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Abstract

One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently,
rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We
investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and
iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis,
including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some
inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal
protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in
biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a
chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in
hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium.
Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation.
Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the
transcriptional and post-transcriptional levels.
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Introduction

Pseudomonas fluorescens Pf-5 is a soil bacterium that was first

described for its capacity to protect cotton seedlings from infection

by Rhizoctonia solani and Pythium ultimum [1], [2]. Subsequently, the

potential of Pf-5 to control other plant pathogenic fungi and

bacteria was demonstrated [3], [4]. The biocontrol activities of Pf-

5 can be attributed largely to its secretion of a broad spectrum of

bioactive secondary metabolites [5], and approximately 6% of the

7.1 Mbp genome of Pf-5 is dedicated to secondary metabolite

production [6]. The secondary metabolites produced by Pf-5 that

have been demonstrated to be antagonistic to plant pathogens are

pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin analogs, and

2,4-diacetylphloroglucinol (DAPG) [1], [2], [7], [8], [9]. In

addition, Pf-5 produces orfamide A, a recently identified

biosurfactant compound which was shown to have anti-microbial

activity [10].

One of the most important micronutrients for bacterial growth

is iron, which is an essential cofactor in a number of important

enzymes involved in energy metabolism. Iron is abundant in soil

but, under aerobic conditions, it exists primarily in the insoluble

ferric oxide form [11], which is not available for microbial growth.

Due to the scarcity of available iron in many microbial habitats as

well as the toxicity of free iron at elevated concentrations, bacteria

employ a variety of mechanisms to regulate intracellular iron

concentrations [12]. A mechanism of particular importance is the

production and secretion of siderophores, which are small

molecules that are secreted from the cell and sequester iron from

the environment through high-affinity interactions [12], [13].

Iron-complexed siderophores can then be taken up by the bacteria

via siderophore specific cell-surface receptors and transport

systems [14]. The production and secretion of siderophores is

thought to confer a competitive advantage on the producing

organism, since siderophore-bound iron is not available to

surrounding organisms lacking specific uptake systems for the

ferric-siderophore complexes. The production of siderophores by

biological control bacteria in the rhizosphere may also suppress

plant disease by sequestering iron in a form that is not available to

pathogens, resulting in their iron starvation [15].

P. fluorescens Pf-5 produces and secretes two siderophores, a

pyoverdine and enantio-pyochelin [16]. The capacity to produce

these compounds is encoded in distinct gene clusters in the

genome of Pf-5 that contain genes for siderophore biosynthesis,

regulation, and membrane transport, including exporting the

unloaded siderophores and importing iron-siderophore complexes

[6], [16], [17]. In addition, Pf-5 encodes a number of TonB-

dependent receptors that take up siderophores produced by other

microorganisms [17], putative haem uptake membrane transport-

ers, mechanisms for direct uptake of ferrous iron, and iron storage

proteins such as bacterioferritins. Pf-5 can also utilize iron

complexes of plant-produced compounds such as iron-phytosider-

ophore and iron-citrate [18]. As in other gamma-proteobacteria,
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iron acquisition by Pseudomonas spp. is under the control of the

ferric uptake regulator (Fur) [19], [20]. Fur forms a homodimer

complex with iron(II) and acts as a transcriptional repressor by

binding to specific DNA sequences (Fur boxes) in the operator

regions of target genes [21]. Transcriptional repression is relieved

under low iron conditions, when iron(II) dissociates from the Fur

complex and affinity for the Fur box is reduced. Fur is a global

regulator of iron uptake, thus transcriptional control occurs both

directly and also indirectly via the expression of regulatory RNAs,

sigma factors, and other transcriptional regulators [19], [22], [23],

[24], [25], [26].

Studies investigating the effect of iron limitation on global gene

expression in the opportunistic human pathogen Pseudomonas

aeruginosa PAO1 and the plant pathogen Pseudomonas syringae

DC3000 have been performed [27], [28], [29]. In both organisms,

the transcription of more than 300 genes was significantly

influenced by iron [27], [28], [29]. Despite the importance of

rhizospheric bacterial biocontrol agents, no studies have investi-

gated the global effects of iron limitation in these organisms.

Therefore, this study was undertaken to observe the global

transcriptomic and proteomic changes in Pf-5 when faced with

iron limitation. Here, we observed a wide ranging physiological

effect on P. fluorescens Pf-5 by iron limitation, including changes to

the expression of important biocontrol factors.

Results and Discussion

Growth of Pf-5 in Iron-limited and Iron-amended Media
Iron commonly occurs in the forms of two oxidation states, i.e.,

the +2 and +3 oxidative states. In the presence of oxygen and

when pH is above 5, iron(II) will oxidize rapidly to iron(III) in a

solution [30]. Nevertheless, different physiological consequences of

FeCl2 and FeCl3 supplementation on cell cultures grown under

oxygenic conditions have been observed, such as in a study on

eukaryotic Vero monkey kidney cells [31]. Additionally, a study

with Pseudomonas putida conducted by Molina et al. [32], showed

that overnight cultures supplemented with either FeCl2 or FeCl3
had different growth biomass, which might suggest different levels

of iron bioavailability or chemistry of the two iron sources used.

Therefore, we employed both FeCl2 and FeCl3 in our study to

observe whether usage of these two iron sources has any

differential effects on Pf-5 at the molecular level, besides looking

at the effect of iron limitation of P. fluorescens Pf-5.

The growth rate of P. fluorescens Pf-5 was higher in M9 minimal

medium supplemented with either 100 mM FeCl2 or 100 mM

FeCl3 than in non-amended M9 medium. Additionally, the total

cell biomass was higher during stationary phase in both FeCl2- and

FeCl3-amended cultures than in non-amended medium (Figure

S1). Unlike observations reported for P. putida [32], we observed

no notable difference between the growth rates and final cell

densities of Pf-5 cultures supplemented with equal amounts of

FeCl2 versus FeCl3 under our conditions (Figure S1). In the non-

amended medium, Pf-5 produced a yellow-green fluorescent

pigment characteristic of pyoverdine production.

General Assessment of Iron Limitation Microarray
Datasets

The transcription of 180 and 121 genes increased or decreased

by at least 2-fold, respectively, in iron-starved cells as compared to

cells receiving FeCl2 supplementation (Figure 1A; Table S1).

Transcription of only 38 and 86 genes increased or decreased by at

least 2-fold, respectively, in iron-starved cells versus cells grown in

medium supplemented with FeCl3 (Figure 1B; Table S1). Many of

the genes undergoing transcriptional changes were known or

predicted to be involved in iron homeostasis, allowing the delineation

of the genes encoding iron uptake machinery in Pf-5. There was

significant overlap between genes transcriptionally regulated in the

two experiments although a number of genes involved in iron

homeostasis (i.e., PFL_0909, PFL_3496, PFL_4080 and PFL_5555)

had significantly higher transcriptional response upon FeCl2 supple-

mentation versus FeCl3 supplementation, as discussed below (Table

S1). The disparity in transcriptional levels observed between the

experiments might be due to differences in iron bioavailability or

chemical properties of the iron sources used.

The genes found in the Pf-5 genome have been divided into 18

functional categories (http://cmr.jcvi.org/cgi-bin/CMR/shared/

RoleList.cgi). Under iron-limited conditions, genes in the role

categories of ‘‘transport and binding proteins’’ and ‘‘regulatory

function’’ were notably up-regulated (Figure S2). In the category

for ‘‘regulatory function’’, many of the genes consisted of extra-

cytoplasmic function (ECF) sigma factors that are adjacent to

TonB-dependent receptor genes that may function in iron uptake

(see below) [17].

qRT-PCR validation was performed on the microarray data

using a subset of 22 differentially regulated genes (Table S2). In

experiments utilizing FeCl2 as the iron source, the microarray data

generally corresponded well with qRT-PCR data with a Pearson

correlation coefficient of 0.86 (Figure S3). Minor discrepancies were

observed between the qRT-PCR and microarray results for three

genes (PFL_1649, PFL_4410 and PFL_5965). Such occurrences are

not unique and several other studies observed similar discrepancies

[33], [34]. In the case of FeCl3, a good correlation was observed,

with a Pearson correlation coefficient of 0.93 (Figure S3).

