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Abstract 

MicroRNA deregulation is crucial for cancer development. Studies showed that polymorphisms in 
miRNA genes could affect miRNA expression, which might be associated with cancer development. In 
the current study, we investigated the association of seven single nucleotide polymorphisms (SNPs) in 
seven miRNA genes with the initiation and development of cervical cancer in a Chinese Han population. 
The SNPs of 358 cervical intraepithelial neoplasia (CIN) patients, 547 cervical cancer patients and 567 
healthy individuals were genotyped using TaqMan assays. Moreover, we evaluated the association of the 
seven SNPs with the different stages of cervical cancer. Our results showed that rs4636297 in miR-126 
was associated with susceptibility to CIN and cervical cancer (P=0.019 and 0.019, respectively) and that 
the T allele was associated with a higher risk of CIN (OR=1.334, 95% CI: 1.049-1.698) and cervical cancer 
(OR=1.296, 95% CI: 1.044-1.609). Similarly, rs11614913 in miR-125a was associated with CIN and cervical 
cancer (P=0.025 and 0.015, respectively), and the T allele might be the protective factor for CIN 
(OR=0.807, 95% CI: 0.669-0.974) and cervical cancer (OR=0.814, 95% CI: 0.689-0.961). Our results 
indicated that rs4636297 in miR-126 and rs11614913 in miR-196a2 play an important role only in the 
initiation of cervical cancer not in the development of CIN to cervical cancer. 

Key words: microRNA, Polymorphisms, CIN, Cervical cancer, Association, Chinese Han population  

Introduction 
Cervical cancer is the second most common 

malignant tumour among women after breast cancer 
worldwide[1]. Most cervical cancers (up to 99%) are 
associated with oncogenic human papillomavirus 
(HPV)[2]. However, almost all low-risk HPV 
infections and more than two thirds of high-risk HPV 
infections are eradicated over a 24-month period[3, 4], 
and only a small fraction of women infected with 
HPV will develop cervical cancer[5]. Thus, other 
factors might also be important during the initiation 
and development of cervical cancer, such as host 
genes, reproductive behaviour[6], sexual activity[7] 
and nutritional factors[8].  

MicroRNAs (miRNAs) are a group of short, 
single-stranded, non-coding RNAs (approximately 
18-25 nucleotides in length) that regulate the 
expression of up to 30% of human genes through 
targeting the 3′-untranslated region (3′-UTR) or 
5′-UTR [9]. Therefore, miRNAs are involved in almost 
every biological process, such as proliferation[10], 
apoptosis[11], migration and invasion[12]. In cervical 
cancer, abundant miRNAs were found to be restored, 
and this process was related to cervical cancer 
development and prognosis[13, 14]. The lengths of 
miRNA genes are usually significantly shorter than 
those of coding genes; consequently, single nucleotide 
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variations (like single nucleotide polymorphisms, 
SNPs) in miRNA genes could affect mature 
progression of miRNAs, resulting in aberrant gene 
expression[15, 16], which might be the mechanism 
through which SNPs in miRNA genes are associated 
with human cancer susceptibility[17-22]. In 2016, 
Wang et al. demonstrated that a polymorphism in 
miR-155 was associated with cervical cancer risk[23]. 
Moreover, our previous study showed that 
rs11134527 in miR-218 and rs531564 in miR-124 were 
associated with cervical cancer susceptibility in a 
Chinese Han population[24]. 

In the current study, we investigated the 
distribution of another seven SNPs in miRNA genes 
(rs543412 in miR-100, rs999885 in miR-106b, rs1143770 
in let7-a-2, rs2296616 in miR-107, rs8111742 in 
miR-125a, rs4636297 in miR-126 and rs11614913 in 
miR-196a2) in the different steps of cervical cancer 
(CIN and cervical cancer). Moreover, we analysed the 
association of these SNPs with the initiation and 
development of cervical cancer. 

Methods 
Ethical approval and informed consent 

All procedures were in accordance with the 
ethical standards of the responsible committee on 
human experimentation and with the Helsinki 
Declaration of 1964, which was revised in 2013. All 
experimental protocols used in this study were 
approved by the Institutional Review Boards of the 
No. 3 Affiliated Hospitals of Kunming Medical 
University. All participants provided written 
informed consent. 

