathogens. In: Cossart P, Roy CR, Sansonetti P, editors. Bacteria and

Intracellularity. New Jersey, NJ: John Wiley and Sons (2019). p. 179–
96. doi: 10.1128/9781683670261.ch13

94. Case ED, Samuel JE. Contrasting lifestyles within the host cell. In: Kudva
IT, Cornick NA, Plummer PJ, Zhang Q, Nicholson TL, Bannantine JP,
Bellaire BH, editors. Virulence Mechanisms of Bacterial Pathogens. New
Jersey, NJ: John Wiley and Sons (2016). p. 667–92. doi: 10.1128/9781555819
286.ch23

95. Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell. (2008)
132:344–62. doi: 10.1016/j.cell.2008.01.020

96. Hayden MS, Ghosh S. NF-kB in immunology. Cell Res. (2011) 21:223–
44. doi: 10.1038/cr.2011.13

97. Vallabhapurapu S, Karin M. Regulation and function of NF-κB transcription
factors in the immune system. Annu Rev Immunol. (2009) 27:693–
733. doi: 10.1146/annurev.immunol.021908.132641

98. Sun SC. The non-canonical NF-κB pathway in immunity and inflammation.
Nat Rev Immunol. (2017) 17:545–58. doi: 10.1038/nri.2017.52

99. Rckle A, Haasbach E, Julkunen I, Planz O, Ehrhardt C, Ludwig S. The
NS1 protein of influenza a virus blocks RIG-I-mediated activation of
the noncanonical NF-B pathway and p52/RelB-dependent gene expression
in lung epithelial cells. J Virol. (2012) 86:10211–7. doi: 10.1128/JVI.0
0323-12

100. Jin J, Hu H, Li HS, Yu J, Xiao Y, Brittain GC, et al. Noncanonical NF-κB
pathway controls the production of type I interferons in antiviral innate
immunity. Immunity. (2014) 40:342–54. doi: 10.1016/j.immuni.2014.02.006

101. Liu P, Li K, Garofalo RP, Brasier AR. Respiratory syncytial virus induces
RelA release from cytoplasmic 100-kDa NF-κB2 complexes via a novel
retinoic acid-inducible gene-I· NF-κB-inducing kinase signaling pathway. J
Biol Chem. (2008) 283:23169–78. doi: 10.1074/jbc.M802729200

102. Matta H, Chaudhary PM. Activation of alternative NF-κB pathway by
human herpes virus 8-encoded Fas-associated death domain-like IL-1β-
converting enzyme inhibitory protein (vFLIP). Proc Natl Acad Sci USA.
(2004) 101:9399–404. doi: 10.1073/pnas.0308016101

103. Cho IR, Jeong S, Jhun BH, Lee B, Kwak YT, Lee SH, et al.
Activation of non-canonical NF-kB pthway mediated by STP-
A11, an oncoprotein of Herpesvirus saimiri. Virology. (2007)
359:37–45. doi: 10.1016/j.virol.2006.09.001

104. de Jong SJ, Albrecht JC, Giehler F, Kieser A, Sticht H, Biesinger
B. Noncanonical NF-κB activation by the oncoprotein Tio occurs
through a nonconserved TRAF3-binding motif. Sci Signal. (2013)
6:ra27. doi: 10.1126/scisignal.2003309

105. Yanai A, Maeda S, Hikiba Y, Shibata W, Ohmae T, Hirata Y,
et al. Clinical relevance of Helicobacter pylori sabA genotype
in Japanese clinical isolates. J Gastroenterol Hepatol. (2007)
22:2228–32. doi: 10.1111/j.1440-1746.2007.04831.x

106. Ge J, Xu H, Li T, Zhou Y, Zhang Z, Li S, et al. A Legionella type IV effector
activates the NF-κB pathway by phosphorylating the IκB family of inhibitors.
Proc Natl Acad Sci USA. (2009) 106:13725–30. doi: 10.1073/pnas.09072
00106

107. Hop HT, Reyes AW, Huy TX, Arayan LT, Min W, Lee HJ, et al. Activation
of NF-kB-mediated TNF-induced antimicrobial immunity is required for
the efficient Brucella abortus clearance in RAW 264.7 cells. Front Cell Infect
Microbiol. (2017) 7:437. doi: 10.3389/fcimb.2017.00437