Iron Limitation Increased Transcription of Iron
Acquisition Systems

Genes for the biosynthesis and uptake of the siderophores

pyoverdine and enantio-pyochelin were more highly expressed in

iron-limited cultures of Pf-5 than in iron-amended cultures

(Figure 1). Within the up-regulated pyoverdine biosynthesis gene

clusters, the most highly expressed gene was pvdS (PFL_4190),

which encodes the extra-cytoplasmic function (ECF) sigma factor

PvdS, a transcriptional regulator of pyoverdine biosynthesis genes

(Table 1). Recently, Hassan et al. [35] identified putative PvdS-

controlled promoter regions upstream of 16 genes in the

pyoverdine biosynthesis gene clusters of Pf-5 based on their

similarity to the PvdS-controlled promoters of P. syringae [25] and

P. aeruginosa [27]. In this study, all genes directly downstream of a

putative PvdS-controlled promoter region were transcriptionally

up-regulated, although not always by more than 2-fold (data not

shown). Within the enantio-pyochelin gene cluster (PFL_3488-

3497), the gene most highly regulated by iron was pchR

(PFL_3497), an AraC family regulator that controls transcription

of genes for the biosynthesis and transport of enantio-pyochelin

[36] (Table 1). Genes (PFL_3498 to PFL_3503) adjacent to the

currently defined enantio-pyochelin cluster were also up-regulated

in iron-limited medium (Table 1). These genes encode proteins

with predicted functions in membrane transport and may have

roles in the uptake of iron-bound enantio-pyochelin [16], [36].

In addition to siderophores, Pf-5 has haem acquisition systems

encoded by three distinct clusters within the genome (PFL_4625-

29, PFL_5263-66 and PFL_5374-80) [35], [37]. The hasA gene

(PFL_5377), which encodes a protein homologous to a haemo-

phore produced by P. aeruginosa [37], and hasI (PFL_5380), which

encodes an ECF sigma factor, were highly up-regulated in iron-

limited medium (Table 2). Pf-5 also has genes for an alternative

haem uptake system that is homologous to the phu operon of P.

aeruginosa [38]. In the phu operon of Pf-5, the genes encoding a

Iron Limitation Effect on Pseudomonas fluorescens
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sigma factor (PFL_4625) and haem oxygenase (PFL_4628, hemO)

as well as a putative haem ABC transporter (PFL_5266, phuT)

were up-regulated by more than 2-fold under iron-limited

conditions (Table 2). The haem oxygenase is involved in haem

degradation to release the bound iron [39]. Its orthologues in P.

aeruginosa and P. syringae were also highly up-regulated when iron

was limited [27], [29] (Table S1).

Motifs characteristic of Fur binding sites, which strongly

resemble the Fur binding site of P. syringae [20], were identified

between 14 and 209 nt 59 of predicted translational start sites for

38 genes in the Pf-5 genome [35], including three genes in the

pyoverdine biosynthesis region (PFL_4080, fpvI; PFL_4189, pvdL;

and PFL_4190, pvdS) and two genes involved in haem uptake

(PFL_5378, hasR; and PFL_5380, hasI). Of these 38 genes,

transcripts of 27 were significantly up-regulated in iron-limited

culture medium (Table S3). Similar to iron limitation studies in P.

aeruginosa [27], [28] and P. syringae [20], [29], we observed that

some genes encoded downstream of putative Fur binding motifs

(e.g. PFL_2491 encoding a TetR regulator) were not iron-

regulated, possibly because other factors controlling their tran-

scription may counteract and obscure the effect of iron under the

conditions of this study [40].

Transcriptional Effects on Extra-cytoplasmic Sigma
Factors and TonB-dependent Receptors

The genome of Pf-5 includes 28 genes predicted to encode ECF

sigma factors, many of which are likely to control iron homeostasis

Figure 1. Differential gene transcription in cells grown in an iron-limited medium compared to iron-supplemented media. The charts
show log2-based fold changes of transcript of cells grown in an iron-limited medium compared to a medium supplemented with either (A) FeCl2 or
(B) FeCl3. Each dot in the chart represents one of 6147 annotated genes in the Pf-5 genome with the x-axis showing gene order (the origin of
replication at the far left and far right), and the y-axis showing the log2 of relative transcript abundance for each gene in cells of Pf-5 grown in an iron-
limited medium relative to the iron-amended medium.
doi:10.1371/journal.pone.0039139.g001
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[6]. 18 of the genes encoding these ECF sigma factors are situated

adjacent to or near genes encoding anti-sigma factors and TonB-

dependent receptors that contain N-terminal signaling domains.

Upon receiving an external signal, the N-terminal signaling

domains of these receptors will interact with anti-sigma factors,

which then release the bound sigma factors thereby allowing the

sigma factors to participate in the transcription of target genes

[41]. These regulatory systems are involved in cell-surface

signaling, which bacteria use to detect signals from the environ-

ment and transmit them into the cytoplasm [41]. Of the 18 sigma

factor genes described above, 13 have consensus Fur binding sites

upstream from their translational start sites that are likely to

control their transcription [35] (Table S4). A Fur binding site is

also upstream of the gene encoding the FpvI sigma factor

(PFL_4080), which is unusual as its cognate anti-sigma factor

(PFL_2903, fpvR) and TonB-dependent receptor for pyoverdine

(PFL_4092) are located distally within the genome [17]. All 14

sigma factor genes having upstream Fur binding sites were up-

regulated under the iron-limited conditions (Table S4). While no

Fur binding site was detected upstream of five other genes

encoding ECF sigma factors that are clustered with anti-sigma

factor and TonB-dependent receptor genes, two of the sigma

factor genes (PFL_1373 and PFL_3156) were up-regulated in iron-

limited media (Table 2).

There are 45 predicted TonB-dependent receptors in Pf-5, 27 of

which lack an N-terminal signaling domain [17]. Some of these

TonB-dependent receptors are predicted transporters for heterol-

ogous ferric-siderophore complexes [17]. In this study, some

TonB-dependent receptors that lack an N-terminal signaling

domain were up-regulated (PFL_0932, PFL_3177, PFL_3498) or

Table 1. Transcriptional regulation by iron of genes for siderophore biosynthesis and transport.

Fold change (log2)

Genes Annotated functions
Iron-deprived (-
FeCl2) Iron-deprived (-FeCl3)

Pyoverdine biosynthesis gene cluster

PFL_2901 hypothetical protein 1.71 NS

PFL_4079 L-ornithine 5-monooxygenase PvdA 1.81 NS

P

ˆ
FL_4080 RNA polymerase sigma-70 factor, ECF subfamily, FpvI 2.84* 1.02*

PFL_4082 efflux ABC transporter, ATP-binding/permease protein 1.09 NS

PFL_4083 efflux transporter, outer membrane factor lipoprotein, NodT family 1.09 NS

PFL_4086 chromophore maturation protein PvdP 1.15 NS

PFL_4093 non-ribosomal peptide synthetase PvdD 1.74 NS

PFL_4095 non-ribosomal peptide synthetase PvdI 1.19 NS

PFL_4096 siderophore-interacting protein 1.17 1.17

PFL_4169 PepSY-associated TM helix domain protein 2.39 1.48

PFL_4171 conserved hypothetical protein 1.44 NS

PFL_4178 MbtH-like protein 3.99 4.73

P

ˆ
FL_4189 non-ribosomal peptide synthetase PvdL 2.59 NS

P

ˆ
FL_4190 polymerase sigma-70 factor, ECF subfamily, PvdS 5.07 3.94

Enantio-pyochelin biosynthesis gene cluster

P

ˆ
FL_3483 RNA polymerase sigma-70 factor, ECF subfamily 1.87 NS

PFL_3484 sigma factor regulatory protein, putative 1.14 NS

PFL_3490 enantio-pyochelin biosynthetic protein PchC 1.21 NS

PFL_3491 saccharopine dehydrogenase PchK 1.30 NS

PFL_3492 enantio-pyochelin synthetase PchF 1.11 NS

PFL_3495 ABC transporter, permease/ATP-binding protein, putative, PchH 1.60 NS

PFL_3496 salicyl-AMP ligase PchD 1.11* 0.45*

PFL_3497 regulatory protein PchR 3.41 1.53

PFL_3498 TonB-dependent outermembrane enantio-pyochelin receptor FetA 2.01 NS

PFL_3499 PepSY-associated membrane protein 1.70 NS

PFL_3500 iron-chelate uptake ABC transporter, FeCT family, periplasmic iron-chelate-binding protein,
putative

1.87 NS

PFL_3501 iron-chelate uptake ABC transporter, FeCT family, permease protein 1.23 NS

PFL_3502 iron-chelate uptake ABC transporter, FeCT family, ATP-binding protein 1.23 NS

PFL_3503 transporter, major facilitator family 1.06 NS

ˆ Pf-5 genes that contain Fur binding motifs upstream [35].
*Values are statistically different as determined using MeV software with P-value ,0.01. NS means not significant when analyzed with SAM at FDR ,1% in this study.
Numbers in bold denote fold changes that surpass the significant differential expression threshold defined in this study, i.e. equal to or exceeding 2-fold change for
transcript levels.
doi:10.1371/journal.pone.0039139.t001
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down-regulated (PFL_4912) in the iron-limited media (Tables 1

and 2). No Fur boxes were found upstream of these genes [35].