Study population 
In the current study, 358 patients with CIN and 

547 patients with CC were recruited after diagnosis 
according to “Diagnosis and Treatment Obstetrics and 
Gynaecology” and FIGO stage (International 
Federation of Gynaecology and Obstetrics, 2009) at 
the 3rd Affiliated Hospital of Kunming Medical 
University from 2012-05 to 2016-08. The inclusion 
criteria: ① the CIN and cervical cancer patients were 
diagnosed according to “Diagnosis and Treatment 
Obstetrics and Gynaecology” and International 
Federation of Gynaecology and Obstetrics, 2009; ② 
the patients in case groups were not suffering with 
any other malignancy, and the control individuals 
had no history of cancer and other chronic diseases; 
③ the patients had not received preoperative 
neoadjuvant therapies (including chemotherapy and 
radiotherapy). The exclusion criteria: ① the patients 
with a prior history of primary cancer other than 
cervical cancer; ② the patient with malignant tumors 
except cervical cancer; ③ the patients receiving radio 

therapy or chemotherapy, and unclear pathological 
diagnosis. Over the same period, 567 healthy women 
from the healthy screening project at the same 
hospital served as the healthy controls in the current 
study.  

SNP selection and genotyping  
All SNPs selected had minor allele frequencies in 

the Chinese Han population greater than 5% in the 
Ensembl database (http://asia.ensembl.org/index. 
html). SNP-rs999885 is located in the promoter region, 
while the other SNPs are located in the prI-miRNA 
sequence. These regions are associated with miRNA 
gene transcription or miRNA processing and 
maturation.  

Venous blood of the subjects was collected into 
anticoagulant tubes, and the genomic DNA was 
extracted from peripheral lymphocytes using a 
QIAamp Blood Mini Kit (Qiagen, Hilden, Germany). 
The seven SNPs in the miRNA genes were genotyped 
using TaqMan Assays. The probes and primers were 
designed and produced by Thermo Fisher Scientific 
Company (Waltham, MA, USA), and the TaqMan 
Master Mix was also from Thermo Fisher Scientific 
Company. The PCR amplifications were carried out in 
384-well reaction plates (MicroAmp™ Optical 384- 
Well Reaction Plate, Thermo Fisher Scientific 
Company). The amplification system comprised 2.5μL 
2× Master Mix, 0.125 μL 40× primer and probe (FAM 
and VIC) mix, 1.375 μL ddH2O and 1 μL genomic 
DNA (equivalent ddH2O in the negative control). The 
amplification was conducted in a QuantStudio 6 Flex 
Fast Real-Time PCR system using the following 
conditions: 95℃ pre-heat denaturing for 10 min; 92℃ 
heat denaturing for 10 s and 60 ℃ annealing and 
extension for 1 min, all repeated for 40 cycles. The 
data were analysed using QuantStudioTM real-time 
PCR software (Thermo Fisher Scientific Company). 
The genotyping results were confirmed through 
sequencing the SNPs from the subjects with each 
genotype. 

Statistical analysis 
The statistical analyses were performed using 

SPSS 19.0 software (IBM Corporation, Armonk, New 
York, USA) and Microsoft Excel (Microsoft 
Corporation, Redmond, Washington, USA). The 
representativeness of the subjects in the current study 
was evaluated using the Hardy-Weinberg equilibrium 
(HWE). Logistic regression was used to evaluate the 
effects of the SNPs on the risk of cervical cancer 
development with age as a covariate, and ORs with 
95% confidence intervals (CIs) were calculated. The 
effects of the SNP genotypes on the risk of cervical 
cancer were analysed using inheritance model 
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analysis. Three inheritance models, namely, 
codominant, dominant and recessive, were analysed 
using SPSS. A P value less than 0.05 was considered 
statistically significant for statistical analysis. 

Results  
Subject characteristics 

The characteristics of the individuals enrolled in 
present study are listed in Table 1. The ages of the 
CIN, cervical cancer and control groups were not 
significantly different (P>0.05). In the CIN group, 34 
patients had low-degree CIN (CIN 1), and 324 had 
high-degree CIN (CIN 2-3). In the cervical cancer 
group, there were 447 patients with squamous cell 
carcinoma (SCC), 87 patients with adenocarcinoma 
(AC) and 13 patients with other pathological types. 

