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A wide range of bacterial species are harbored in the oral cavity, with the resulting
complex network of interactions between the microbiome and host contributing to
physiological as well as pathological conditions at both local and systemic levels.
Bacterial communities inhabit the oral cavity as primary niches in a symbiotic manner
and form dental biofilm in a stepwise process. However, excessive formation of
biofilm in combination with a corresponding deregulated immune response leads
to intra-oral diseases, such as dental caries, gingivitis, and periodontitis. Moreover,
oral commensal bacteria, which are classified as so-called “pathobionts” according
to a now widely accepted terminology, were recently shown to be present in
extra-oral lesions with distinct bacterial species found to be involved in the onset
of various pathophysiological conditions, including cancer, atherosclerosis, chronic
infective endocarditis, and rheumatoid arthritis. The present review focuses on oral
pathobionts as commensal and healthy members of oral biofilms that can turn into
initiators of disease. We will shed light on the processes involved in dental biofilm
formation and also provide an overview of the interactions of P. gingivalis, as one
of the most prominent oral pathobionts, with host cells, including epithelial cells,
phagocytes, and dental stem cells present in dental tissues. Notably, a previously
unknown interaction of P. gingivalis bacteria with human stem cells that has impact on
human immune response is discussed. In addition to this very specific interaction, the
present review summarizes current knowledge regarding the immunomodulatory effect
of P. gingivalis and other oral pathobionts, members of the oral microbiome, that pave
the way for systemic and chronic diseases, thereby showing a link between periodontitis
and rheumatoid arthritis.
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INTRODUCTION

The oral cavity is a unique habitat that allows for colonization
of a wide variety of commensal microbial species, as it supplies
a diversified nutrient influx as well as high humidity and
variable oxygen concentrations. Furthermore, the existence of
soft (gingiva) and non-shedding hard (teeth) tissues provides
microorganisms with potential surfaces for adherence and
subsequent interaction with various host cells. Colonization of
the oral cavity in healthy individuals is based on balanced
bacteria-host and interbacterial interactions. The continuous
existence of dental plaques in gingival tissues and interactions
of pathobionts with host cells cause inflammation, leading
to periodontitis (PD). There is also increasing evidence
suggesting an association of chronic PD with other types
of systemic inflammatory diseases, such as atherosclerosis,
infective endocarditis, diabetes, adverse pregnancy outcome,
respiratory diseases, and rheumatoid arthritis (RA) (Li et al.,
2000; Pihlstrom et al., 2005; Kim and Amar, 2006; Gaffen
et al., 2014; Hajishengallis, 2015). This raises the question
whether the periodontal microbiota is bystander or responsible
for the initial step of chronic diseases. In the present
review, the pathogenic mechanism of PD is introduced
from the perspective of host bacteria/interbacterial interactions
and host immune responses. Moreover, interactions of the
pathobiont Porphyromonas gingivalis with host cells, as well as
a possible link between the pathobiont and RA are discussed
(Figure 1).

COLONIZATION OF WIDE RANGE OF
ORAL SYMBIOTIC BACTERIA

Initial bacterial host colonization occurs at birth, with
Staphylococcus epidermidis and Streptococcus species detected
within hours after birth (Nelson-Filho et al., 2013). The oral
pioneer species Streptococcus salivarius, which has been detected
within 8 h after birth (Rotimi and Duerden, 1981), represents the
majority of oral bacteria with up to 98% of examined subjects
showing its possession at the first tooth eruption (Cortelli et al.,
2008). Dental structures and alterations in nutrition allow
for further colonization of other bacterial species. Finally, the
matured oral microbiome consists of hundreds of bacterial
species, contributing to a complex community (Aas et al., 2005;
Dewhirst et al., 2010). Gram-positive facultative anaerobic
bacteria, such as the Streptococcus and Actinomyces genera,
are predominant in healthy individuals, in whom a proper
equilibrium between the oral microbiome and host immune
responses is maintained with no signs of inflammation observed
in the periodontium (Li et al., 2004; Jiao et al., 2014).

DENTAL BIOFILM FORMATION

After tooth surfaces are cleaned, their immersion in the fluid
environment of the oral cavity causes surface adsorption of
a thin acquired pellicle, which is mainly composed of saliva

glycoproteins, such as proline-rich proteins, α-amylase, statherin,
mucins, and agglutinin (Heller et al., 2017). Coating of those
solid surfaces with a pellicle leads to changes in surface charge
and free energy, thus promoting bacterial adhesion (Weerkamp
et al., 1988). Bacteria attach to tooth surfaces in a diverse
manner, ranging from specific interactions between pellicle
components and bacterial surface molecules to charge-mediated
weak interactions (Nesbitt et al., 1992; Jenkinson, 1994; Oli
et al., 2006; Kolenbrander et al., 2010). The predominant initial
colonizers of teeth are Gram-positive facultative anaerobic cocci
and rods, including Streptococcus and Actinomyces species. These
initial colonizers provide a foundation for further development
of dental biofilm. Streptococcus recognizes components in the
pellicle, such as a specific interaction between a pilus protein
of S. sanguinis and salivary α-amylase (Okahashi et al., 2011).
Actinomyces binds to proline-rich proteins and statherin, a
phosphate-containing protein (Li et al., 2001). Once the initial
colonizers attach to the surface, a biofilm mass develops through
continued growth and subsequent adsorption of other bacterial
species via coaggregation.