PFL_3498 (fetA) encodes the enantio-pyochelin receptor [42], but

substrates for the other receptors are not known.

TonB-dependent receptors rely on the accessory proteins ExbB,

ExbD and TonB for energy transduction [43]. Two of the five

annotated tonB-exbB-exbD clusters in the Pf-5 genome were

regulated by iron; PFL_0225-27 was significantly down-regulated

in iron-limited cultures (when compared to cells grown in culture

supplemented with FeCl3) and PFL_6067-69 was significantly up-

regulated. P. aeruginosa PAO1 encodes a tonB2-exbB-exbD locus

PA0197-99, which is orthologous to PFL_0225-27 of Pf-5

(Table 2). This cluster has not been reported to be iron-regulated

but is strongly up-regulated under sulfate starvation conditions

[33]. Cornelis et al. [19] suggest that there is an overlap between

the iron and sulfur regulons in P. aeruginosa. Because PFL_6067-69,

which has no orthologous cluster in PA01, was the only exbB-exbD-

tonB cluster significantly up-regulated in cells of Pf-5 grown in iron-

limited culture medium, it is likely to function in iron acquisition.

The orthologous cluster in P. syringae was also transcriptionally up-

regulated under iron-limited conditions [29] (Table S1).

Transcription of Genes Involved in Iron Transport Across
Inner Membrane

In addition to ferric-siderophore uptake systems, other mech-

anisms are employed by bacteria to take up iron(II) and iron(III) in

Table 2. Transcriptional regulation by iron of genes for iron acquisition, oxidative stress response and iron storage.

Fold change (log2)

Genes Annotated functions
Iron-deprived
(-FeCl2) Iron-deprived (-FeCl3)

Haem acquisition systems

PFL_4625ˆ RNA polymerase sigma-70 factor, ECF subfamily 1.70 0.85

PFL_4628 heme oxygenase HemO 2.28 NS

PFL_5266ˆ hemin ABC transporter, periplasmic hemin-binding protein PhuT 1.01 0.37

PFL_5377 heme acquisition protein HasAp 3.70 NS

PFL_5379 sigma factor regulatory protein HasS 2.74 NS

PFL_5380ˆ RNA polymerase sigma-70 factor, ECF subfamily, HasI 1.72 NS

Extra-cytoplasmic sigma factors and TonB-dependent receptors

PFL_1373 RNA polymerase sigma-70 factor, ECF subfamily 1.68 0.70

PFL_3156 RNA polymerase sigma-70 factor, ECF subfamily 1.05 NS

TonB-dependent receptors

PFL_0932 TonB-dependent receptor 1.49 NS

PFL_3177 TonB-dependent outer membrane receptor 1.14 NS

PFL_4912 TonB-dependent outer membrane receptor NS 21.21

ExbB, ExbD and TonB

PFL_0225 TonB2 protein NS 22.83

PFL_0226 TonB system transport protein ExbB2 20.99 22.35

PFL_6067 TonB system transport protein ExbB1 3.40 NS

PFL_6068 TonB system transport protein ExbD1 2.85 NS

PFL_6069 periplasmic energy transduction protein TonB1 3.55 1.52

Iron transport across inner membrane

PFL_0573 iron ABC transporter permease FbpB 1.35 NS

PFL_0574 iron ABC transporter substrate-binding protein FbpA 2.08 1.06

PFL_0910 zinc(II)-iron(II) family metal cation transporter permease 2.44 NS

PFL_3255 ferrous iron permease EfeU 2.76 1.25

PFL_5964ˆ ferric iron ABC transporter, FeT family, periplasmic ferric iron-binding protein, putative 1.78 NS

Oxidative stress response and iron storage

PFL_0909 superoxide dismutase, Mn, SodA1 3.27* 1.13*

PFL_4826 superoxide dismutase (Fe) SodB 21.53 21.13

PFL_4858ˆ bacterioferritin-associated ferredoxin, putative NS 4.83

PFL_5555 bacterioferritin A 22.48* 20.72*

PFL_5556 catalase KatA 21.37 20.70

ˆ Pf-5 genes that contain Fur binding motifs upstream [35].
*Values are statistically different as determined using MeV software with P-value ,0.01. NS means not significant when analyzed with SAM at FDR ,1% in this study.
Numbers in bold denote fold changes that surpass the significant differential expression threshold defined in this study, i.e. equal to or exceeding 2-fold change for
transcript levels.
doi:10.1371/journal.pone.0039139.t002
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a free form. In anaerobic or reducing conditions, iron(II) is stable

and soluble and can freely enter bacterial cells through the outer

membrane porins of gram-negative bacteria [37]. Once in the

periplasm, iron(II) is taken across the inner membrane by divalent

metal uptake transporters [44]. Haritha et al. [45] performed a

bioinformatic analysis, utilizing the TransportDB database [46], to

identify the metal transportome of Pf-5. One of the predicted

metal transporters is a gene encoding a zinc(II)-iron(II) permease

family metal cation transporter (PFL_0910), which was signifi-

cantly over-transcribed under iron limitation condition in our

study, suggesting a role in the uptake of free iron (Table 2).

Many bacteria have the capacity to transport ferrous iron into

the cytoplasm, and homologues of EfeUOB of Escherichia coli,

which facilitates uptake of iron(II) in acidic conditions [47], are

present in many bacterial genera. The PFL_3255 membrane

transporter, which was described by Haritha et al. [45] as an iron

transporter, has 58% identity to the EfeU protein of E. coli K12. In

our study, this gene was up-regulated strongly under iron limiting

conditions (Table 2). A similar effect was observed for its

orthologue in P. syringae [29] (Table S1). In E. coli, this operon is

regulated by Fur and induced by acidic conditions [47]. A

previous analysis of the Pf-5 genome did not detect a Fur box

upstream of the gene [35] but this binding motif was found when a

HMM search was performed with HMMER2 [48] at a lower E-

value parameter of 1e-1 (data not shown).

Several genes encoding components of ABC transport systems

predicted to be involved in iron(III) uptake across the cytoplasmic

membrane were highly transcribed under the iron limiting

condition used in our study. These include the genes located in

PFL_5963-64 and PFL_0573-74 operons, which are homologous

to the well-characterized iron(III) transporters HitABC of

Haemophilus influenzae [49] and SfuABC of Serratia marcescens [50],

respectively (Table 2). In concordance, transcription of the

orthologous genes in P. aeruginosa is enhanced under iron-limited

conditions [27], [28] (Table S1).

Oxidative Stress Response and Iron Storage
Bacterial oxidative stress responses are associated with iron

homeostasis due to the role of iron in production of reactive oxygen

species such as superoxide (O2-) and hydroxyl radicals (HO.) [51].

The presence of iron(II) inside the cell can result in the production of

HO. through the Fenton reaction (iron(II) + H2O2 R iron(III) +
HO.). To counter this, excess cellular iron(II) is converted to

iron(III) through ferroxidase activity imparted by bacterioferritins

and stored as ferric-oxy-hydroxide-phosphate complexes within

bacterioferritins [52]. In the iron-limited medium, PFL_5555,

which is orthologous to a P. aeruginosa gene encoding a non-haem

binding bacterial ferritin (PA4235) [53], was down-regulated in Pf-5

(Table 2). Similar results were also observed in P. syringae, possibly

because the need for iron storage was reduced under low-iron

conditions [29] (Table S1). In addition, a bacterioferritin-associated

ferredoxin gene (PFL_4858) was up-regulated by Pf-5 in iron-

limited medium, as observed previously in P. aeruginosa [27], [28]

and P. syringae [29] (Table 2; Table S1). The bacterioferritin-

associated ferredoxin mobilizes iron stored in bacterioferritin B, and

PFL_4858 gene is adjacent to a bacterioferritin B-encoding gene

(PFL_4859), implying their cooperative nature [54].