108. Hop HT, Arayan LT, Reyes AW, Huy TX, MinWG, Lee HJ, et al. Heat-stress-
modulated induction of NF-κB leads to brucellacidal pro-inflammatory
defense against Brucella abortus infection in murine macrophages and in a
mouse model. BMCMicrobiol. (2018) 18:44. doi: 10.1186/s12866-018-1185-9

109. Bassani S, Cingolani LA. Tetraspanins: interactions and
interplay with integrins. Int J Biochem Cell Biol. (2012)
44:703–8. doi: 10.1016/j.biocel.2012.01.020

110. Zhou J, Fujiwara T, Ye S, Li X, ZhaoH.Downregulation of Notchmodulators,
tetraspanin 5 and 10, inhibits osteoclastogenesis in vitro. Calcif Tissue Int.
(2014) 95:209–17. doi: 10.1007/s00223-014-9883-2

Frontiers in Veterinary Science | www.frontiersin.org 13 November 2020 | Volume 7 | Article 554674

https://doi.org/10.1016/j.jcmgh.2015.04.002
https://doi.org/10.1158/0008-5472.CAN-12-2569
https://doi.org/10.1146/annurev.biochem.69.1.145
https://doi.org/10.1038/sj.bjc.6601906
https://doi.org/10.1172/JCI6400
https://doi.org/10.3389/fmicb.2016.01987
https://doi.org/10.1006/bbrc.2001.5995
https://doi.org/10.1016/S1471-4906(01)02154-8
https://doi.org/10.4049/jimmunol.178.4.2065
https://doi.org/10.1016/j.tvjl.2006.01.010
https://doi.org/10.1007/s10549-005-9089-4
https://doi.org/10.1016/j.jaci.2007.03.029
https://doi.org/10.1128/JVI.01384-19
https://doi.org/10.1095/biolreprod.112.100883
https://doi.org/10.1016/j.celrep.2017.02.012
https://doi.org/10.1038/s41598-017-04844-w
https://doi.org/10.1095/biolreprod.105.041889
https://doi.org/10.1371/journal.ppat.1006512
https://doi.org/10.1016/S1286-4579(00)90368-X
https://doi.org/10.1128/9781683670261.ch13
https://doi.org/10.1128/9781555819286.ch23
https://doi.org/10.1016/j.cell.2008.01.020
https://doi.org/10.1038/cr.2011.13
https://doi.org/10.1146/annurev.immunol.021908.132641
https://doi.org/10.1038/nri.2017.52
https://doi.org/10.1128/JVI.00323-12
https://doi.org/10.1016/j.immuni.2014.02.006
https://doi.org/10.1074/jbc.M802729200
https://doi.org/10.1073/pnas.0308016101
https://doi.org/10.1016/j.virol.2006.09.001
https://doi.org/10.1126/scisignal.2003309
https://doi.org/10.1111/j.1440-1746.2007.04831.x
https://doi.org/10.1073/pnas.0907200106
https://doi.org/10.3389/fcimb.2017.00437
https://doi.org/10.1186/s12866-018-1185-9
https://doi.org/10.1016/j.biocel.2012.01.020
https://doi.org/10.1007/s00223-014-9883-2
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Pierce et al. Loci for Brucella suis Seroconversion

111. Saint-Pol J, Billard M, Dornier E, Eschenbrenner E, Danglot L, Boucheix
C, et al. New insights into the tetraspanin Tspan5 using novel monoclonal
antibodies. J Bio Chem. (2017) 292:9551–66. doi: 10.1074/jbc.M116.765669

112. Vences-Catalán F, Levy S. Immune targeting of
tetraspanins involved in cell invasion and metastasis.
Front Immunol. (2018) 9:1277. doi: 10.3389/fimmu.2018.
01277

113. Termini CM, Gillette JM. Tetraspanins function as regulators of cellular
signaling. Front Cell Dev Biol. (2017) 5:34. doi: 10.3389/fcell.2017.
00034

114. Harada Y, Suzuki T, Fukushige T, Kizuka Y, Yagi H, Yamamoto M, et al.
Generation of the heterogeneity of extracellular vesicles by membrane
organization and sortingmachineries. Biochim Biophys Acta Gen Subj. (2019)
1863:681–91. doi: 10.1016/j.bbagen.2019.01.015