The surface molecules of these early colonizers allow for
coaggregation of Gram-negative bacteria possessing a lower
level of adherence to the pellicle, including members of the
genera Veillonella and Fusobacterium. Bacteria belonging to
the genus Fusobacterium, such as Fusobacterium nucleatum,
are able to coaggregate with both initial and late colonizers,
thus are called bridge species and known to promote successful
development of dental biofilm. For bridging neighboring
bacteria, F. nucleatum utilizes surface molecules such as RadD,
an arginine-inhibitable adhesin, and the fusobacterial apoptosis
protein Fap2 (Kaplan et al., 2010). Habitat analysis of the oral
microbiome has suggested that the genus Corynebacterium is
strikingly specific for supragingival and subgingival plaque,
with Corynebacterium matruchotii dominant among six species
deposited in the Human Oral Microbiome Database (Dewhirst
et al., 2010). Since this genus has been found in only trace
amounts in saliva and other specimens from different anatomical
sites, it is considered to have a specific role in dental biofilm
formation. In fact, in a study that utilized combinational labeling
and spectral imaging FISH (CLASI-FISH), Mark Welch et al.
(2016) observed a complex microbial consortium, termed a
hedgehog structure, mainly consisting of nine taxa arranged in
an organized spatial framework, including Corynebacterium,
Streptococcus, Porphyromonas, Haemophilus/Aggregatibacter,
Neisseriaceae, Fusobacterium, Leptotrichia, Capnocytophaga,
and Actinomyces. This plaque hedgehog represents a radially
organized structure, of which the main framework is primarily
composed of Corynebacterium with a multi-taxon filament-rich
annulus and peripheral corncob structures. In the corn-
cob structures, Corynebacterium filaments are surrounded
primarily by Streptococcus, though Porphyromonas and
Haemophilus/Aggregatibacter are also in close contact with
streptococcal cells, while the filament-rich annulus is mainly
composed of Fusobacterium, Leptotrichia, and Capnocytophaga.
Thus, Corynebacterium organisms are considered to be bridge-
species in regard to biofilm formation. Bridge-species further
coaggregate late colonizers that have effects on PD pathogenesis.
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FIGURE 1 | Brief overview of current concepts regarding onset of periodontitis and rheumatic arthritis, and deduced causal relationships between both diseases.
After establishing a subgingival biofilm, oral pathobionts, including Porphyromonas gingivalis, induce periodontitis as a chronic disease, which is attributable to
host-pathobiont interactions and deleterious host immune responses in periodontal tissues. Dysregulated citrullination caused by the pathobiont Porphyromonas
gingivalis has been suspected to be a causative factor for onset of rheumatic arthritis. Parts of this figure were taken from freely available web resources:
https://www.chirurgie-portal.de/innere-medizin/rheuma.html; www.rcsb.org/pdb/ngl/ngl.do?pdbid=5AK7 (Rosenstein and Hildebrand, 2015; Montgomery et al.,
2016).

Each anatomical site in the oral cavity possesses a distinct
composition of biofilm members that affects the local
environment by intrinsic metabolism. Stratification and
selective interaction between distinct bacterial species in dental
biofilms are conducted by mutually antagonistic and cooperative
interactions, which are attributable to environmental/metabolite
gradients and quorum sensing (Brown and Whiteley, 2007;
Ramsey et al., 2011; Zhu and Kreth, 2012; Wessel et al., 2014).
Tooth-related plaque biofilm can be generally classified based on
location into supragingival, formed above the gingival margin,
and subgingival, formed below the gingival margin. When a
pathological dental pocket becomes formed between a tooth
surface and gingiva during the course of PD onset, an anaerobic
condition is built up. Moreover, major sources of nutrition
for subgingival plaque bacteria are provided via inflammatory
periodontal tissues and gingival cervical fluid originating in
blood, since permeation of saliva components is more or less
limited. Consequentially, subgingival plaque in the pocket is
dominated by anaerobic and motile bacteria as compared with
supragingival plaque, as noted in detail below. Interactions of
obligate anaerobic bacteria, such as P. gingivalis, with host cells
have been implicated in the pathogenesis of PD.