Transcriptional changes were also observed for genes encoding

oxidative stress response proteins such as superoxide dismutases,

which counter reactive oxygen species by converting O2
2 to

H2O2. In Pf-5, a gene (PFL_4826) coding for a superoxide

dismutase that utilizes iron as cofactor (SodB) was down-regulated

in iron-limited conditions, presumably due to the reduced

availability of iron in the cells (Table 2). Conversely, a

manganese-based superoxide dismutase (PFL_0909, sodA) was

up-regulated. This gene is part of the fagA-fumC-orfX-sodA operon

(PFL_0906-09) that is involved in oxidative stress responses in P.

aeruginosa [55], [56], [57]. This operon may be regulated by Fur,

since it is encoded downstream of a putative Fur binding motif

[35]. PFL_5556, a homologue of PA4236, which encodes the

KatA catalase of P. aeruginosa, was down-regulated by iron

limitation (Table 2). This gene is adjacent to the bacterioferritin

A gene (PFL_5555) in the Pf-5 genome, which was also down-

regulated under iron-limited conditions, as described above. The

genetic organization of the two genes is similar in Pf-5 and P.

aeruginosa PAO1, where the genes are known to be expressed from

different transcripts [52]. In P. aeruginosa, a functional bacter-

ioferritin A is critical to the catalase activity of KatA [52].

Similarly, the regulation of katA and bacterioferritin A could be

linked in Pf-5.

Transcription of Respiratory Chain Genes
Pseudomonas spp. have extensively branched respiratory chain

systems with multiple terminal cytochrome oxidases, thereby

possessing the flexibility to use the electron transfer chain that is

most suitable for the specific environmental conditions encoun-

tered [58], [59]. In aerobic metabolism, the respiratory chain

typically uses proteins that require iron cofactors [27]. When Pf-5

was grown in the iron-limited medium, genes encoding cyto-

chrome c-type biogenesis proteins (PFL_1684-88) and subunits of

cbb3-type cytochrome c oxidases (PFL_1922-25, PFL_2834) were

down regulated (Table 3; Table S1), whereas genes encoding

subunits of a second cbb3-type cytochrome c oxidase (PFL_1918-

1921) were not regulated significantly by iron. Similarly, in P.

aeruginosa, transcription of the cbb3-type cytochrome c oxidase

subunit II gene (PA1556), but not its paralogous gene (PA1553), is

lower in an iron-limited versus an iron-replete medium [28]. In

contrast, transcription of genes encoding subunits of a cytochrome

o ubiquinol oxidase (PA1317-21, cyoABCDE) increased under iron

limitation in P. aeruginosa [27], [59]. In Pf-5, only one gene

(PFL_5037) in the cyoABCDE cluster (PFL_5033-37) was up-

regulated in the iron-limited medium, and that effect was observed

only in the experiment evaluating the influence of FeCl3 (Table 3).

Transcription of a second cyoABCD cluster (PFL_4732-35) was not

influenced by iron. Several other genes that encode participants in

the electron transport chain, such as those coding for ubiquinol-

cytochrome c reductase (PFL_5078-80), cytochrome c4

(PFL_0084) and a cytochrome c family protein (PFL_5004), were

down-regulated in cells grown under iron limitation (Table 3). As

described for other bacteria [60], [61], iron availability appears to

alter the preferred branch of the electron chain utilized by Pf-5

growing in an aerobic environment, providing a mechanism for

the bacterium to conserve iron demands on the cell.

The Effect of Iron Limitation on Swarming Motility
Iron limitation generally resulted in reduced transcription of

some genes in the flagellar biosynthesis clusters (PFL_1629-73 and

PFL_4477-85) (Table 3). For example, transcription of fliA

(PFL_1667) was reduced in the iron-limited culture compared to

the FeCl3-supplemented culture. The fliA gene encodes a sigma

factor controlling flagellar biosynthesis and motility in P. aeruginosa

[62] and its reduced expression in Pf-5 may account for the

decreased expression of flagellar biosynthesis genes. We evaluated

swarming motility of Pf-5 on 0.6% agar plates containing M9

minimal media supplemented with varied concentrations of iron,

and observed that the diameters of the swarming colonies were

proportional to iron concentration of the medium (Figure 2). Our

observation is in contrast to previous reports that motility of P.
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aeruginosa, P. syringae and P. putida is promoted by iron limitation

[63], [64], [65], [66]. It was suggested that this phenomenon is a

chemotactic response of P. aeruginosa, allowing it to migrate to

another location in search of nutrients [64], [67]. P. aeruginosa did

not exhibit transcriptional changes in genes involved in flagellar

biosynthesis under conditions of iron limitation [27], [28], which

suggests that transcriptional regulation of the genes differs between

the species.

Iron Limitation Affects Transcription of Ribosomal Protein
L36 Gene

A ribosomal protein L36 gene (PFL_3806) was highly up-

regulated under iron-limited conditions in Pf-5 (Table 4). Interest-

ingly, a putative Fur binding site was observed upstream of the gene

[35]. A second non-annotated ribosomal protein L36 gene was

identified at coordinates 6351985-6351869 in Pf-5 (RefSeq number:

NC_004129.6). In P. aeruginosa, two paralogues of ribosomal protein

L36 (C+ and C- forms) have been found [68]. The L36 C+ form has

a ‘CXXC.CXXXH’ motif that forms a metal-binding zinc-ribbon

motif [69], which is absent in the C- form. PFL_3806 corresponds to

the C- protein. The transcription of ribosomal protein L36-

encoding genes was not significantly affected by iron limitation in

P. aeruginosa or P. syringae [27], [28], [29]. The reason for the high-

level transcription of this gene by Pf-5 under iron-limited conditions

remains to be answered. The gene product could be involved in iron

homeostasis in Pf-5, reminiscent of the functions of some ribosomal

proteins in zinc homeostasis in other bacterial species [28].

Table 3. Transcriptional regulation by iron of genes involved in respiratory chain components and flagellar biosynthesis.

Fold change (log2)

Genes Annotated functions Iron-deprived (-FeCl2) Iron-deprived (-FeCl3)

Respiratory chain gene clusters

PFL_0084 cytochrome c4 21.18* 20.46*

PFL_1684 cytochrome c-type biogenesis protein CcmE 21.24 NS

PFL_1685 cytochrome c-type biogenesis protein CcmF 21.04 NS

PFL_1687 cytochrome c-type biogenesis protein CycL 21.10 NS

PFL_1917 cytochrome c oxidase accessory protein CcoG 21.58 20.72

PFL_1922 cytochrome c oxidase, cbb3-type, subunit III, CcoP_2 NS 21.29

PFL_1923 cytochrome c oxidase, cbb3-type, CcoQ subunit 21.00 21.36

PFL_1924 cytochrome c oxidase, cbb3-type, subunit II, CcoO_2 21.57 21.47

PFL_1925 cytochrome c oxidase, cbb3-type, subunit I, CcoN_2 NS 21.57

PFL_2834 cytochrome c oxidase, cbb3-type, subunit I, CcoN_3 21.57 20.74

PFL_5004 cytochrome c family protein 21.18 21.17

PFL_5037 cytochrome o ubiquinol oxidase, subunit II, CyoA_2 NS 1.55

PFL_5078 ubiquinol-cytochrome c reductase, cytochrome c1, putative 21.20 NS

PFL_5080 ubiquinol-cytochrome c reductase, iron-sulfur subunit PetA 21.41 NS

Flagellar biosynthesis gene clusters

PFL_1636 sigma-54 dependent DNA-binding response regulator FleR 21.41 21.16

PFL_1637 flagellar hook-basal body complex protein FliE 21.66 NS

PFL_1638 flagellar M-ring protein FliF 21.74* 20.87*

PFL_1639 flagellar motor switch protein FliG 21.75* 20.70*

PFL_1640 Flagellar assembly protein FliH 21.18 NS

PFL_1641 flagellum-specific ATP synthase FliI 21.12 NS

PFL_1646 flagellar hook-length control protein FliK 21.23 NS

PFL_1647 flagellar protein FliL 21.38 NS

PFL_1648 flagellar motor switch protein FliM 21.47 NS

PFL_1649 flagellar motor switch protein FliN 21.96 NS

PFL_1652 flagellar biosynthetic protein FliQ 21.04 NS

PFL_1656 conserved hypothetical protein 21.87 NS

PFL_1657 3-oxoacyl-(acyl-carrier-protein) synthase III, putative 21.32 20.68

PFL_1664 flagellar biosynthesis protein FlhA 21.48 NS

PFL_1666 flagellar synthesis regulator FleN NS 21.55

PFL_1667 motility sigma factor FliA NS 21.39

PFL_4480 flagellar basal-body rod protein FlgB 21.08 NS

*Values are statistically different as determined using MeV software with P-value ,0.01. NS means not significant when analyzed with SAM at FDR ,1% in this study.
Numbers in bold denote fold changes that surpass the significant differential expression threshold defined in this study, i.e. equal to or exceeding 2-fold change for
transcript levels.
doi:10.1371/journal.pone.0039139.t003
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reb-homologous Genes were Highly Transcribed under
Iron Limitation

Two genes (PFL_0183 and PFL_0184) that were highly

transcribed by Pf-5 grown in the iron-limited medium (Table 4) are

similar to reb genes of Caedibacter taeniospiralis [70], which putatively

encode refractile inclusion bodies (R-bodies). R-bodies are cylindrical

structures in the bacterial cell, which are composed of insoluble

proteinaceous ribbons and are associated with toxicity [71], [72]. For

example, the R-bodies produced by C. taeniospiralis are thought to kill

a sensitive paramecium [73]. R-bodies have been observed in P.

aeruginosa [74] and other pseudomonads, such as Pseudomonas

taeniospiralis [75] and Pseudomonas avenae [76], but have not been

observed in P. fluorescens. Of the four published P. fluorescens genomes

(Pf-5, SBW25, Pf0-1 and WH6), only Pf-5 has genes predicted to

encode R-bodies (PFL_0180, PFL_0183 and PFL_0184) [6], [77],

[78]. The synthesis of R-bodies has been associated with mobile

elements such as plasmids and prophages [71], [72], but there is no

evidence of recent horizontal acquisition of the reb genes by Pf-5.