Table 1. The characteristics of the subjects enrolled in the 
current study 

 CIN Cervical Cancer Control P value 
N 358 547 567  
Ages 48.22±9.97 48.01±9.53 48.98±7.30 0.125 
CIN1 34    
CIN2-3 324    
Histological types     
SCC  447   
AC  87   
Others  13   
Clinical stages     
I  307   
II  213   
III  21   
IV  6   
Parity     
Yes 350 543 553  
No 8 4 14  
HPV infection     
+ 354 535   
- 4 12   

Association of the seven SNPs with CIN and 
cervical cancer 

The association of these seven SNPs in miRNA 
genes with CIN and cervical cancer was analysed, and 
the results calculated using logistic regression are 
presented in Table 2 and Table 3. The results showed 
that the T allele of rs4636297 in miR-126 was 
associated with higher risk of CIN (P=0.019; 
OR=1.334, 95% CI: 1.049-1.698) and cervical cancer 
(P=0.019; OR=1.296; 95% CI: 1.044-1.349). The T allele 
of rs11614913 occurred more frequently in the control 
groups than in the cervical cancer groups (P=0.025 
and 0.015), and it might be associated with a 
decreased risk for CIN (OR=0.807, 95% CI: 
0.669-0.974) and cervical cancer (OR=0.814, 95% CI: 
0.689-0.961). Moreover, the genotypic frequencies for 
rs4636297 and rs11614913 were significantly different 
between the CIN and control groups (P=0.003 and 
0.021, respectively), and between the cervical cancer 

and control groups (P=0.028 and 0.043, respectively). 

Inheritance model analysis of these seven 
SNPs  

Three inheritance models (including 
codominant, dominant, and recessive) were analysed, 
and the results are shown in Table 4. The results 
showed that the TT genotype of rs4636297 was a risk 
factor for CIN (OR=3.611, 95% CI: 1.624-8.030) and 
cervical cancer (OR=2.343, 95% CI: 1.056-5.197) 
compared with C/C-C/T genotype. For rs11614913, 
the T/C-C/C genotype was associated with a higher 
risk of CIN (OR=1.556, 95% CI: 1.126-2.151) and 
cervical cancer (OR=1.343, 95% CI: 1.018-1.771) 
compared with the T/T genotype. 

Discussion 
Several studies have reported aberrant 

expression of miRNAs in various human cancers [25, 
26]. Polymorphisms in miRNA genes could affect 
miRNA biological processes, resulting in miRNA 
deregulation that could be associated with cancer 
development[16, 27]. In the current study, we found 
that rs4636297 in pri-miR-126 and rs11614913 in 
miR-196a2 were associated with the progression of 
cervical cancer. 

MiR-126 is located in intron 7 of egfl7 and plays 
important roles in angiogenesis and inflammation 
[28-30]. In most human cancers, miR-126 functions as 
a tumour suppressor, and studies have revealed the 
downregulation of miR-126 in cancerous tissues 
compared with noncancerous tissues[31-34]. In 2008, 
Wang et al. identified the downregulation of miR-126 
in cervical cancer[35]. Rs4636297 is located 12 bp 
downstream of the pre-miR-126 sequence, and this 
region might be associated with Drosha recognizing 
and cleaving the pri-miRNA[27]. Thus, this SNP 
might affect the expression of miR-126, and it could 
also be associated with human cancers. In the current 
study, we showed that rs4636297 in the miR-126 gene 
was associated with CIN and cervical cancer in a 
Chinese Han population. However, Yang et al. did not 
find an association between this SNP and breast 
cancer in German women[36]. The discrepancy might 
be because the two studies selected different 
populations with different genetic backgrounds. The 
frequency of the A allele of rs4636297 is 36.4% in the 
European population, while it is only 18.7% in the 
East Asian population. The second reason for the 
discrepancy is that the two studies selected different 
diseases in which miR-126 might play different roles. 
However, it will be valuable to carry out functional 
and associational studies to explore the roles of 
rs4636297 in human cancers in the future, since the 
location of this SNP might affect biogenesis. 
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Table 2. Allelic distribution of the SNPs in control, CIN and cervical cancer groups 