PERIODONTITIS AS CHRONIC DISEASE

Establishment and maturation of periodontal dental biofilms
are characterized by co-aggregation of opportunistic
microorganisms caused by diverse factors, including poor
oral hygiene. Infection of periodontal host cells as well as

expression of virulence factors can provoke a local inflammatory
response. Initial periodontal tissue inflammation is termed
gingivitis and its pathology can be resolved by removal of dental
biofilms (Figure 2). On the other hand, continuous existence
of stable plaques, including accumulation of opportunistic
bacterial species, supports long-lasting inflammation. A shift
in the periodontal microbiome that accompanies an increase
in Gram-negative anaerobic species is now accepted as an
indicator of periodontal disease (Yano-Higuchi et al., 2000;
Klein and Goncalves, 2003; Yang et al., 2004; Berezow and
Darveau, 2011; He et al., 2015). Such a shift in composition
affects host immune responses, and leads to dysbiosis
between the oral microbiota and the host (Hajishengallis
and Lamont, 2012). Therefore, following establishment
of gingivitis, PD develops as a chronic inflammatory
condition.

Periodontitis is characterized by irreversible and progressive
degradation of periodontal tissues. With continuous
inflammation, proliferation of epithelial cells connecting
tooth surfaces and gingival tissues causes detachment of the
cell layer, and subsequent formation of a pathogenic dental
pocket between teeth and gingival tissues (Figure 2). The
resulting micro-environment is characterized by reduced oxygen
concentration or even anoxic areas. Mettraux et al. (1984)
quantified oxygen concentrations in the periodontal pockets
of patients with untreated PD and found them to range from
0.7 to 3.5%. On the other hand, the progression and severity
of PD are strongly dependent on the quality and quantity of
microorganisms harbored in periodontal plaque, as well as
individual risk factors, e.g., age, genetic predisposition, systemic
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FIGURE 2 | Development of gingivitis and periodontitis. Following dental plaque accumulation, neutrophils dominate the host immune response, accompanied by
progression of an early or stable gingivitis lesion, along with increased infiltration of macrophages and T cells. The gingivitis lesion develops into a periodontitis lesion,
which is characterized by formation of a pathogenic periodontal pocket and destruction of periodontal tissues. Infiltrated lymphocytes are dominated by B and
plasma cells.

disorders, and lifestyle aspects, such as dental hygiene, nutrition,
and smoking (Pihlstrom et al., 2005; van Dyke and Sheilesh,
2005; Hajishengallis and Lamont, 2012; Heaton and Dietrich,
2012; AlJehani, 2014).

Approximately 90% of microorganisms isolated from
periodontal pockets are strictly anaerobic (Slots, 1977; Uematsu
and Hoshino, 1992) and certain sets of bacteria have been
frequently detected at elevated levels in periodontal lesions as
compared with healthy tissues. Socransky et al. (1998) analyzed
distribution of approximately 40 species in subgingival plaque
using a DNA–DNA hybridization technique. Findings from DNA
cluster analysis indicated that typical co-colonization of specific
oral species, among which a cluster with the nomenclature “red
complex” composed of the Gram-negative anaerobic species
Tannerella forsythia, P. gingivalis, and Treponema denticola,
is associated with increased pocket depth and bleeding upon
clinical pocket probing, while the other four clusters examined
were not shown to be associated with clinical parameters
indicating periodontal disease. This pattern of oral colonization
was also confirmed to exist in supragingival plaque samples
(Haffajee et al., 2008). Aas et al. (2005) also identified the three
bacterial species of the red complex as highly associated with
disease status, which confirmed the colonization model by
Socransky et al. (1998), and those findings were later supported
by other studies (Dewhirst et al., 2010; Zarco et al., 2012; Wade,
2013; Duran-Pinedo and Frias-Lopez, 2015). Presently, the
association of particular bacterial species within an intricate
microbial community with periodontal health status is widely
accepted.

Accumulation of opportunistic bacteria in periodontal plaques
and their deleterious effects on host tissues via specific virulence
factors provoke host immune responses. In response to microbial
challenge, a massive cytokine response occurs, which triggers
activation and recruitment of polymorphonuclear leukocytes
(PMNs) in periodontal pockets (Figure 2). Their activation and
oxidative burst contribute to periodontal homeostasis damage
and subsequent degradation of periodontal tissues (Waddington
et al., 2000; Kantarci et al., 2003; Graves, 2008). As compared to
healthy individuals, the number of PMNs is increased in both
periodontal pockets and the bloodstream of patients with chronic
PD (Lakschevitz et al., 2013; Kolte et al., 2014), thus sustaining
inflammation.