Effect of Iron Limitation on Transcription of Genes
Involved in Secondary Metabolite Biosynthesis

Iron is known to influence the production of secondary

metabolites by Pseudomonas spp., such as the phytotoxins

syringomycin and syringotoxin produced by P. syringae [79],

[80]. Accordingly, transcription of many secondary metabolite

biosynthesis genes by Pf-5 was influenced by iron amendment of

the medium. As shown in a previous study by Blumer and Haas

[81], hydrogen cyanide biosynthesis genes (PFL_2577-79) were

down-regulated in iron-limited medium (Figure 1; Table 4; Table

S1). Blumer and Haas [81] suggested that the ANR regulator,

which controls hydrogen cyanide production by binding to the

promoter of the hcnABC cluster, is sensitive to iron concentration as

it contains Fe-S clusters. A lack of iron restricts the assembly of the

Fe-S clusters on the regulator, potentially disabling its function.

Within the DAPG biosynthesis cluster, genes encoding the

transcriptional repressor PhlF (PFL_5953) and the biosynthetic

enzyme PhlA (PFL_5954) were up-regulated in Pf-5 grown in the

iron-limited medium (Table 4). Within the orfamide A biosynthesis

cluster, genes encoding a transcriptional regulator of the LysR

family (PFL_2143) and the non-ribosomal peptide synthetase

OfaC (PFL_2147) were up-regulated in the iron-limited medium

(Table 4). We did not observe significant, 2-fold or greater,

transcriptional effects of iron on other biosynthetic genes within

the other known secondary metabolic gene clusters in Pf-5 (i.e.,

pyoluteorin, pyrrolnitrin, or rhizoxin analogs).

Comparison with Pf-5 gacA Mutant Strain Transcriptional
Profile

Hassan et al. [35] investigated the effect of a gacA mutation on

the transcriptome of P. fluorescens Pf-5 and found that many genes

Figure 2. Iron concentration-dependent swarming motility. Swarming motility of strain Pf-5 and a gacA mutant, which served as swarming-
deficient control, was observed on M9 minimal medium containing 0.6% agar supplemented with varied concentrations of FeCl2 as indicated below
each panel.
doi:10.1371/journal.pone.0039139.g002
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involved in iron homeostasis were negatively regulated by the

GacS/GacA two-component regulatory system. Accordingly,

there is a significant degree of overlap between the transcriptomic

responses of Pf-5 to gacA deletion and to iron limitation (Figure 3).

For example, approximately half (43 of 84) of the genes that were

up-regulated by more than 2-fold in response to gacA deletion,

were also significantly up-regulated by 2-fold or more under iron-

limited conditions (Table S1). These loci include 14 genes

encoding ECF sigma factors, the fagA-fumC-orfX-sodA operon

(PFL_0906-09), pchR (PFL_3497), the pyoverdine biosynthesis

cluster, the exbB-exbD-tonB cluster (PFL_6067-69), and genes

encoding a bacterioferritin-associated ferredoxin (PFL_4858) and

haem oxygenase HemO (PFL_4628) (Table S1). Conversely,

approximately one third (43 of 122) of the genes positively

regulated by GacA by more than 2-fold and were significantly

down-regulated by at least 2-fold under iron-limited conditions

(Table S1). These loci include the hydrogen cyanide synthase genes

(PFL_2577-79), cytochrome c oxidase cbb3-type gene cluster

(PFL_1922-25), iron-based superoxide dismutase (PFL_4826) and

flagellar-related regulators (PFL_1666-67) (Table S1). The overlap-

ping gacA and iron regulons signifies that some genes involved in

iron homeostasis are controlled by both iron and the GacS/GacA

signal transduction cascade. It is possible that the Fur regulator

interacts with a component of the GacS/GacA signal transduction

cascade, although this needs to be experimentally demonstrated. A

recent study [82] showed that both Fur and iron concentration

affect gacA gene expression in P. syringae, but we did not observe a

significant influence of iron on transcription of gacA in this study.

While the mechanism remains uncharacterized, a regulatory

architecture linking iron and the GacA/GasS cascade might

provide fine-tuning of iron homeostasis in conjunction with other

environmental cues.

Overview of Proteomic Analyses and Comparison with
Transcriptional Profile

A shotgun proteomic analysis was conducted to complement

our transcriptomic study and extend the results to an analysis of

protein expression. The culture conditions used were identical to

those used in the microarray studies. A total of 547 proteins were

detected in the experiment comparing iron deprivation with either

FeCl2 or FeCl3 supplementation. Of these, 168 were significantly

up-regulated and 132 proteins were down-regulated in the iron-

limited compared to the cultures supplemented with FeCl2 (Table

S5). Likewise, in the experiment comparing iron deprivation to

FeCl3 supplementation, 184 proteins were significantly up-

regulated and 129 were significantly down-regulated under iron

limitation (Table S5). In both the FeCl2 and FeCl3-based

experiments, a greater proportion of proteins defined as being in

the ‘‘protein synthesis’’ role category were down-regulated (Figure

S4). The correlation of differentially expressed proteins detected in

the FeCl2 and FeCl3 experiments was strong (Pearson correlation

coefficient = 0.91) (Figure 4). Overall, an under-representation of

membrane-associated proteins (estimated 3.8%), as determined

from the GRAVY scores, probable transmembrane domains and

predicted localizations of the detected proteins, was observed in

our proteomic experiment (compared to estimated 28% of the

whole predicted proteome of Pf-5). Other proteomic studies

utilizing iTRAQ have also observed an apparent under-represen-

tation of membrane-associated proteins [83], [84], which could be

the result of inherent difficulties in membrane protein solubiliza-

tion and digestion by protease [85].

A moderate correlation between the transcriptomic and

proteomic data was observed (Figure 5). Of the 385 proteins

differentially expressed by Pf-5 in iron-limited versus iron-replete

media (either the FeCl2 or FeCl3 form), 70 were also significantly

regulated at the transcriptional level. Of these 70 proteins, 16

showed opposite trends in regulation at the transcriptional and

translational levels (Figure 5; Table S5). These patterns are likely

to be related to the complexity of regulation and are commonly

observed in studies comparing transcript and protein abundance

of bacteria under a range of experimental conditions [86], [87],

[88], [89], [90]. For example, in Leptospira interrogans, only 25% of

the outer membrane proteins that were regulated significantly by

temperature were correspondingly regulated at the transcriptional

level [90]. Post-transcriptional regulation involving translational

Table 4. Transcriptional regulation by iron of selected genes.

Fold change (log2)

Genes Annotated functions Iron-deprived (-FeCl2) Iron-deprived (-FeCl3)

Ribosomal protein L36 gene

PFL_3806ˆ ribosomal protein L36 RpmJ 3.20 2.67

reb-homologous genes

PFL_0183 RebB protein 0.91 1.25

PFL_0184 RebB protein NS 1.31

Secondary metabolite biosynthesis

PFL_2143 transcriptional regulator, LuxR family NS 1.48

PFL_2147 Nonribosomal peptide synthetase OfaC 1.41 NS

PFL_2577 hydrogen cyanide synthase HcnA NS 21.49

PFL_2578 hydrogen cyanide synthase HcnB 21.26 21.49

PFL_2579 hydrogen cyanide synthase HcnC NS 21.36

PFL_5953 transcriptional repressor PhlF 2.42 NS

PFL_5954 2,4-diacetylphloroglucinol biosynthesis protein PhlA 2.44 NS

ˆ Pf-5 genes that contain Fur binding motifs upstream [35]. NS means not significant when analyzed with SAM at FDR ,1% in this study. Numbers in bold denote fold
changes that surpass the significant differential expression threshold defined in this study, i.e. equal to or exceeding 2-fold change for transcript levels.
doi:10.1371/journal.pone.0039139.t004
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efficiency as well as mRNA and protein stability is particularly

important in the regulation of iron homeostasis. In P. aeruginosa, the

Fur-controlled regulatory RNAs prrF1 and prrF2, which have

homologues in Pf-5 [91], mediate the translation of mRNAs

encoding iron-containing proteins [92]. Additionally, regulatory

RNA sequence of iron-responsive-like elements, which might

confer post-transcriptional regulation by iron, have been detected

in bacterial mRNA [93], [94]. Many of the 70 genes regulated

only at the translational level in this study have annotated

functions in primary metabolism, such as amino acid and

nucleotide synthesis. For example, the proteomic analysis identi-

fied 42 ribosomal proteins to be less abundant in the iron-limited

versus iron-supplemented medium, which correlates with the

lower growth rate of Pf-5 observed under iron-limited conditions.