SNPs Alleles (n,%) Control VS CIN Control VS Cervical cancer CIN VS Cervical cancer 
P value OR[95%CI] P value OR[95%CI] P value OR[95%CI] 

rs543412 C T       
Control 677(59.7%) 457(40.3%) 0.261 0.895[0.738-1.086] 0.765 0.974[0.822-1.155] 0.422 1.083[0.892-1.314] 
CIN 446(62.3%) 270(37.7%) 
Cervical cancer 661(60.4%) 433(39.6%) 
rs999885 A G       
Control 895(81.3%) 239(18.7%) 0.923 0.989[0.785-1.246] 0.164 0.862[0.699-1.062] 0.278 0.877[0.692-1.111] 
CIN 568(79.3%) 148(20.7%) 
Cervical cancer 890(81.4%) 204(18.6%) 
rs1143770 C T       
Control 528(46.6%) 606(53.4%) 0.804 0.976[0.809-1.179] 0.834 0.982[0.831-1.161] 0.921 1.010[0.836-1.220] 
CIN 329(46.0%) 387(54.0%) 
Cervical cancer 505(46.2%) 589(53.8%) 
rs2296616 T C       
Control 1052(92.8%) 82(7.2%) 0.567 1.109[0.779-1.578] 0.849 0.969[0.704-1.334] 0.668 1.080[0.759-1.537] 
CIN 659(92.0%) 57(8.0%) 
Cervical cancer 1013(92.6%) 81(7.4%) 
rs8111742 A G       
Control 341(30.1%) 793(69.9%) 0.167 1.153[0.942-1.410] 0.191 1.127[0.942-1.349] 0.785 0.973[0.796-1.188] 
CIN 238(32.4%) 478(67.6%) 
Cervical cancer 357(32.6%) 737(67.4%) 
rs4636297 C T       
Control 948(83.6%) 186(16.4%) 0.019 1.334[1.049-1.698] 0.019 1.296[1.044-1.609] 0.785 0.973[0.770-1.229] 
CIN 569(79.5% 147(20.5%) 
Cervical cancer 874(79.9%) 220(20.1%) 
rs11614913 C T       
Control 546(48.1%) 588(51.9%) 0.025 0.807[0.669-0.974] 0.015 0.814[0.689-0.961] 0.938 1.008[0.834-1.217] 
CIN 383(53.5%) 333(46.5%) 
Cervical cancer 583(53.3%) 511(46.7%) 

 

Table 3. Genotypic distribution of the seven SNPs in Control, CIN and Cervical cancer groups 

SNPs Genotypes (n, %) P Value 
Control VS CIN  Control VS Cervical cancer CIN VS Cervical cancer 

rs543412 C/C C/T T/T    
Control 199(35.1%) 279(49.2%) 89(15.7%) 0.253 0.739 0.577 
CIN 144(40.2%) 158(44.1%) 56(15.6%) 
Cervical cancer 203(37.1%) 255(46.6%) 89(16.3%) 
rs999885 A/A A/G G/G    
Control 350(61.7%) 195(34.4%) 22(3.9%) 0.159 0.112 0.542 
CIN 231(64.5%) 106(29.6%) 21(5.9%) 
Cervical cancer 367(67.1%) 156(28.5%) 24(4.4%) 
rs1143770 C/C C/T T/T    
Control 118(20.8%) 292(51.5%) 157(27.7%) 0.741 0.562 0.979 
CIN 77(21.5%) 175(48.9%) 106(29.6%) 
Cervical cancer 121(22.1%) 263(48.1%) 163(29.8%) 
rs2296616 T/T T/C C/C    
Control 490(86.4%) 72(12.7%) 5(0.9%) 0.291 0.447 0.852 
CIN 302(84.4%) 55(15.4%) 1(0.3%) 
Cervical cancer 468(85.5%) 77(14.1%) 2(0.4%) 
rs8111742 A/A A/G G/G    
Control 48(8.5%) 245(43.2%) 274(48.3%) 0.073 0.419 0.423 
CIN 47(13.1%) 144(40.2%) 167(46.6%) 
Cervical cancer 60(11.0%) 237(43.3%) 250(45.7%) 
rs4636297 C/C C/T T/T    
Control 390(68.8%) 168(29.6%) 9(5.6%) 0.003 0.028 0.289 
CIN 231(64.5%) 107(29.9%) 20(5.6%) 
Cervical cancer 347(63.4%) 180(32.9%) 20(3.7%) 
rs11614913 T/T T/C C/C    
Control 153(27.0%) 282(49.7%) 132(23.3%) 0.021 0.043 0.442 
CIN 68(19.0%) 197(55.0%) 93(26.0%) 
Cervical cancer 117(21.4%) 277(50.6%) 153(28.0%) 

