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Layered bosonic dipolar fluids have been suggested to host a condensate of interlayer
molecular bound states. However, experimental observation has remained elusive. Moti-
vated by two recent experimental works [C. Hubert et al., Phys. Rev. X 9, 021026 (2019)
and D. J. Choksy et al., Phys. Rev. B 103, 045126 (2021)], we theoretically study, using
numerically exact quantum Monte Carlo calculations, the experimental signatures of
collective interlayer pairing in vertically stacked indirect exciton (IX) layers. We find that
IX energy shifts associated with each layer evolve nontrivially as a function of density im-
balance following a nonmonotonic trend with a jump discontinuity at density balance,
identified with the interlayer IX molecule gap. This behavior discriminates between
the superfluidity of interlayer bound pairs and independent dipole condensation in
distinct layers. Considering finite temperature and finite density imbalance conditions,
we find a cascade of Berezinskii–Kosterlitz–Thouless (BKT) transitions, initially into
a pair superfluid and only then, at lower temperatures, into complete superfluidity of
both layers. Our results may provide a theoretical interpretation of existing experimental
observations in GaAs double quantum well (DQW) bilayer structures. Furthermore,
to optimize the visibility of pairing dynamics in future studies, we present an analysis
suggesting realistic experimental settings in GaAs and transition metal dichalcogenide
(TMD) bilayer DQW heterostructures where collective interlayer pairing and pair
superfluidity can be clearly observed.
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Pair superfluids (PSF) are molecular Bose condensates made out of tightly bound pairs
of the underlying elementary bosonic degrees of freedom (1). Convenient settings for
stabilizing PSF phases are strongly correlated Bose mixtures (2, 3), where interspecies
attractive interactions promote the formation of a bound pair, and intraspecies repulsion
protects from a real-space Bose collapse. Remarkably, PSFs are predicted to support highly
nontrivial physical phenomena, such as half-vortex configurations (4, 5) and enhanced
interspecies superfluid drag (6, 7), which further motivates their experimental realization.

An intriguing theoretical proposal (8) for realizing a PSF is a bilayer geometry
comprising bosonic particles that are confined to propagate in the plane and carry a fixed
dipole moment (either electric or magnetic), aligned perpendicular to the layers. The short-
range attractive component of the interlayer dipolar coupling supports an interlayer bound
state (9, 10), which in turn may condense and form a PSF. This scenario was confirmed
in numerical simulations of lattice models (11) and in the continuum (12, 13).

While the idea of realizing a PSF phase in dipolar bilayers has a long theoretical history,
it has remained elusive experimentally. Motivated by experimental breakthroughs in
stabilizing electric (14–16) and magnetic (17, 18) dipolar condensates in cold atoms, most
theoretical proposals have focused on such systems. However, experimental challenges
such as suppressing two-body losses (19) and reaching interlayer binding energies which
are sufficiently large compared to the accessible temperature scales (20) still remain.

In that regard, excitons in two-dimensional landscapes have in recent years emerged
as the solid state analog of cold atoms in the quest of realizing novel quantum many-
body phases. In particular, experimental advances in transition metal dichalcogenide
(TMD) materials paved the route for observing collective quantum states, including
Mott insulators (21–23), Wigner crystals (22), stripe phases (24), and an excitonic
insulator (25).

Excitonic systems have several advantages, including the ability to precisely confine
excitons into deep subwavelength potential planes and study mutual interactions with
other types of quantum matter, such as low-dimensional electron gases, via proximity
coupling (26, 27). Moreover, exciton densities are readily controlled via external excitation
sources, and interexciton correlations can be directly inferred from their spectral shifts
(28), giving a direct probe of collective phases and phase transitions.
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Fig. 1. (A) Double quantum well bilayer heterostructure. The bottom and top layers, colored in blue and red, respectively, are vertically separated by a distance
of Lz. Externally applied voltage V creates spatial separation between electrons (blue circles) and holes (red circles) within each layer, resulting in IXs with fixed
dipole size d. Pump powers Pα control the IX densities, while photons emitted during IX recombination are used to measure IX energy shifts ΔEIX

α within each
layer. (B) Effective model of the experimental system (A), consisting of dipolar bosons in a bilayer geometry with possibly distinct densities n1, n2. The interlayer
separation is denoted by Lz. (C) Equal density (n1 = n2) ground state phase diagram as a function of Lz/a and IX density n1a2. Red (blue) dots correspond to
numerical data points in the PSF (2SF) phase, and black dashed lines are guides to the eye for the parameter cuts considered in this work. (D) Phase diagram at
finite temperature T and finite imbalance γ, emanating from the zero temperature and vanishing density imbalance (γ = 0) PSF phase.