IMMUNE RESPONSE DURING
PATHOLOGICAL PROCESS OF
GINGIVITIS AND PERIODONTITIS

The concept of chronic PD as an immunological disease, which
was proposed more than 40 years ago (Seymour et al., 1979),
implies that a primary etiologic factor is bacterial infection that
elicits a specific immune response by the host, triggering gingival
inflammation and progression to chronic PD. Over the past
20 years, a number of studies have investigated and defined
immune system components contributing to its pathogenesis.
For example, it has been shown that both innate and adaptive
immune systems are involved in PD onset, in which the roles of
T- and B-lymphocytes are likely to be equally crucial (Gonzales,
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2015). However, in regard to polarization of T-helper (Th) cell
response, it remains elusive whether PD pathogenesis is driven
by Th1, Th2, or Th17, or what role is adopted by regulatory T
cells (Tregs) (Carvalho-Filho et al., 2016).

A plausible model for the pathological process of PD has
been suggested, based on histopathological examinations of PD
tissue sections. A pathological condition develops in sequential
order and PD progression is subdivided into various stages,
starting with initial lesion formation during the first 4 days
after plaque accumulation. PMNs, i.e., neutrophils, dominate
the host immune response, accompanied by the activation
of complement component C3 via an alternative pathway.
Subsequent production of the anaphylatoxins C3a and C5a
leads to activation of mast cells with release of vasoactive
substances that facilitate vascular permeability and development
of edema. Moreover, mast cells release TNF-α, which up-
regulates the expression of adhesion molecules on endothelial
cells, allowing for increased PMN infiltration (Ohlrich et al.,
2009). After approximately 4–7 days of plaque accumulation,
the initial lesion progresses to an early or stable gingivitis lesion
with increasing infiltration of macrophages and lymphocytes
(Figure 2). Lymphocytes are predominantly T cells with a
CD4-positive to CD8-positive ratio as high as 2:1, an activated
phenotype that is at this point negative for the IL-2 receptor
CD25. Since absence of CD25 indicates that T cells have
proliferated elsewhere, characteristics of the early lesion indicate
a delayed-type hypersensitivity reaction (DTH). The pathology
can be stable for a certain period with equilibrium maintained
between the immune system and microbiota, and inflammation
confined to the gingiva. In cases when plaque is mechanically
removed, the lesion will reversibly recover at this stage. However,
if plaque accumulation is allowed to continue, and attachment
between the gingiva epithelium and tooth surface is progressively
lost, the stable lesion advances to an established or progressive
PD lesion, characterized by a predominant response of B cells
and plasma cells, high levels of IL-1 and IL-6, and periodontal
tissue destruction, including alveolar bone loss (Ohlrich et al.,
2009). The final stage, an advanced lesion, is also characterized
by a dominance of B and plasma cells, while inflammatory
status is exacerbated. Fibroblasts stimulated by IL-1β, TNF-α,
and prostaglandin E2 secrete matrix metalloproteases (MMPs)
that not only advance the lesion, but also accelerate bone loss
(Figure 2). Palliative treatment of PD and complete removal
of bacterial plaque improves the course of periodontitis and
leads to arrest of the irreversible destruction of periodontal
tissues.

Recent studies have shown the critical role of Th17 in
maintenance of oral tissues. Individuals with a genetic defect
in Th17 differentiation are susceptible to oral fungal infections
(Liu et al., 2011; Moutsopoulos et al., 2015) and excess
Th17 response in gingiva promotes inflammation, leading to
deterioration related to periodontitis pathology (Eskan et al.,
2012; Moutsopoulos et al., 2014). Dutzan et al. (2017) showed
that the population of gingival IL-17-producing CD4+ T
cells increases with age. Interestingly, Th17 responses are not
dependent on colonization of commensal bacteria, which is
totally different from those in the mucosa of other anatomical

sites. Moreover, accumulation of gingival Th17 cells is dependent
on physiological mechanical damage caused by mastication
and subsequent induction of IL-6-mediated signals. Thus,
mastication, a normal function of the oral cavity, shapes gingival
immune homeostasis.

Even though the above sequence of events leading to chronic
PD is feasible, it does not explain why the pathophysiological
condition of an early lesion remains stable or even resolves in
some individuals, while it progresses to B cell-driven progressive
stages in others. The transition from a T cell- to B cell-rich lesion
has been suggested to correlate with the transition from a Th1-
to Th2-dominated response. Indeed, the pathological condition
of chronic PD represents a pathology dominated by Th2 (Kinane
and Bartold, 2007). Future research will be needed to investigate
the involvement of Th17 and Treg cells, as well as the impact of
environmental and genetic factors on susceptibility to chronic
PD, and the underlying mechanisms for onset of PD-related
systemic diseases.