The differences in expression levels of detected proteins between

FeCl2 and FeCl3-supplemented cultures were not as extensive as

those observed at transcriptional level. In both experiments (FeCl2
and FelCl3), proteins involved in iron homeostasis, including

pyoverdine and enantio-pyochelin biosynthesis and transport,

were up-regulated in the iron-limited medium. A number of

highly-expressed proteins (i.e. PFL_4088, PFL_4089, PFL_4092

and PFL_4179) involved in pyoverdine biosynthesis were not over-

expressed significantly at the transcriptional level, suggesting that

they are subject to post-transcriptional control (Table 5; Table S5).

Two proteins encoded by genes (PFL_3496 and PFL_3500) in the

enantio-pyochelin cluster were over-expressed in the iron-limited

medium (Table 5). In addition to the siderophore biosynthesis

proteins, components of the alternative haem uptake (Phu) system

(PFL_4628 and PFL_5266) and a homologue (PFL_5964) of the

HitABC iron(III) uptake system were also over-expressed under

iron limitation (Table 5). Notably, the Fur protein (PFL_0824) was

over-expressed by Pf-5 grown under iron-limited conditions, a

phenomenon that was observed previously in Neisseria meningitidis

[95]. It is intriguing that Fur was over-expressed in a condition

where it is unlikely to perform its role as an iron-dependent

repressor. Over-expression of Fur under iron-limited conditions

may serve to maintain Fur abundance above a minimum

threshold level in order to facilitate a more effective regulatory

control [96]. Besides that, it was reported that Fur in its apo form

can still function actively in regulation [97].

The abundance of several proteins involved in the oxidative

stress response of Pf-5 was also altered by iron levels. The iron-

independent fumarate hydratase (PFL_0907) [98] was over-

expressed under iron-limited conditions while catalase KatA

(PFL_5556) and iron-dependent superoxide dismutase

(PFL_4826) were under-expressed at both the transcriptional

and protein levels (Table 5). Another probable iron-independent

fumarate hydratase (PFL_4328), which was not regulated by iron

at the transcriptional level, was over-expressed at the protein level

under iron-limited conditions (Table 5). Interestingly, a predicted

bacterioferritin (PFL_0613, a homologue of PA4880 of P.

aeruginosa) was under-expressed in the iron-limited medium but

was not significantly regulated by iron at the transcript level

(Table 5). This observation is consistent with the known post-

transcriptional regulation of PA4880 by PrrF1 and PrrF2 in P.

aeruginosa [92].

We also observed repression of the hydrogen cyanide biosyn-

thetic protein PFL_2579, supporting similar findings from a

Figure 3. Heat map of hierarchical analysis of genes differentially regulated by iron. In addition to data derived from this iron limitation
study, microarray data on transcriptional fold changes between a gacA mutant and the parental strain Pf-5, from study by Hassan et al. [35], was
included for comparison. This map was constructed by average linkage clustering analysis with Euclidean distance matrix in MeV software [110]. We
included only those genes that were regulated by more than 2-fold by iron in this study. Genes that were regulated significantly by iron (with an FDR
of less than 5%) are indicated as yellow boxes. -FeCl2 and -FeCl3 respectively represent results obtained when iron-limited cultures were compared to
FeCl2 and FeCl3 supplemented cultures. Red represents up-regulation of genes while green represents down-regulation. Fold change values are
shown in a log2-based format.
doi:10.1371/journal.pone.0039139.g003

Figure 4. Correlation of log2-based fold changes of protein expression between the FeCl2 and FeCl3 iTRAQ studies. Only proteins with
two or more peptides detected in the MS/MS spectra were taken into consideration. A Pearson correlation coefficient of 0.91 was observed for this
comparison.
doi:10.1371/journal.pone.0039139.g004
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previous study [81]. Interestingly, other proteins contributing to

fungal antagonism by Pf-5, including a pyrrolnitrin biosynthetic

protein (PFL_3604), a chitinase (PFL_2091), and a chitin binding

protein (PFL_2090) were up-regulated under iron-limiting condi-

tions. In line with the phenotypic observation of reduced motility

of Pf-5 under low iron condition, our proteomic experiments

detected decreased abundance of a flagellin protein (PFL_1629)

from cultures grown in iron-limited media versus iron-replete

media (Table 5).

Effects of Iron Limitation on Expression of Proteins
Containing Iron-sulfur Cluster Binding Motifs and the
Machinery Involved in Iron-sulfur Cluster Biogenesis

Iron-sulfur clusters play a very important role in the activity of

many enzymes in bacteria [99]. Under iron limitation, a number

of Pf-5 genes encoding proteins with iron-sulfur clusters displayed

decreased transcription (Table 6). In addition, many genes

encoding proteins containing iron-sulfur cluster binding motifs

were not affected at a transcriptional level, but their corresponding

protein abundance was lower in cells grown under iron-limitation

(Table 6), suggesting post-transcriptional control. A similar pattern

of iron-regulated expression of iron-sulfur proteins was seen in

Yersinia pestis [100], and also in E. coli where the regulatory RNA

RyhB controls the expression of proteins containing iron-sulfur

clusters [101]. Another possible explanation for the lower

abundance of proteins containing iron-sulfur clusters, but not

their corresponding transcripts, under iron-limited conditions is

that the iron-sulfur cluster itself might protect the proteins against

intracellular protease degradation [102].

Besides the effects on proteins containing iron-sulfur clusters, we

also observed the consequence of iron limitation on certain genes

(PFL_4964, iscU; and PFL_4966, iscR) in the well-conserved iron-

sulfur cluster assembly operon iscRSUA (PFL_4959-66) [103]. In E.

coli, IscR functions as a repressor for the iscRSUA operon when

bound to an iron-sulfur cluster, which can be disrupted when the

iron level is low, resulting in derepression of the operon [103]. In

our study, iron limitation resulted in transcriptional up-regulation

of iscR but down-regulation of IscU production in Pf-5 (Table 6).

The apparent conflict in the influence of iron on expression of two

genes in a single polycistronic transcript could be due to post-

transcriptional regulation of IscU. In E. coli, the post-transcrip-

tional regulation of the iscRSUA polycistronic transcript is

mediated by RyhB [101] through partial degradation of the

transcript, leaving only the transcript segment encoding IscR

intact and capable of protein expression [104]. It is yet to be

ascertained if P. fluorescens Pf-5 employs similar post-transcriptional

regulatory control of its iscRSUA operon.

Conclusions
In this study, we examined the transcriptomic and proteomic

impact of iron limitation on the biocontrol bacterium P. fluorescens

Pf-5 by evaluating iron-limited cultures in comparison to both

FeCl2- and FeCl3- amended cultures. The effects of both forms of

iron were very similar despite some variation in levels of

transcriptional regulation for some genes. Under iron limitation,

we observed changes in transcription of genes encoding iron

homeostasis functions such as siderophore biosynthesis and other

iron uptake systems. Based on the transcriptional data, it seems

likely that, of the five exbB-exbD-tonB transport clusters found in Pf-

5, the PFL_6067-69 gene cluster encodes proteins facilitating

energy transduction of various TonB-dependent receptors ex-

pressed under iron limitation. Iron limitation resulted in a number

of unexpected responses, particularly the increased transcription of

the ribosomal protein L36 gene as well as reduced flagellar

biosynthesis gene expression and motility. Interestingly, certain

genes or proteins involved in biosynthesis of secondary metabolites

such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and

Figure 5. Scatterplot of fold changes of transcript versus
protein expression. The charts show log2-based fold changes of
transcript data from microarray experiments versus protein expression
data derived from iTRAQ experiment for studies utilizing (A) FeCl2 and
(B) FeCl3. Only proteins with at least two peptides detected in the MS/
MS spectra were considered. Grey lines indicate the significance
threshold. Correlations observed were modest for both comparisons
with Pearson correlation coefficients of 0.31 and 0.12 respectively.
doi:10.1371/journal.pone.0039139.g005
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pyrrolnitrin, as well as the reb-homologous gene cluster and a

chitinase were over-expressed under low iron conditions. The

phenomena of increased production of bioactive products by

bacteria under low iron conditions have been observed, such as

exotoxin A in P. aeruginosa [105] and microcystin-LR in Microcystis

aeruginosa [106]. The proteomic data from iTRAQ also revealed

differences in the abundance of proteins involved in iron

homeostasis. Importantly, comparison of the transcriptomic data

with the proteomic data revealed a number of candidate proteins

that might be post-transcriptionally regulated, especially those

proteins that harbour iron-sulfur cluster binding motifs.