More concretely, electrically induced indirect excitons (IXs)
in two-dimensional double quantum well (DQW) structures,
either GaAs- or TMD-based, have recently attracted a great
deal of interest as a promising platform for observing collective
phenomena of interacting quantum dipolar liquids (25, 29–41).
Considering multilayered DQW heterostructures is a particularly
interesting research avenue as it enables revealing the anisotropic
and attractive component of dipolar interactions, beyond the
purely repulsive dipolar interaction within a monolayer. This line
of research is further motivated by recent observations of exotic
quantum states in cold atoms carrying magnetic dipoles, such as
dipolar instabilities and the formation of the elusive supersolid
phase (42–44), all of which arise from the anisotropic nature of
dipolar interactions in three dimensions.

The simplest DQW multilayered layout is a bilayer geometry at
a fixed and well-defined lateral separation Lz , which was recently
realized in GaAs heterostructures (10, 45, 46) (Fig. 1A). In the
experimental setting, IX densities at each layer (α= 1, 2) are
controlled independently in a continuous fashion via the laser
pump power, Pα. This crucial experimental tuning knob allows
one to continuously probe finite imbalances between layer den-
sities. The experimentally measured photoluminescence, resulting
from IX recombination processes, measures the energy released
during the annihilation of a single IX. Interactions between IXs are
then encoded in spectral shifts ΔE IX

α and at zero temperature are
identified with the IX chemical potentialΔE IX

α = μα = E (Nα +
1)− E (Nα) (28), with Nα denoting the number of IXs at the α’s
layer.

Both of the aforementioned experiments have observed a non-
trivial behavior of IX energy shifts as a function of pump power
and associated IX densities. Specifically, ref. 45 observed a non-
monotonic evolution of IX energies in one of the layers as a
function of the density in the complementary one. Ref. 46 has
reported a monotonic red (blue) shift of the probed layer as a
function of laser pumping power applied to the complemen-
tary (same) layer. The appearance of red shifted IX energies in
both experiments provides experimental evidence for the effective
coupling and the energy gain associated with interlayer dipolar

attraction, which inspires exploring experimental signatures of the
resulting quantum many-body phenomena.

In this work, we show that the unique advantages of stacked
layers of dipolar excitons enable realizing and directly probing the
emergence of collective paired dynamics. To that end, we chart the
low-temperature phase diagram in the presence of finite density
imbalance, using quantum Monte Carlo (QMC) simulations of
an effective bosonic model of vertically stacked IXs. We determine
the IX energy shifts, ΔE IX

α , associated with each layer and un-
cover a highly nontrivial evolution as a function of microscopic
parameters and density imbalance. Importantly, we argue that
measurements of ΔE IX

α allow one to experimentally discriminate
between PSF and independent IX condensates in each layer. Most
notably, in the PSF phase, we predict a nonmonotonic behavior
of the spectral shift as a function of density imbalance and a sharp
jump discontinuity in ΔE IX

α at density balance, identified with
the binding energy of a molecule of two IXs, one from each layer.
Our findings shed light on existing experimental results and serve
as a guide for ongoing and future experimental studies of bilayer
IXs in GaAs and TMD heterostructures, for which we propose
explicit experimental parameters and protocols.

Effective Model and Phase Diagram

We model the bilayer IX system via point-like dipolar bosons
confined in two vertically separated planes at a fixed separation Lz

(Fig. 1B). The bosonic approximation is appropriate in the dilute
limit, where the spatial extent of the electron hole bound state
is significantly smaller than the inter-IX separation. The resulting
model Hamiltonian comprises a sum over the kinetic energy term
in each layer (interlayer hopping is disallowed) and intralayer and
interlayer dipolar interactions. Explicitly,

H =−
∑
α,iα

�
2∇2

iα

2m
+

∑
α,iα<i′α

Udd(riα , ri′α)+
∑
i1,i2

Udd(ri1 , ri2).