HOST–PATHOGEN INTERACTION AND
MOLECULAR EFFECTS ON HOST CELLS
EXEMPLIFIED BY P. gingivalis

Interaction of P. gingivalis with Epithelial
Cells
The periodontal pathogen P. gingivalis infects gingival epithelial
cells in the oral cavity, and its in vitro adherence to and
internalization of epithelial cells have been well investigated.
Dogan et al. (2000) observed invasion of primary epithelial cells
by P. gingivalis, though it has been noted that the quantity
of adherence and invasion of P. gingivalis are dependent on
which human cell types and bacterial strains are investigated
(Deshpande et al., 1998). For example, adherence rates of strain
A7436 isolated from refractory PD to KB oral epithelial and
human umbilical vein endothelial cells were found to be 1.1%
and 0.5%, respectively (Deshpande et al., 1998). When comparing
diverse P. gingivalis strains, the adherence rates vary, such as
0.5% for type strain W50 and 10.5% for strain 33277 to KB cells
(Duncan et al., 1993; Dorn et al., 2000), while adhesion capacity
also varies between cell types due to divergent interactions
between P. gingivalis and the intrinsic cell surface. Furthermore,
Saito et al. (2008) reported that strain ATCC 33 invaded Ca9-
22 gingival epithelial cells as well as human aorta endothelial
cells (HAEC) at higher rates as compared to strain W83, which
might be explained by the highly fimbriated phenotype of
strain ATCC33. Addition of Fusobacterium nucleatum strain
TDC100 to that culture system increased the number of invaded
bacteria for both strains (Saito et al., 2008). Pinnock et al.
(2014) examined survival and bacterial release of P. gingivalis
in a 3-D organotypic oral mucosal model, which was shown to
mimic in vivo conditions. They found an increase of intracellular
survival and bacterial release during incubation, as compared
to monolayer experiments (Pinnock et al., 2014). These reports
demonstrate that the interaction of epithelial cells with bacteria is
dependent on a wide range of factors, while the high complexity
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of the oral cavity is not well represented by a monolayer cell
culture system.

In addition to the composition of cells grown in various
cell culture systems, host cell response itself is crucial for
host signaling cascades. Toll-like receptors (TLRs) are pattern
recognition receptors of epithelial cells as well as immune
cells to recognize microbial molecules (Sugawara et al., 2006),
which are involved in both intracellular and extracellular
signaling pathways, culminating in activation of innate immune
responses (Muzio and Mantovani, 2000). TLR2 and TLR4
respond to various bacterial factors, including lipoteichoic
acid, lipopeptides, and lipopolysaccharide (LPS), and changes
in their expression in gingival tissue during chronic PD
have been demonstrated (Promsudthi et al., 2014). As an
immunomodulation factor, P. gingivalis has effects on miRNA
expression in host cells. miRNAs are single-stranded non-
coding RNAs involved in regulatory processes, such as mRNA
degradation and translational repression, and modulation
of their expression results in dysregulation of proliferation
and host cell immune responses (O’Connell et al., 2007;
Aberdam et al., 2008). Gingival human oral keratinocytes
incubated with heat-inactivated P. gingivalis exhibited up-
regulation of miRNA-105, which is complementary to TLR2
mRNA (Benakanakere et al., 2009). Moreover, infection of
primary gingival epithelial cells with viable P. gingivalis
organisms was shown to significantly alter the expression of
14 miRNAs involved in regulation of apoptosis and cytokine
secretion (Moffatt and Lamont, 2011). Overall, the oral cavity
represents a complex network of numerous bacterial and/or
host interactions, which can be disturbed by P. gingivalis
via its utilization of epithelial cells to support its own
survival.

Influence of P. gingivalis on Stem Cells
The interactions of oral pathogens with differentiated cells, such
as epithelial and bone cells, as well as stem cells and fibroblasts
have been investigated. Stem cells can be isolated from various
adult tissues, including bone marrow and gingiva (Barry and
Murphy, 2004; Sonoyama et al., 2006; Tavian et al., 2006; Zhang
et al., 2009; Jin et al., 2013). The source of human dental stem
cells (hDSCs) is located in oral tissues and those exhibit the main
characteristics of mesenchymal stem cells. hDSCs can be isolated
from dental pulp and exfoliated deciduous teeth, as well as
apical papilla, periodontal ligament, and dental follicle specimens
(Gronthos et al., 2000; Miura et al., 2003; Seo et al., 2004; Jo et al.,
2007; Sonoyama et al., 2008). The prominent presence of hDSCs
in oral tissues provokes intriguing questions regarding whether
P. gingivalis is able to interact with stem cells in tissues and, if
so, what subsequent effects should be expected. The effect of the
outer membrane component LPS of P. gingivalis on stem cells in
regard to cell proliferation, viability, differentiating capacity, and
immunomodulatory characteristics has been evaluated (Mysak
et al., 2014; Chatzivasileiou et al., 2015; How et al., 2016), though
the interaction of viable bacteria with stem cells remains poorly
defined. Kriebel et al. (2013) demonstrated that stem cells and
oral bacteria can be co-cultured under anaerobic conditions. In
their system, oral microorganisms were less able to adhere to