Materials and Methods

Bacterial Strains and Growth Conditions
For microarray and proteomic analyses, Pseudomonas fluorescens

Pf-5 was grown in M9 minimal media supplemented with 100 mM

calcium chloride (CaCl2), 2 mM magnesium sulphate (MgSO4)

and 0.4% glucose [107]. The iron-replete cultures were supple-

mented with either 100 mM iron(II) chloride (FeCl2) or 100 mM

iron(III) chloride (FeCl3), while iron-limited cultures were not

supplemented with iron in any form. Both iron stock solutions

were prepared by dissolving the iron chloride crystals in deionized

water. The cultures were grown aerobically with shaking at room

temperature to late exponential phase; optical densities (at 600 nm

wavelength) of harvested cultures were approximately 0.7 for iron-

limited cultures and 1.1 for iron-amended cultures (Figure S1).

The pH of iron-limited and iron-supplemented culture media was

tested and found to be close to neutral.

RNA Extraction
Extraction of RNA was performed using the PureLink Micro-

to-Midi Total RNA Purification System (Invitrogen) with an initial

extraction using Trizol reagent (Invitrogen) as per the manufac-

turer’s instructions. The concentration and purity of mRNA

extracted was determined spectrophotometrically using a Nano-

drop ND1000 spectrophotometer (NanoDrop Technologies).

cDNA Synthesis and Labeling
Reverse transcription of RNA samples was performed using the

SuperScript Plus Indirect cDNA Labeling System (Invitrogen) with

random hexamer primers. Approximately 7 mg of total RNA was

used for cDNA synthesis in each reaction. The cDNA samples

were labeled with either Alexa Fluor 555 or Alexa Fluor 647

(Invitrogen).

Microarray Experiments
The quality of labeled cDNA was confirmed spectrophotomet-

rically using a Nanodrop ND1000 spectrophotometer (NanoDrop

Technologies), prior to hybridization. Microarray slides spotted

with 70-mer DNA oligonucleotides representing almost all of the

Table 5. Iron regulation of selected genes and proteins.

Fold change (log2)

Genes Annotated functions Iron-deprived (-FeCl2) Iron-deprived (-FeCl3)

Transcript Protein Transcript Protein

PFL_0613 bacterioferritin family protein NS 20.76 NS 21.33

PFL_0824 ferric uptake regulation protein Fur NS 0.89 NS 1.27

PFL_0907 fumarate hydratase, FumC_1 3.93 3.89 2.16# 4.22

PFL_1629 flagellin FliC NS 20.26 NS 20.69

PFL_2090 chitin-binding protein NS 1.52 NS 2.09

PFL_2091 chitinase ChiC NS 1.97 NS 2.11

PFL_2579 hydrogen cyanide synthase HcnC NS 21.63 21.36 21.75

PFL_3496 salicyl-AMP ligase PchD 1.11 2.12 NS 2.02

PFL_3500 FeCT family iron-chelate ABC transporter periplasmic iron-chelate-
binding protein

1.87 2.91 NS 2.88

PFL_3604 tryptophan halogenase PrnA NS 1.84 NS 1.79

PFL_4088 chromophore maturation protein PvdN NS 2.88 NS 3.57

PFL_4089 chromophore maturation protein PvdO NS 1.36 NS 1.82

PFL_4092 TonB-dependent outermembrane ferripyoverdine receptor FpvA NS 1.88 NS 1.18

PFL_4179 diaminobutyrate–2-oxoglutarate aminotransferase PvdH NS 0.90 NS 1.38

PFL_4328 fumarate hydratase FumC_3 NS 1.47 NS 1.00

PFL_4628 heme oxygenase HemO 2.28 2.49 NS 3.41

PFL_4826 superoxide dismutase (Fe) SodB 21.53 21.01 21.13 0.32

PFL_5266 hemin ABC transporter periplasmic hemin-binding protein PhuT 1.01 1.02 NS 1.22

PFL_5556 catalase KatA 21.37 23.19 NS 22.75

PFL_5964 FeT family ferric iron ABC transporter periplasmic ferric iron-binding
protein

1.78 1.65 NS 1.94

NS means not significant when analyzed with SAM at FDR ,1% in this study. Numbers in bold denote fold changes that surpass the significant differential expression
threshold defined in this study, i.e. equal to or exceeding 2-fold and 1.5-fold changes for transcript and protein levels respectively.
#Transcript level of these gene differed significantly between cells grown in iron-limited versus iron-amended media when analyzed with SAM at FDR ,5%.
doi:10.1371/journal.pone.0039139.t005
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open reading frames annotated in the genome of Pf-5 [35]. Each

microarray experiment consisted of at least three biological

replicates and three technical replicates. Flip-dye experiments were

also performed to ensure a lack of dye bias in the results. The

hybridization procedure was performed as described previously

[108]. Hybridized slides were scanned with an Axon 4000B scanner

with GenePix 4.0 software. The microarray data was analyzed with

Spotfinder (TIGR) and normalized using the LOWESS algorithm

in the TIGR-MIDAS package with block mode and a smoothing

parameter value of 0.33. Genes significantly regulated by iron were

identified using the Statistical Analysis of Microarrays (SAM)

algorithm with a false discovery rate (FDR) of less than 1% [109].

Comparisons between transcriptional profiles were performed with

MultiExperiment Viewer (MeV) 4.1 software [110]. A fold change

of at least 2 was considered to be significantly differentially

expressed. The microarray datasets have been deposited in the

Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.

nih.gov/geo/) with the accession number GSE29322. The details

provided for the microarray datasets are in compliance with the

MIAME guideline [111].

qRT-PCR Validation of Microarray
Quantitative reverse-transcriptase polymerase chain reaction

(qRT-PCR) analyses were conducted on a selection of differentially

expressed genes to validate the microarray results. For each sample,

2.5 mg of RNA was reverse-transcribed to cDNA with the

SuperScript VILO cDNA Synthesis Kit (Invitrogen) according to

the manufacturer’s instructions. The resulting cDNA samples were

used as template for 10 ml real-time PCR reactions containing

EXPRESS SYBR GreenER qPCR SuperMix with Premixed ROX

(Invitrogen) and gene-specific primers. The primers were designed

using Primer3 software [112] and tested for their amplification

efficiencies. Genes encoding ribosomal protein S7 and S12

(PFL_5586 and PFL_5587, respectively) were utilized as internal

references. The reactions were performed in a Mastercycler ep

Realplex4 S (Eppendorf). At least three replicates were performed

for each sample. Cycle threshold (CT) values were determined using

Eppendorf Mastercycler ep Realplex 2.2 software and the DDCT

method was used to calculate the relative template abundance in

control versus experimental samples [113].

Motility Assay
Motility tests were performed to determine the effect of iron-

limited conditions on swarming phenotypes. Tests were per-

formed on 0.6% agar-containing M9 minimal media plate

supplemented with 100 mM CaCl2, 2 mM MgSO4 and 0.4%

glucose. Varying concentrations of FeCl2, from 0 to 100 mM,

were added into the agar plates. Overnight cultures of Pf-5 were

Table 6. Iron regulation of selected genes encoding proteins with iron-sulfur cluster binding motifs or involved in iron-sulfur
cluster assembly.