[1]
Here α= 1, 2 marks the layer index, iα labels different IXs at each
respective layer, and riα denotes their locations. We take the same
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effective mass, m , for both layers and set IX densities to nα =
Nα/A, where A is the area. Two body interactions, in the last two
terms, are given by the dipolar potential,

Udd (r, r
′) =D2 |r⊥ − r′⊥|

2 − 2|z − z ′|2
(
|r⊥ − r′⊥|

2
+ |z − z ′|2

) 5
2

. [2]

Here r⊥ and z denote in-plane and vertical positions of the
IXs, respectively. The dipole strength equals D2 = e2d2/4πεrε0,
with e being the electron charge, d being the dipole size, and
ε0 (εr ) being the vacuum (relative) permittivity. We measure
all length scales with the effective dipolar length a = mD2

�2 and
energy scales via E0 =

D2

a3 and define the density imbalance γ =
(n2 − n1)/n1 induced by varying n2, while keeping n1 fixed.
We note that a = 149, 46 nm and E0 = 0.016, 0.073 meV for
dipole size d = 22, 4 nm, corresponding to GaAs- and TMD-
based structures, respectively. See further details below. From a
symmetry perspective, the Hamiltonian has a global U (1)×
U (1) symmetry, corresponding to independent boson particle
number conservation at each layer.

We begin our analysis by reviewing the zero temperature phase
diagram in the density balanced case, γ = 0 (12, 13) (Fig. 1C ).
We focus on liquid phases pertinent to the experimentally dilute
IX limit. For large layer separations, Lz � a , the two layers
decouple, giving rise to independent superfluids (2SF) at each
layer (47, 48). In the opposite limit Lz � a , the strong attractive
component of dipolar interactions promotes the formation of
interlayer dipolar bound pairs (9, 10), whose condensate forms
a PSF. As a function of layer separation, the PSF phase remains
stable at higher densities for smaller layer separations due to the
stronger interlayer binding. We note that for certain fixed Lz

values, the phase transition between the PSF and 2SF phases
can also be tuned via the IX density n1(= n2). This observation
is crucial from the experimental perspective since IX densities,
as opposed to the fixed sample depended lateral separation Lz ,
are continuously varied parameters, readily controlled by the
excitation source pump power.

Importantly, the PSF phase only partially breaks the global
U (1)× U (1) down to U (1) (2, 3) by assigning a nonvanish-
ing expectation value for the interlayer pair annihilation oper-
ator, OPSF = b1b2, 〈OPSF〉 �= 0. The remaining conserved U (1)
symmetry corresponds to the supercounter fluid (SCF) channel,
whose associated order parameter OSCF = b1b

†
2 generates density

imbalance and hence leads to breaking of interlayer pairs. The
energy penalty associated with pair breaking, in the PSF phase,
endows a finite gap to the SCF channel (12). By contrast, in
the 2SF phase, both layers condense independently, rendering
both the PSF and SCF channels gapless, i.e., 〈OPSF〉 �= 0 and
〈OSCF〉 �= 0.

We now turn to the main focus of this work, which is to
establish the role of density imbalance on the global phase dia-
gram and determine its experimental signatures. At strictly zero
temperature, starting from the PSF state, even the slightest density
imbalance is expected to nucleate an excess of unpaired bosons,
which will condense at layer α= 1(2) for γ < 0 (γ > 0). The
resulting phase, labeled by PSF + layer 1(2) SF, has an identical
symmetry breaking (U (1)× U (1)) to the 2SF phase and hence
cannot be distinguished based on symmetry probes. Therefore, the
SCF channel, which was originally gapped at density balance in
the PSF phase, is now also condensed.

This singular behavior is depicted in the zero temperature cut
of the phase diagram shown in Fig. 1D, where the PSF phase is

restricted to a single point at γ = 0. Consequently, experimentally
targeting the PSF phase and directly probing its properties is
challenging as it would require a high degree of fine tuning in
order to precisely equate the layer densities. Nevertheless, below,
we will argue that the ability to optically induce and control finite
IX density imbalances is, in fact, a feature enabling probing pairing
dynamics.