or internalize into human bone marrow stem cells (hBMSCs)
in relation to gingival epithelial cells (Kriebel et al., 2013).
Thereafter, additional studies revealed that human dental follicle
stem cells (hDFSCs) elicit a reduced pro-inflammatory response
following bacterial infection, as compared to differentiated cells
(Biedermann et al., 2014). Furthermore, Kriebel et al. (2013)
and Biedermann et al. (2014) showed that stem cell functions
were influenced by oral bacteria in vitro, while Hieke et al.
(2016) found that infection with viable bacteria induced distinct
reactions by stem cells that were different from reactions to
a single administration of LPS (Hieke et al., 2016). Thus,
infected stem cells showed a reduced capacity for migration,
though that finding is inconsistent with another study that
demonstrated increased migration following stimulation with
LPS (Chatzivasileiou et al., 2013). As compared with the analyses
with LPS stimulation alone, data obtained in experiments with
viable bacteria remain controversial. Additional studies are
required to evaluate the reaction of stem cells to bacterial
infection in human tissues.

Fibroblasts, the most predominant cell type in periodontal
tissue, play important roles in tissue regeneration and PD-
associated inflammation. They express TLRs, including TLR2
and 4 (Mahanonda et al., 2007), thus are considered to be
involved in immune reactions to oral bacteria. The effects of
P. gingivalis LPS on fibroblasts have been examined in regard
to cell viability, immune response, and tissue repair, as well
as the effects of cell signaling on those factors (Souza et al.,
2010; Morandini et al., 2013; Sun et al., 2016). Furthermore,
interactions of P. gingivalis with gingival fibroblasts have also
been investigated, with the effects of immune modulating
bacterial factors, the capsule, and gingipains, together with LPS,
noted (O’Brien-Simpson et al., 2009; Brunner et al., 2010; Scheres
and Crielaard, 2013). P. gingivalis can adhere to and invade
human fibroblasts (Pathirana et al., 2008; Irshad et al., 2012;
Zhang et al., 2014), and such bacterial infection induces secretion
of pro-inflammatory mediators, including IL-6 and IL-8, via TLR-
dependent and -independent pathways (Liu et al., 2014; Palm
et al., 2015). In addition, P. gingivalis infection induces caspase-
independent apoptosis as well as regulation of the inflammasome
activation (Desta and Graves, 2007; Kuo et al., 2016). Such diverse
responses of the infected fibroblasts affect biological functions
and differentiation of other cell types, implicating their regulatory
role in progression of periodontitis and consequent chronic
inflammation (Zhang et al., 2014; Tzach-Nahman et al., 2017).

Influence of P. gingivalis Infection on
Immune System
The dental pocket is constantly exposed to oral microorganisms
and innate immunity components permanently interact with
bacteria. During inflammation, various cell types, including
neutrophils and macrophages, migrate to the site of infection,
with the former the first line of defense against invading
microorganisms. In addition to phagocytosis, exocytosis of
granules, release of reactive oxygen species (ROS), and induction
of neutrophil extracellular traps (NETs) serve as anti-microbial
factors (Segal, 2005). Interestingly, P. gingivalis is able to
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modify neutrophil activity in a manner that promotes neutrophil
survival. It has also been shown that prolongation of neutrophil
survival caused by P. gingivalis results in accumulation of
neutrophils in adult patients with PD (Gamonal et al., 2003),
while later it was reported that neutrophils isolated from
the blood of chronic PD patients were highly reactive to
stimulation by P. gingivalis LPS, with increased release of the pro-
inflammatory cytokine IL-8 (Restaino et al., 2007). Furthermore,
neutrophils from patients with localized aggressive PD produce
higher levels of ROS against P. gingivalis, as compared with those
from healthy donors, and release of ROS results in secretion
of pro-inflammatory cytokines, which can be advantageous to
counteract the increased burden of P. gingivalis (Damgaard et al.,
2016). As a strategy for escape from the host immune system,
it has been shown that P. gingivalis has an ability to invade
epithelial cells. Moreover, triggering of an immune response can
be beneficial for colonizing deeper tissues of the host (Li et al.,
2008). The working group of Hajishengallis noted that direct
interaction of P. gingivalis with PMNs resulted in modulation of
the neutrophil killing function via MyD88, an adaptor protein of
TLR2 and TLR4 receptors (Hajishengallis et al., 2008; Maekawa
et al., 2014).