Table 4. The inheritance model analysis of the seven SNPs in miRNA genes among Control, CIN and Cervical cancer groups 



 Journal of Cancer 2019, Vol. 10 

 
http://www.jcancer.org 

4751 

SNPs Models Genotypes Control 
(n,%) 

CIN 
(n,%) 

Cervical 
cancer 
(n,%) 

CIN VS Control Cervical cancer VS 
Control 

Cervical cancer VS CIN 

OR[95%CI] P value OR[95%CI] P value OR[95%CI] P value 
rs543412 Codominant C/C 199(35.1%) 144(40.2%) 203(37.1%) 1 0.259 1 0.724 1 0.641 

C/T 279(49.2%) 158(44.1%) 255(46.6%) 0.784[0.587-1.048] 0.904[0.697-1.172] 1.145[0.855-1.532] 
T/T 89(15.7%) 56(15.6%) 89(16.3%) 0.863[0.580-1.285] 0.985[0.692-1.404] 1.127[0.758-1.676] 

Dominant C/C 199(35.1%) 144(40.2%) 203(37.1%) 1 0.116 1 0.527 1 0.347 
C/T-T-T 368(64.9%) 214(59.8%) 344(62.9%) 0.804[0612-1.056] 0.924[0.723-1.181] 1.140[0.867-1.499] 

Recessive C/C-C-T 478(84.3%) 302(84.4%) 458(83.7%) 1 0.947 1 0.794 1 0.800 
T/T 89(15.7%) 56(15.6%) 89(16.3%) 0988[0.686-1.422] 1.044[0.757-1.439] 1.048[0.728-1.509] 

rs999885 Codominant A/A 350(61.7%) 231(64.5%) 367(67.1%) 1 0.170 1 0.101 1 0.552 
A/G 195(34.4%) 106(29.6%) 156(28.5%) 0.826[0.619-1.104] 0.760[0.588-0.983] 0.927[0.689-1.248] 
G/G 22(3.9%) 21(5.9%) 24(4.4%) 1.442[0.775-2.683] 1.056[0.581-1.921] 0.725[0.394-1.334] 

Dominant A/A 350(61.7%) 231(64.5%) 367(67.1%) 1 0.402 1 0.061 1 0.435 
A/G-G/G 217(38.3%) 127(35.5%) 180(32.9%) 0.889[0.675-1.170] 0.790[0.618-1.011] 0.894[0.675-1.184] 

Recessive A/A-A/G 545(96.1%) 337(94.1%) 523(95.6%) 1 0.170 1 0.855 1 0.332 
G/G 22(3.9%) 21(5.9%) 24(4.4%) 1.537[0.832-2.839] 1.155[0.639-2.088] 0.742[0.406-1.358] 

rs1143770 Codominant C/C 118(20.8%) 77(21.5%) 121(22.1%) 1 0.741 1 0.504 1 0.964 
C/T 292(51.5%) 175(48.9%) 263(48.1%) 0.925[0.656-1.304] 0.877[0.647-1.189] 0.956[0.678-1.348] 
T/T 157(27.7%) 106(29.6%) 163(29.8%) 1.041[0.713-1.520] 1.016[0.726-1.421] 0.981[0.673-1.429] 

Dominant C/C 118(20.8%) 77(21.5%) 121(22.1%) 1 0.832 1 0.596 1 0.832 
C/T-T/T 449(79.2%) 281(78.5%) 426(77.9%) 0.966[0.0.698-1.335] 0.925[0.695-1.233] 0.966[0.698-1.335] 