Away from the zero temperature limit, following the Mermin–
Wagner theorem, thermal fluctuations destroy the long-range off-
diagonal order. Nevertheless, at sufficiently low temperatures,
quasi–long-range order with power law correlations survives. The
short-range correlated normal fluid state then appears at higher
temperatures, above the BKT transition temperature, TBKT. Con-
cerning our problem, a key insight is that the BKT transition
temperature is proportional to the density of the condensed con-
stituents. Consequently, for small density imbalance, the minority
of excess particles participating in the SCF condensate suppresses
the associated BKT temperature, giving rise to a cascade of
BKT transitions (3) obeying T PSF

BKT > T SCF
BKT. The resulting quasi–

long-range ordered PSF phase develops a fan structure at finite
temperatures, as depicted in Fig. 1D. At temperatures lower than
T SCF

BKT, the PSF and the single superfluid in layer α= 1(2) for
γ < 0(γ > 0) coexist, forming a PSF + layer 1(2) SF phase.

Previous studies of imbalanced IX bilayers were treated analyti-
cally in the polaron limit,N1 = 1 (49, 50), or numerically via vari-
ational techniques in ref. 50, primarily in the layer-independent
superfluid phase. These calculations are approximate in nature and
have limited predictive power in the strongly correlated regime
of the full two-dimensional problem at arbitrary IX densities and
strong pairing. In the following, we turn to numerically establish
the global phase diagram beyond the above limiting cases and
determine the physical signatures of various phases and phase
transitions in the context of IX bilayer experiments carried out
at finite density imbalance, focusing on physical properties of the
interlayer pair condensate.

Numerical Methods and Observables

To numerically study the Hamiltonian in Eq. 1, we employ path
integral Monte Carlo calculations using efficient worm algorithm
updates (51). We consider the finite temperature formulation and
address the ground state physics by tracking the convergence of
our finite temperature data to the zero temperature limit; see, e.g.,
SI Appendix, Note S1.

To detect the presence of PSF or SCF or both, we compute the
associated superfluid stiffness. The PSF (SCF) is manifest by long-
range correlations of the sum (difference) of phases, θ± = θ1 ±
θ2, where we identify bα ∼ eiθα for weak density fluctuations
(3). For multispecies bosonic systems, the superfluid stiffness
is a tensor which measures the response to minimally coupled
global flux insertions, Φα, for each species, ρα,α′ = ∂2F

∂Φα∂Φα′
,

where F denotes the free energy. The superfluid stiffness in
the PSF (SCF) channel is then obtained by taking the flux
configuration Φ1 =Φ2 =Φ/2 (Φ1 =−Φ2 =Φ/2). Within the
world-line representation, both quantities can be measured via the

standard winding number variance ρ± =
〈(W1±W2)

2〉
4βD (52, 53).

HereWα = {W x
α ,W

y
α } denotes the winding numbers along the

x/y directions in the layerα, the inverse temperature is β = 1/T ,
and D = 2 is the spatial dimension. A related observable is the
superfluid drag ρ12 = 〈W1·W2〉

βD , which quantifies the response of
a given layer to a superfluid flow in the complementary one, also
known as the Andreev–Bashkin effect (6, 7).
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Fig. 2. The influence of density imbalance on the PSF phase at zero tem-
perature, for Lz = 0.3[a] and n1 = 0.83[a−2]. (A) The superfluid stiffness in the
SCF channel (blue) and PSF channel (red) and the superfluid drag (green) as
a function of γ. (B) Interlayer density–density correlation function g12(r) for
various density imbalances. (Inset) g12(r → 0) as a function of γ. The above
results were obtained at temperature T = 0.08[E0] and system size N1 = 32.

To quantify spatial correlations, we compute the density–
density correlation function gα,α′(r) = A

NαNα′
〈
∑

iα,jα′ �=iα

δ(r− riα + rjα′ )〉, for both the intralayer, α= α′, and
interlayer, α �= α′, cases. Last, to numerically estimate the
experimentally measured IX energy shifts, ΔE IX

α , we monitor
the finite temperature chemical potential of each species μα =
F (Nα + 1,T )− F (Nα,T ). To that end, we employ the
technique proposed in ref. 54.

Numerical Results

As concrete microscopic values, pertinent to the experimental
parameters to be discussed below, we consider several values of
interlayer separation Lz/a = 0.4, 0.36, 0.3, 0.2, for which we
study a range of IX densities n1[a

−2] along the parameter cut
connecting the PSF and 2SF phases in the density-balanced phase
diagram, marked by dashed lines in Fig. 1C. For each parameter
pair (Lz , n1), we consider a range of density imbalances, γ, by
varying n2 while retaining n1 fixed. We present results up toN1 =
48 and down to T = 0.08[E0] for ground state properties. See
finite size and finite temperature analysis in SI Appendix, Note S1.