Macrophage functions are also modulated by P. gingivalis.
Macrophage migration-inhibitory factor (MIF) is involved in
killing of bacteria by recruitment and activation of macrophages.
Li et al. (2013) demonstrated that P. gingivalis is able to reduce
the expression of MIF mRNA in deep-pocket tissues (Li et al.,
2013). Furthermore, in vitro experiments demonstrated that
treatment of macrophages with the lysine-specific gingipain Kgp
impaired its migration to apoptotic neutrophils and reduced
the anti-inflammatory effect of apoptotic cells, resulting a rapid
inflammatory response, leading the authors to suggest that
P. gingivalis promotes chronic inflammation by a gingipain-
mediated defect in apoptotic cell clearance and resolution of
tissue restoration (Castro et al., 2017).

Following infection of epithelial cells and fibroblasts,
P. gingivalis can also indirectly modulate immune cell functions.
In vitro experiments showed that P. gingivalis infection of
oral epithelial cells inhibits neutrophil migration (Madianos
et al., 1997). Also, exposure of live P. gingivalis strain W83
to fibroblasts from periodontal ligaments in vitro induced a
reduction in expression of macrophage colony-stimulating factor
(Scheres et al., 2009). Those findings demonstrated that immune
cell functions are also indirectly influenced by P. gingivalis
infection, with bacterial secreted factors potentially a part of this
complex system.

Overviews regarding the interactions of various other oral
pathogenic bacteria with eukaryotic animal cells and cells from
human sources have been presented (Feng and Weinberg,
2006; Kebschull and Papapanou, 2011). In general, P. gingivalis
modifies antimicrobial host response and causes an imbalance
in immune responses, leading to prolongation of inflammatory
status and continuous damage against periodontal tissues.
General bacterial burden, variability of colonizing species, oral
hygiene, and other individual risk factors have further impact
on host immune response and the subsequent outcome of
periodontal disease.

POTENTIAL ASSOCIATION OF PD WITH
SYSTEMIC DISEASE

Specific oral pathobionts influence related systemic diseases,
such as atherosclerosis, infective endocarditis, diabetes, adverse
pregnancy outcome, respiratory diseases, and RA, with various
hypotheses based on epidemiological and experimental
data presented. First, these systemic diseases and PD share
common confounding factors, including lifestyle and/or
genetic predisposition, indicating the importance of common
host backgrounds. In addition, oral dysbiosis may cause
autoimmunity via immune response against oral microbiota
and subsequent molecular mimicry/autoantibody generation,
as reported in cases of RA, in which T cell subsets are shaped
toward pro-inflammatory cytokine-producing cells that drive
autoimmunity development (Hooper et al., 2012). Since
improved prognosis of patients with systemic diseases, such as
coronary heart disease and RA, has been demonstrated following
treatment for PD, a periodontal immune response and/or plaque
bacteria provide a link for the mutual relationship between
PD and those diseases (Montebugnoli et al., 2005; Al-Katma
et al., 2007; Ortiz et al., 2009). In the following sections, possible
relevance to the etiologies of PD and RA is discussed.

ASSOCIATION OF PD WITH RA

A reciprocal relationship between PD and RA has been reported
(de Pablo et al., 2009; Koziel et al., 2014), and is also implied by the
fact that early Assyrians 2,500 years prior treated rheumatism by
tooth extraction. Even though no reliable records regarding the
effect of that treatment exist, the concept of a mutual relationship
of chronic joint disease with PD has been noted. However, the
exact molecular and cellular mechanisms linking PD and RA
are only slowly being unraveled. Based on a review of recent
literature, reports supporting the various scenarios mentioned
above are introduced here.

Common Predisposing Factors of PD
and RA
The first factors linking RA and PD include lifestyle and genetic
predisposition as common confounders. Indeed, smoking and
aging have been identified as risk factors for both of those
diseases (Eriksson et al., 2016). As for a common genetic
predisposition, data presented thus far remain inconclusive.
While the strongest association for RA has been found among
alleles of the HLA-DRB1∗04 and ∗01 haplotype groups, which
carry a shared epitope, there is no significant association between
HLA class II antigens and PD (Stein et al., 2008). Findings
of an epidemiological study indicated that the hypomethylated
status of a single CpG in the IL-6 promoter region plays a
role in pathogenesis of RA and PD (Ishida et al., 2012). In an
investigation of cases with aggressive PD, a large candidate-gene
association study found no definite evidence for a genetic link of
PD with RA, while their results suggested that IRF5 and PRDM1
are shared susceptibility factors, both of which are involved in
interferon-β signaling, and also associated with systemic lupus
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erythematosus and inflammatory bowel disease (Schaefer et al.,
2014).