Recessive C/C-C/T 410(72.3%) 252(70.4%) 384(71.2%) 1 0.525 1 0.419 1 0.419 
T/T 157(27.7%) 106(29.6%) 163(29.8%) 1.099[0.821-1.473] 1.113[0.858-1.444] 1.310[0.858-1.444] 

rs2296616 Codominant T/T 490(86.4%) 302(84.4%) 468(85.5%) 1 0.305 1 0.467 1 0.848 
T/C 72(12.7%) 55(15.4%) 77(14.1%) 1.245[0.852-1.820] 1.129[0.799-1.596] 0.903[0.621-1.315] 
C/C 5(0.9%) 1(0.3%) 2(0.4%) 0.327[0.038-2.818] 1.016[0.726-1.421] 1.290[0.116-14.292] 

Dominant T/T 490(86.4%) 302(84.4%) 468(85.5%) 1 0.371 1 0.640 1 0.620 
T/C-C/C 77(13.6%) 56(15.6%) 79(14.5%) 1.186[0.816-1.723] 1.084[0.772 

-1.522] 
0.910[0.628-1.320] 

Recessive T/T-T/C 562(99.1%) 357(99.7%) 545(99.6%) 1 0.296 1 0.306 1 0.826 
C/C 5(0.9%) 1(0.3%) 4(0.4%) 0.317[0.037-2.730] 0.424[0.082-2.195] 1.310[0.118-14.498] 

rs8111742 Codominant A/A 48(8.5%) 47(13.1%) 60(11.0%) 1 0.089 1 0.309 1 0.501 
A/G 245(43.2%) 144(40.2%) 237(43.3%) 0.610[0.388-0.959] 0.762[0.501-1.161] 1.289[0.835-1.990] 
G/G 274(48.3%) 167(46.6%) 250(45.7%) 0.632[0.404-0.988] 0.721[0.475-1.095] 1.173[0.763-1.801] 

Dominant A/A 48(8.5%) 44(12.3%) 60(11.0%) 1 0.058 1 0.142 1 0.326 
A/G-G/G 519(91.5%) 314(87.7%) 487(89.0%) 0.661[0.435-1.023] 0.741[0.496-1.105] 1.226[0.816-1.843] 

Recessive A/A-A/G 293(51.6%) 188(53.4%) 297(54.3%) 1 0.794 1 0.385 1 0.781 
G/G 274(48.3%) 170(46.6%) 250(45.7%) 0.937[0.719-1.222] 0.901[0.711-1.140] 0.963[0.737-1.258] 

rs4636297 Codominant C/C 390(68.8%) 231(64.5%) 347(63.4%) 1 0.006 1 0.036 1 0.288 
C/T 168(29.6%) 107(29.9%) 180(32.9%) 1.085[0.810-1.454] 1.216[0.941-1.571] 1.122[0.838-1.502] 
T/T 9(5.6%) 20(5.6%) 20(3.7%) 3.703[1.657-8.275] 2.494[1.120-5.557] 0.665[0.350-1.263] 

Dominant C/C 390(68.8%) 231(64.5%) 347(63.4%) 1 0.163 1  1 0.732 
C/T-T/T 177(31.2%) 127(35.5%) 200(36.6%) 1.221[0.922-1.617] 1.282[0.999-1.644] 1.050[0.795-1.386] 

Recessive C/C-C/T 558(98.4%) 338(94.4%) 527(96.3%) 1 0.002 1 0.036 1 0.168 
T/T 39(1.6%) 20(5.6%) 20(3.7%) 3.611[1.624-8.030] 2.343[1.056-5.197] 0.640[0.339-1.208] 

rs11614913 Codominant T/T 153(27.0%) 68(19.0%) 117(21.4%) 1 0.028 1 0.043 1 0.417 
T/C 282(49.7%) 197(55.0%) 277(50.6%) 1.547[1.101-2.174] 1.268[0.946-1.700] 0.816[0.574-1.158] 
C/C 132(23.3%) 93(26.0%) 153(28.0%) 1.575[1.066-2.327] 1.503[1.074-2.102] 0.955[0.644-1.418] 