We start our analysis by determining the fate of the paired
condensate away from γ = 0. We fix Lz = 0.3[a] and n1 =
0.83[a−2], such that the ground state in the density-balanced case
is a PSF phase. In Fig. 2A, we examine the superfluid stiffness in
the PSF and SCF channels, ρ±, as a function of density imbalance.
We find that ρ+ remains finite irrespective of γ. On the other
hand, ρ− vanishes at γ = 0 and rises continuously away from that
point. These results corroborate the above reasoning, indicating
that an arbitrarily small excess of unpaired IXs condenses at

sufficiently low temperatures, breaking the full U (1)× U (1)
symmetry.

To investigate interlayer correlations at finite density imbal-
ance, we first compute the superfluid drag coefficient ρ12 in
Fig. 2A. We observe that ρ12 is maximal at the balanced point
and decreases as the system is tuned toward greater imbalance.
The presence of a sizable superfluid drag suggests a correlated
motion of interlayer IX pairs, even away from the balanced density
point. To further study interlayer pairing in this parameter regime,
we examine the interlayer density–density correlation function,
g12(r), depicted in Fig. 2B. We indeed observe strong interlayer
correlation, manifest in a peak structure of g12(r) at zero hor-
izontal separation, even at a finite imbalance. The peak’s height
gradually decreases as the imbalance grows, as can be seen in
the nonmonotonic behavior of g12(r → 0) as a function of γ,
presented in Fig. 2 B, Inset. Further results on the evolution of the
interlayer and intralayer density–density correlations are presented
in SI Appendix, Note S1.

We now turn to compute our main observable, which is the
chemical potential μα, identified with the experimentally mea-
sured IX energy shifts ΔE IX

α . In Fig. 3A, we depict μ1 at Lz =
0.3[a] as a function of density imbalance for several densities
n1. To facilitate the comparison between distinct densities, we
introduce a vertical shift, μ̄1, such that all curves cross the origin
at the density balanced point γ = 0. We first focus on the dilute
limit, corresponding to the PSF phase for γ = 0, by setting n1 =
0.69[a−2]. We observe that for negative imbalance, γ < 0, μ1

increases as a function of γ.
To understand the above behavior, we note that for strong

pairing, all IXs at layer α= 2 form tightly bound pairs with
IXs at the complementary layer α= 1. Thus, for γ < 0, any
additional IX at layer α= 1 will lack a pairing partner at layer

B

A

Fig. 3. Evolution of the IX chemical potential, μα, corresponding to (A) layer
α = 1 and (B) layer α = 2, as a function of density imbalance at Lz = 0.3[a],
T = 0.3[E0], and N1 = 32. Dashed and solid lines correspond to curves that are
either PSF or 2SF at equal densities, respectively. Marking circles and pointing
arrows are used to further emphasize the two phases. Vertical shifts μ̄α are
defined such that the plotted curves cross the origin at γ = 0.
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α= 2. Consequently, adding a single IX to layer α= 1 will
incur an additional energy penalty, beyond the usual intralayer
repulsion, arising from the repulsive long-distance tail of interlayer
interactions. Increasing the density of IXs in layer α= 2 will
further enhance this interlayer repulsion, as deduced from the
functional form of the interlayer potential in the dilute limit.
The above reasoning gives rise to the observed increase in μ1 as
a function of γ.

On the other hand, for γ > 0, at least one IX in layer α= 2
is unpaired, such that adding an IX at layer α= 1 will gain
molecular binding energy. This pairing is evident in the jump dis-
continuity Δμ1 = |μ1(γ = 0+)− μ1(γ = 0−)| seen at γ = 0.
Physically, in the dilute density limit, the size of the jump equals
the binding gap of a bound interlayer IX molecule (10, 12).
Similar to the γ < 0 case, further enlarging γ results in an increase
of μ1. To see why this is the case, we note that besides the
bound pair, all other IXs in layer α= 2 and remaining bound
pairs repel the added IX in layer α= 1, resulting in an energy
penalty and an increase of the chemical potential μ1. Remarkably,
from the above analysis, we conclude that μ1 curves exhibit a
nonmonotonic evolution as a function of γ in the dilute limit,
which can potentially explain the experimental observations of ref.
45. More broadly, the functional form of ΔE IX

1 serves as a clear
experimental fingerprint of interlayer pairing.