Fold change (log2)

Genes Annotated functions Iron-deprived (-FeCl2) Iron-deprived (-FeCl3)

Transcript Protein Transcript Protein

PFL_0330 formate dehydrogenase subunit beta FdsB NS 21.85 20.62 21.68

PFL_1208 ferredoxin FdxA NS 21.97 NS 22.21

PFL_1241 ferredoxin-NADP reductase Fpr_1 20.65 21.44 NS 20.88

PFL_1666 flagellar synthesis regulator FleN NS ND 21.55 ND

PFL_1912 oxygen-independent coproporphyrinogen III oxidase HemN 21.23 ND 21.52 ND

PFL_1917 cytochrome c oxidase accessory protein CcoG 21.58 ND 20.72 ND

PFL_1929 aconitate hydratase 1 AcnA 21.44 ND 20.95 ND

PFL_2063 isopropylmalate isomerase large subunit LeuC NS 20.68 NS 20.69

PFL_2578 hydrogen cyanide synthase HcnB 21.26 20.29 21.49 20.23

PFL_2633 bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase AcnB 0.29 21.57 NS 20.86

PFL_2835 sulfite reductase (NADPH) hemoprotein subunit beta CysI_1 21.45 22.51 20.51 22.18

PFL_2869 cytochrome c oxidase accessory protein CcoG 21.04 ND NS ND

PFL_2917 oxidoreductase membrane protein, FAD-binding 21.93 ND 22.31 ND

PFL_3902 NADH dehydrogenase subunit G NuoG 20.75 21.38 NS 20.67

PFL_3904 NADH-quinone oxidoreductase, I subunit NuoI 21.03 ND NS ND

PFL_4801 fumarate hydratase, class I 20.76 24.92 NS 25.23

PFL_4858̂ bacterioferritin-associated ferredoxin, putative NS NA 4.83 ND

PFL_4964 scaffold protein IscU 0.87 20.76 NS 21.27

PFL_4966 iron-sulfur cluster assembly transcription factor IscR NS ND 1.29 ND

PFL_5080 ubiquinol-cytochrome c reductase, iron-sulfur subunit PetA 21.41 ND NS ND

PFL_5693 biotin synthase BioB 1.69 21.57 NS 21.87

PFL_5877 dihydroxy-acid dehydratase IlvD NS 23.14 NS 22.82

ˆ Pf-5 genes that contain Fur binding motifs upstream [35]. NS means not significant when analyzed with SAM at FDR ,1% in this study. ND means protein is not
detected from database search of the proteomic mass spectrometry data. Numbers in bold denote fold changes that surpass the significant differential expression
threshold defined in this study, i.e. equal to or exceeding 2-fold and 1.5-fold changes for transcript and protein levels respectively.
doi:10.1371/journal.pone.0039139.t006
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diluted to OD600 = 0.2, 2 ml was placed on the center of the agar

surface, and plates were incubated at 25uC for two days. A gacA

mutant (JL4577) [35] served as a swarming motility negative

control.

iTRAQ Labeling of Protein Samples
Cultures of P. fluorescens Pf-5 cultures were grown in M9 broth

medium as described above. The bacterial pellets from cultures

were washed with phosphate-buffered saline solution (pH 7.4)

before being lysed in lysis buffer [20 mM HEPES, 150 mM

sodium chloride (NaCl), DNase I (Sigma-Aldrich), and protease

inhibitor cocktail (Sigma-Aldrich)] by mechanical lysis in a

FastPrep FP120 bead beater (BIO101/Savant, Q-Biogene) at 5.5

Throw for 30 seconds. The concentrations of the harvested protein

extracts were determined using Bradford assays (Bio-Rad) and the

quality examined with SDS-PAGE. An 8-plex iTRAQ (isobaric

tag for relative and absolute quantitation) system (Applied

Biosystems) was used. The protein samples were reduced and

alkylated with 100 mM tris-2-carboxyethylphosphine (TCEP) and

200 mM methyl methane thiosulfonate (MMTS) and proteolysed

with trypsin for 16 hours at 37uC. The samples were labeled with

iTRAQ tags (Applied Biosystems) according to the manufacturer’s

protocol. Three biological replicates of iron-limited cells (labeled

with iTRAQ 113, 116 and 119) and FeCl3 supplemented cells

(labeled with iTRAQ 115, 118 and 121) were used, while two

biological replicates supplemented with FeCl2 (labeled with

iTRAQ 114 and 117) were used. The samples were grown in

three batches where two batches consisted of iron-limited, FeCl2-

supplemented and FeCl3-supplemented cultures while the last

batch consisted only of iron-limited and FeCl3-supplemented

cultures (constrained due to limited number of iTRAQ labels

available).

Strong Cation Exchange Fractionation
Strong cation exchange chromatography was performed in an

Agilent 1100 quaternary HPLC pump (Agilent Technologies) with

a PolyC PolySulfoethyl A 200 mm62.1 mm 1.5 mm 200A

column. The buffers used were buffer A [5 mM phosphate, 25%

acetonitrile (CH3CN), pH 2.7] and buffer B [5 mM phosphate,

350 mM potassium chloride (KCl), 25% CH3CN, pH 2.7].

Labeled samples were suspended in buffer A and loaded into the

column. The peptides were separated as the buffer B concentra-

tion was increased from 10% to 45% over a period of 70 minutes.

Subsequently, the buffer B concentration was quickly increased to

100% for 10 minutes at a flow rate of 300 ml/min. The fractions

collected were dried in a SpeedVac prior to analysis with nanoLC

electrospray (MS/MS).

Mass Spectrometry
NanoLC electrospray (MS/MS) was performed using the

Agilent 1100 nanoLC system (Agilent Technologies) and QStar

Elite MS/MS system (Applied Biosystems). The samples were

resuspended in 100 ml of loading/desalting solution [0.1%

trifluoroacetic acid (TFA), 2% CH3CN and 97.9% H2O]. 40 ml

of each sample was loaded into a reverse phase peptide Captrap

(Michrom BioResources) and then desalted with the desalting

solution at 10 ml per minute for 15 minutes. After this procedure,

the trap was switched on line with a ProteCol column

(150 mm610 cm C18 3 mm 300A) (SGE GmbH). In Channel 1,

the buffer consisted of 97.9% H2O, 0.1% formic acid (HCO2H),

2% CH3CN. Channels 2A and 2B contained 99.9% H2O, 0.1%

HCO2H and 90% CH3CN, 9.9% H2O, 0.1% HCO2H,

respectively. To elute the peptides from the column, the

concentration of Channel 2B was changed from 5% to 100% at

500 nL per minute for a period of 93 minutes in three linear

gradient steps. After peptide elution, the column was flushed with

Channel 2B buffer and equilibrated with 95% Channel 2A buffer

for 8 minutes before the next sample was injected. Peptides eluted

from the reverse phase nanoLC were analyzed in an information-

dependant acquisition mode (IDA) with positive ion nanoflow

electrospray. A TOFMS survey scan was performed (m/z 380–

1600, 0.5 second) in the IDA mode. The three most intense

multiply charged ions (counts .70) were put into MS/MS analysis

sequentially. A modified Enhanced All Q2 transition setting was

utilized, which favours low mass ion detection so that iTRAQ

label intensity signals were enhanced for quantification. The MS/

MS spectra (mass range m/z 100–1600) were collected for 2

seconds.

Proteomic Data Analysis
ProteinPilot 4.0 software (Applied Biosystems) was used to

analyze the MS/MS data generated. The amino acid sequence

database for P. fluorescens Pf-5 was obtained from the NCBInr

database. A thorough ID search was performed using the Paragon

method with Biological modifications selected in ID Focus, False

Discovery Rate analysis enabled and Background Correction

setting used. The iTRAQ reagent correction factors were entered

into the iTRAQ Isotope Correction Factors table. For quantifi-

cation purpose, the software will select peptides that meet its

default set of criteria, such as having peptide ID confidence of at

least 15.0%, iTRAQ modification and a good signal-to-noise ratio.

The results of this analysis were filtered to include only proteins

with at least 2 peptides detected in the MS/MS spectra with 95%

confidence and having Unused ProtScore .2, which is the

measure of the protein identification confidence where a score of 2

corresponds to a 99% confidence limit. Protein abundance ratios

from comparison of iron-limited culture against iron-supplement-

ed cultures from each sampling batch were calculated. The ratios

for each category (i.e. either iron-limited versus FeCl2-supple-

mented cultures or iron-limited versus FeCl3-supplemented

cultures) from all the batches were subsequently averaged and

reported. A fold change of at least 1.5 was considered significant

[89].

Bioinformatics Analysis
Useful information pertaining to iron-sulfur cluster binding

motifs and predicted operons were garnered from Pseudomonas

Genome Database [114] and EcoCyc [115]. Membrane

association characteristics of the detected proteins from the

proteomic experiment were evaluated as follows: hydrophobic

properties were calculated as grand average of hydropathy

(GRAVY) scores [116] with Sequence Manipulation Suite [117],

transmembrane spanning domains were examined using

TMHMM v2.0 [118], and predicted localization of proteins

was inferred using PSORTb v3.0.2 [119]. Conversions of

identifiers between databases were facilitated by db2db software

in bioDBnet [120].
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