115. Di Cesare P, Hauser N, Lehman D, Pasumarti S, Paulsson M. Cartilage
oligomeric matrix protein (COMP) is an abundant component of tendon.
FEBS Lett. (1994) 354:237–40. doi: 10.1016/0014-5793(94)01134-6

116. Juenger CH, Holst MI, Duffe K, Jankowski J, Baader SL. Tetraspanin-5
(Tm4sf9) mRNA expression parallels neuronal maturation in the cerebellum
of normal and L7En-2 transgenic mice. J Comp Neurol. (2005) 483:318–
28. doi: 10.1002/cne.20439

117. Acharya C, Yik JH, Kishore A, Van Dinh V, Di Cesare PE, Haudenschild DR.
Cartilage oligomeric matrix protein and its binding partners in the cartilage
extracellular matrix: interaction, regulation and role in condrogenesis.
Matrix Biol. (2014) 37:102–11. doi: 10.1016/j.matbio.2014.06.001

118. Fu Y, Kong W. Cartilage oligomeric matrix proteins: matricellular and
matricrine signaling in cardiovascular homeostasis and disease. Curr Vasc
Pharmacol. (2017) 15:186–96. doi: 10.2174/1570161115666170201121232

119. Crawford HC, Dempsey PJ, Brown G, Adam L, Moss ML. ADAM10 as a
therapeutic target for cancer and inflammation. Curr Pharm Des. (2009)
15:2288–99. doi: 10.2174/138161209788682442

120. Damle SR, Martin RK, Cockburn CL, Lownik JC, Carlyon JA, Smith
AD, et al. ADAM 10 and Notch1 on murine dendritic cells control the
development of type 2 immunity and IgE production.Allergy. (2018) 73:125–
36. doi: 10.1111/all.13261

121. Lambrecht BN, Vanderkerken M, Hammad H. The emerging role of
ADAM metalloproteinases in immunity. Nat Rev Immunol. (2018) 18:745–
58. doi: 10.1038/s41577-018-0068-5

122. Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G,
Maglitto R, et al. Multiple defects in the immune system of Lyn-
deficient mice, culminating in autoimmune disease. Cell. (1995)
83:301–11. doi: 10.1016/0092-8674(95)90171-X

123. Hibbs ML, Harder KW, Armes J, Kountouri N, Quilici C, Casagranda F, et al.
Sustained activation of Lyn tyrosine kinase in vivo leads to autoimmunity. J
Exp Med. (2002) 196:1593–604. doi: 10.1084/jem.20020515

124. Xu Y, Harder KW, Huntington ND, Hibbs ML, Tarlinton DM. Lyn tyrosine
kinase: accentuating the positive and the negative. Immunity. (2005) 22:9–
18. doi: 10.1016/S1074-7613(04)00381-4

125. Scapini P, Pereira S, Zhang H, Lowell CA. Multiple roles of Lyn kinase
in myeloid cell signaling and function. Immunol Rev. (2009) 228:23–
40. doi: 10.1111/j.1600-065X.2008.00758.x

126. Ingley E, Sarna MK, Beaumont JG, Tilbrook PA, Tsai S, Takemoto
Y, et al. HS1 interacts with Lyn and is critical for erythropoietin-
induced differentiation of erythroid cells. J Biol Chem. (2000) 275:7887–
93. doi: 10.1074/jbc.275.11.7887

127. Chin H, Arai A, Wakao H, Kamiyama R, Miyasaka N, Miura O.
Lyn physically associates with the erythropoietin receptor and may
play a role in activation of the Stat5 pathway. Blood. (1998) 91:3734–
45. doi: 10.1182/blood.V91.10.3734

128. Tilbrook PA, Ingley E, Williams JH, Hibbs ML, Klinken SP. Lyn tyrosine
kinase is essential for erythropoietin-induced differentiation of J2E erythroid
cells. EMBO J. (1997) 16:1610–9. doi: 10.1093/emboj/16.7.1610

129. Harder KW, Parsons LM, Armes J, Evans N, Kountouri N, Clark
R, et al. Gain-and loss-of-function Lyn mutant mice define a critical
inhibitory role for Lyn in the myeloid lineage. Immunity. (2001) 15:603–
15. doi: 10.1016/S1074-7613(01)00208-4

130. Gauld SB, Cambier JC. Src-family kinases in B-cell development and
signaling. Oncogene. (2004) 23:8001–6. doi: 10.1038/sj.onc.1208075
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