Tracking the evolution of μ1 for several n1 values connect-
ing the PSF and 2SF phases, in Fig. 3A we observe that the
jump discontinuity in μ1 progressively vanishes upon approach
to the 2SF phase. The softening of this energy scale marks the
position of the associated quantum critical point separating the
two phases (12). We analyze the associated universal properties in
SI Appendix, Note S1. Furthermore, μ1 curves transition between
a nonmonotonic trend at low densities to a monotonic decrease
at high densities. The latter behavior was observed experimentally
in ref. 46. Crucially, this transition can be probed via a contin-
uous tuning of layers densities, allowing for direct experimental
observation of quantum critical dynamics. Quantitatively similar
results were obtained for all other Lz values.

Turning our attention to μ2 (Fig. 3B), we observe a monotonic
increase as a function γ, indicating the thermodynamic stability
of this phase, as was observed in ref. 46. Beyond the general
trend, similarly to μ1, we find a nonanalytic jump seen precisely
at γ = 0. As before, the size of the jump Δμ2 = |μ2(γ = 0+)−
μ2(γ = 0−)| corresponds to the IX molecule binding energy for
dilute layer densities and vanishes as we transition to the 2SF phase
by increasing the IX density.

Similarly to the calculations in refs. 49, 50, obtained in the
polaron limit (γ � 1), we find that, at least for small densities, μ1

monotonically increases with γ (see dashed blue line in Fig. 3A).
At higher density values, the considered parameter regime is likely
away from the polaron limit, making the comparison more subtle.

Next, we examine finite temperature effects on the measure-
ment of IX energy shifts for Lz = 0.2[a] and n1 = 1.23[a−2].
In Fig. 4A, we depict the chemical potential μ1 as a function of
density imbalance for a set of increasing temperatures. The acti-
vated behavior controlled by the molecular IX pairing gap smears
the jump discontinuity, which eventually gives rise to a smooth
monotonic decrease in μ1 at sufficiently high temperatures.

Last, we pin down the BKT temperatures associated with
the PSF and SCF channels using the standard superfluid stiff-
ness jump analysis. This is achieved by locating the intersec-
tion between the superfluid stiffness and the linear curve 2

πT
(55). The results of this analysis are shown in Fig. 4B for Lz =
0.2[a], n1 = 1.23[a−2], and γ = 0.125. Indeed, we observe a
clear separation of transition temperatures, with T PSF

BKT > T SCF
BKT,
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Fig. 4. (A) μ1 as a function of γ at finite temperatures for n1 = 1.23[a−2]
and Lz = 0.2[a]. As a reference, the BKT transition temperature of the
PSF phase for the corresponding set of parameters equals TPSF

BKT = 0.85[E0].
(B) Superfluid stiffness channels as a function of temperature for the same
(Lz, n1) as in A and fixed γ = 0.125. The arrows point to the curves of ρ+

and ρ−, and the black line cuts each stiffness at the corresponding critical
temperature for the BKT transition, given by the Nelson relation. We take
N1 = 32, 48 in A and B, respectively.

which generates the predicted fan like structure of the PSF phase
appearing in Fig. 1D. A similar analysis was used to determine the
PSF BKT temperature for all other microscopic parameters. See
SI Appendix, Note S1, for a finite size scaling analysis of the BKT
transition.

Experimental Considerations

In this section, we quantitatively discuss the experimental visibility
of our predictions in GaAs and TMD DQW bilayer structures.
We focus on layer symmetric structures (Fig. 5) and fix the ratio
between the dipole size and layer separation to d/Lz = 0.5 and
0.45 for GaAs and TMD, respectively. Since the effective mass
and relative permittivity are fixed material properties, the dipole
size d and IX densities are the only remaining experimental tuning
knobs, which we optimize to enhance the experimental signatures
of paired dynamics.

The most important energy scales for experimentally character-
izing the PSF phase are the IX molecule binding gap Δμ1,2 and
the PSF BKT temperature, T PSF

BKT. The binding gap saturates to
its largest value in the dilute IX limit and vanishes for higher IX
densities upon approaching the 2SF phase. The BKT temperature,
on the other hand, scales linearly with the density and hence is
maximized in the opposite limit of high IX densities. To resolve
this trade-off, we target the largest possible IX densities for which
the IX molecule binding gap remains relatively close to its dilute
limit maximal value.