Dominant T/T 153(27.0%) 68(19.0%) 117(21.4%) 1 0.007 1 0.037 1 0.377 
T/C-C/C 414(73.0%) 290(81.0%) 430(78.6%) 1.556[1.126-2.151] 1.343[1.018-1.771] 0.860[0.616-1.202] 

Recessive T/T-T/C 435(76.7%) 265(74.0%) 394(72.0%) 1 0.337 1 0.074 1 0.508 
C/C 132(23.3%) 93(26.0%) 153(28.0%) 1.162[0.855-1.579] 1.280[0.977-1.677] 1.107[0.819-1.498] 

 

 SNP rs11614913, a polymorphism site in mature 
miR-196a2, has been widely studied in various human 
cancers, and the results of such studies indicated that 
rs11614913 was associated with various human 
cancers [37-40]; however, Zhang et al. found a lack of 
association between this SNP and gastric cancer[41]. 
In the current study, our results showed that this SNP 
was associated with CIN and cervical cancer in the 
Chinese Han population. Furthermore, the C allele of 
rs11614913 might be a risk factor for CIN and cervical 
cancer. Our result was consistent with the Thakur et al 

results[42]. In 2016, Torruella-Loran et al. found that 
rs11614913 in miR-196a2 has a function in regulating 
the expression of several genes involved in cancer[43]. 
SNPs located in the mature sequences of miRNA 
genes might affect miRNA biogenesis and recognition 
of target mRNAs[16]. As rs11614913 is located in the 
mature sequence of miR-196a2, our results indicated 
that rs11614913 might be associated with cervical 
cancer in this way.  

The roles of miR-107 are different for different 
cancers. For example miR-107 is a suppressor of breast 
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cancer[44, 45], renal cancer[46] and glioma[47]; in 
contrast, this miRNA can promote human gastric 
cancer[48, 49] and hepatocellular carcinoma[50]. In 
2014, Wang et al. found that the TT genotype of 
rs2296616 was a risk factor for gastric cancer[51]. In 
addition, they also found that the TT genotype was 
associated with higher miR-107 expression than the 
CC genotype[51]. MiR-125a is a suppressor of colon 
cancer[52], prostate cancer[53], ovarian cancer[54], 
breast cancer[55] and prostate cancer[56]. In cervical 
cancer, miR-125a suppresses tumour growth, invasion 
and metastasis by targeting STAT3. In 2016, Xu et al. 
[57] reported that the AA genotype of rs8111742 in 
miR-125a increased the risk for gastric cancer 
associated with H. pylori, and this same effect was 
found by Wu et al. [58] in the H. pylori-positive group. 
SNP rs999885, located at the promoter region of the 
miR-106b-25 cluster, has been reported to be 
associated with the risk for hepatocellular 
carcinoma[59]. It was reported that rs1143770 in the 
let7-a-2 gene is associated with non-small-cell lung 
cancer[60] but not gastric cancer[61]. In the current 
study, we did not find that rs2296616, rs8111742, 
rs999885 and rs1143770 were associated with cervical 
cancer. The reasons for these differences between the 
other studies and the current study could be the 
various roles of the same miRNAs in different human 
cancers, and this possibility is supported by the 
tissue-specific expression of miRNAs[62]. Thus, it is 
necessary to investigate the function of the SNPs in 
miRNA genes in specific tissues. 

Conclusion 
The current study investigated the association of 

seven SNPs in miRNA genes (rs543412 in miR-100, 
rs999885 in miR-106b, rs1143770 in let7-a-2, rs2296616 
in miR-107, rs8111742 in miR-125a, rs4636297 in 
miR-126 and rs11614913 in miR-196a2) with the 
initiation (control VS CIN) and development of 
cervical cancer (CIN VS cervical cancer). The results 
showed that rs4636297 and rs11614913 were 
associated with the risk of CIN and cervical cancer. 
However, these two SNPs did not play roles in the 
progression from CIN to cervical cancer. Therefore, 
rs4636297 in miR-126, and rs11614913 in miR-196a2, 
might only be associated with the initiation of cervical 
cancer, not the development of CIN to cervical cancer. 
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