With the above reasoning in mind, we first examine GaAs
heterostructures (Fig. 5A), similar to the ones studied in refs.
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Fig. 5. Experimental proposal for DQW bilayer structures. (A) GaAs: Each
DQW layer α comprises two 16-nm GaAs quantum wells with a 4-nm Al0.4Ga0.6
As barrier. An 8-nm AlAs separates the different layers and prevents interlayer
tunneling. The sample is grown on a doped substrate and has a top gate,
which allows the application of an external voltage along the growth direction.
(B) TMD: A single layer α is defined by MoSe2 and WSe2 monolayers, with a
4-nm hBN buffer in between. An additional 5-nm hBN barrier separates the
two MoSe2/hBN/WSe2 structures.

45, 46. Explicitly, each DQW layer consists of a pair of 16-nm
GaAs quantum wells separated by a 4-nm Al0.4 Ga0.6 As barrier.
The vertically stacked DQWs are then split up by an 8-nm AlAs
barrier preventing inter-DQW tunneling. We take effective IX
mass of m = 0.21me , with me being the free electron mass,
and relative permittivity ε= 12.9. To determine the dipole size,
we numerically solved the single-particle Schrödinger equation
for the electron and hole (SI Appendix, Note S2) for the above
setting. Assuming a uniform cross-section and bias electric field of
Fe =−2.5 V/μm yields an effective dipole size d = 22 nm. The
interlayer separation, measured as the distance between the centers
of the lower and upper DQWs, then equalsLz = 44 nm, such that
using the definitions given above, we find the dimensionless ratio
Lz/a = 0.3, as studied numerically above.

With the above experimental parameters, for IX densities in the
range n1 ≈ 3− 9× 109 cm−2, we estimate the jump discontinu-
ity in the IX energy shift to be ΔE IX

α ≈ 0.02− 0.19 meV, where
the magnitude of ΔE IX

α increases as the IX density decreases
(SI Appendix, Note S1). Targeting for the lowest IX density
at which the onset of pair superfluidity is feasible at realistic
experimental temperature scales, we suggest considering IX
density n1 ≈ 3.7× 109 cm−2, for which the IX energy shift
equals ΔE IX

α ≈ 0.16 meV and interlayer pair condensation is
expected to occur at temperatures lower than T PSF

BKT = 0.11 K.
TMD structures composed of MoSe2/We2 monolayers with

an hBN buffer (56, 57) offer a particularly promising setting for
the experimental realization and detection of PSFs. Compared to
GaAs, TMDs are characterized by large effective massm = 0.5me

and low permittivity ε= 3.3, giving rise to significantly larger
dipolar length, a , as defined above. Crucially, TMD structures
can potentially enable experimental access to the strong binding
regime.

As a concrete realization, we suggest a bilayer stacking of
MoSe2/hBN/WSe2 DQW structures, separated by an hBN buffer
to prevent IX tunneling between layers. Specifically, we propose an
IX dipole size of d = 4 nm, set by 12 hBN layers (58) sandwiched
between MoSe2 and We2 monolayers. The two DQW layers are
then further separated by 15 hBN layers, resulting in Lz = 9 nm
(Fig. 5B). In dimensionless parameters, we obtain Lz/a = 0.2,
which, for a wide range of densities, is significantly deeper in the
PSF phase.

For the above setting, we estimate IX energy shiftsΔE IX
α ≈ 3.5

− 5meV for IX densities in the rangen1 ≈ 6 − 19 × 1010cm−2,

with a decreasing trend in ΔE IX with increasing density. More
specifically, for the highest IX density n1 ≈ 9.7× 1010 cm−2 at
which the jump in the IX energy shifts saturates (SI Appendix,
Note S1) on ΔE IX

α ≈ 5 meV, we expect a condensation of the
PSF channel at T PSF

BKT ≈ 1.18 K. Crucially, TMD structures
present significantly larger binding energies and condensation
temperatures, which greatly facilitate the experimental realization
and detection of paired phases compared to GaAs systems.

Although in practice, there is limited flexibility in tuning the
dipole size d , it is interesting to understand how to optimize d
in order to maximize Δμ1 for a given IX density. To that end, we
examine the evolution of Δμ1 as a function of d in a TMD-based
system for several densities n1 (Fig. 6). We fix the ratio d/Lz =
0.45, such that geometrically, increasing d amounts to a linear
scaling of the entire sample, including Lz . Interestingly, we find
that Δμ1 exhibits a nonmonotonic behavior as a function of d .

The above result can be traced back to the simple interlayer
two-body problem, which approximates the many-body behavior
in the dilute limit (10). The corresponding binding energies,
obtained from the solution of the single IX molecule Schrödinger
equation, are shown by a dashed line in Fig. 6. Constraining a
fixed d/Lz ratio, the only remaining length scale in the problem
is the dipole size d . Using simple dimensional analysis, one
can show that the interlayer attractive dipolar potential scales
as Udd ∼ 1/d , whereas the kinetic energy term scales as EK ∼
1/d2. Hence, for sufficiently small dipole sizes, the kinetic energy
dominates, leading to a decrease in the binding energy due to delo-
calization. In the opposite limit of large dipole sizes, the reduction
in the potential energy again leads to diminished binding energies.
The competition between these trends resolves in a nonmonotonic
evolution of the binding energy as a function of dipole size.

As a final comment, we note that in the strong binding regime
and for low densities, there is a clear separation between the bind-
ing energies Δμ1,2 and the pair BKT temperature T PSF

BKT. Conse-
quently, at intermediate temperatures, T PSF

BKT < T <Δμ1,2, the
IX energy shift ΔE IX

1 is still expected to exhibit a sharp jump
at density balance, albeit slightly rounded due to finite temper-
ature effects. Physically, the resulting phase is identified with a
normal liquid of paired interlayer molecules. The paired liquid
will eventually condense only at lower temperatures, below the

Fig. 6. The pair binding gap Δμ1 as a function of dipolar size for several
n1 values and a fixed ratio d/Lz = 0.45. We consider typical parameters of
TMD materials: ε = 3.3, m = 0.5me. The data points were obtained for the
ground state limit with N1 = 16. The dashed line shows the binding energies
of a single IX molecule, representative of the extreme dilute limit.
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BKT transition. From the above reasoning, identification of the
PSF phase would entail measurements of both phase coherence
below the BKT temperature and a finite jump discontinuity
discriminating the pair from the independent superfluid phases.

Summary and Discussion

In summary, we have established the low-temperature phase dia-
gram of bilayer IXs in the presence of finite density imbalance. We
demonstrated that the predicted evolution of IX energy shifts as a
function of density imbalance in various experimentally accessible
parameter regimes allows distinguishing between single and paired
superfluidity and probing the associated quantum critical phe-
nomena separating the two phases. Via detailed analysis of realistic
experimental parameters, we argue that our predictions can be
validated experimentally in ongoing and near-future experiments
of vertically stacked DQWs structures in GaAs- and TMD-based
systems.

We conclude our presentation by flagging several future lines
of research, motivated by our results. First, a more accurate
description of IX dynamics, beyond our simplified model, re-
quires taking into account the effect of spatial confinement and
disordering potentials. Sufficiently weak disorder is not expected
to qualitatively modify our predictions, evaluated in the clean
and uniform limit. Moreover, the strong dipolar interaction be-
tween IXs was predicted to effectively screen the in-plane disorder
(59–61), suppressing the pinning effect of trapping potentials
even at low IX densities. Interestingly, spatial confinement of IXs
is expected to increase the BKT transition temperature.

A natural extension of the bilayer model is multilayer struc-
tures. In that regard, the additional layer degrees of freedom,
beyond the bilayer limit, can give rise to complex symmetry
breaking patterns such as zigzag states. Moreover, the expected
effective mass of multilayer bound states will scale linearly with the
number of layers. This, in turn, quenches the kinetic energy and
enhances the effect of dipolar interactions. In the strong coupling
regime, crystal phases are energetically favorable, enabling access
to IX solids at relatively low IX densities.

The above two modifications of the studied model can be
treated via numerically exact QMC simulations, similar to the
ones carried out in this work. We leave these intriguing lines of
research to future studies.

Materials and Methods

All numerical results were obtained using path integral Monte Carlo calculations
(51) as detailed in the main text and SI Appendix.

Data Availability. All study data are included in the article and/or SI Appendix.
Please also see data deposited on Zenodo (62).
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Nature 579, 359–363 (2020).
23. L. Wang et al., Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat.

Mater. 19, 861–866 (2020).
24. C. Jin et al., Stripe phases in WSe2/WS2 moiré superlattices. Nat. Mater. 20, 940–944 (2021).
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