Oral Bacteria-Mediated Autoimmunity
Links PD and RA
The second scenario, which has gained enormous attention, is
oral dysbiosis as a prerequisite for pathogenic autoimmunity that
leads to the onset of RA. Notably, the presence of P. gingivalis
in PD lesions has been indicated as a link between both chronic
inflammatory diseases (Rosenstein et al., 2004; Mikuls et al., 2009,
2014; Bartold et al., 2010). It was initially speculated that bacterial
cell and/or toxin/metabolic byproducts can enter the systemic
circulation from a clinically asymptomatic localized lesion
containing pathogenic bacteria and spread to discrete anatomical
sites, thereby initiating disease (Kumar, 2017). However, neither
oral live bacteria nor their toxin/metabolic byproducts have been
detected in the focus of the rheumatoid joint, though P. gingivalis
DNA has been noted in synovial fluid (Reichert et al., 2013).
On the other hand, immunological sequelae associated with oral
pathobiont infection have gained considerable attention. These
are formations of antibodies against citrullinated peptide antigens
(ACPA) that precede the development of RA (Schellekens et al.,
1998) and a molecular mimicry of bacterial proteins against host
proteins, both of which raise autoantibodies.

Development of RA is attributable to production of ACPAs,
the presence of which serves as a potent diagnostic marker for
RA (Schellekens et al., 2000). Formation of ACPAs prior to RA
onset has been the focus of intense research for the past two
decades. While citrullination itself is a physiological process, the
formation of antibodies against citrullinated peptide antigens is
highly specific for RA (Schellekens et al., 1998). However, this
specificity remains enigmatic, and whether these antibodies play
an active role in the disease process or simply reflect an ongoing
immune response has not been fully elucidated. On the other
hand, the finding that citrullinated proteins accumulate in the
joint provides a basis for interpreting the pathological condition
in patients with RA. The pathology can be characterized as
dysregulated citrullination, followed by release of neo-epitopes
that breach immunological tolerance and trigger autoantibody
formation.

Biological Significance of Citrullination in
RA Onset
Citrullination is mediated by peptidylarginine deaminase
(PAD) enzymes. In humans, there are five different isotypes,
PAD1-4, and PAD6, which exhibit a roughly 50–55% sequence
similarity, and show distinct distributions in cells and tissues
(Vossenaar et al., 2003; Zhang et al., 2004; Bicker and Thompson,
2013). Citrullination is the post-translational hydrolytic
conversion of peptidyl-arginine into peptidyl-citrulline via
deamination, a process that renders a reduction in the
net positive charges of a given protein, thereby leading to
increased hydrophobicity, protein unfolding, and altered
intra- and inter-molecular interactions (Darrah et al., 2013).
Physiologically, citrullination impacts gene regulation, terminal
differentiation, and apoptosis, thus dysregulated citrullination

is associated with numerous disorders, including autoimmune
and neurodegenerative diseases (Witalison et al., 2015). PAD
activity under a physiological condition is regulated by calcium
concentration and a reducing environment (Arita et al., 2004).
While full PAD activity in vitro requires millimolar amounts of
calcium ion, intracellular nanomolar concentrations are likely to
limit aberrant citrullination. Likewise, the oxidizing nature of the
extracellular environment may provide protection from aberrant
extracellular citrullination by PADs that may leak from activated
or dying cells (Darrah et al., 2013). Of note, the citrullinome
in RA is comprised of cytoplasmic and extracellular proteins,
suggesting that both compartments are prone to dysregulated
PAD activity. The major cell type for intracellular protein
citrullination in the RA joint is represented by neutrophils,
which are also the major source for soluble PAD2 and PAD4
released into synovial fluid (Romero et al., 2013; Spengler et al.,
2015; Konig and Andrade, 2016). An important question then
is what triggers hyper-citrullination in neutrophils? Among the
various stimuli that trigger neutrophil activation and death,
pore forming and membranolytic pathways that involve perforin
and the complement membrane attack complex have been
shown to induce intracellular calcium fluxes, a transient rise in
intracellular calcium concentration and subsequent intracellular
hyper-citrullination (Romero et al., 2013). Interestingly, the
ability to provoke calcium influx-induced hyper-citrullination
in neutrophils is definitely possessed by pore-forming immune
mechanisms of the host, though that is also shared by bacterial
calcium ionophores and pore-forming toxins (Konig et al.,
2016). Due to limited conditions required for enzymatic activity,
robust extracellular citrullination can only be maintained by
a constant release of soluble PADs from dying cells and the
presence of autoantibodies against PADs. Neutrophil NETosis
and necrosis, as well as autophagy also contribute to extracellular
hyper-citrullination via release of transiently active PAD enzymes
(Spengler et al., 2015). Recently, it was shown that the presence
of PAD3/PAD4 cross-reactive autoantibodies, which cause a
decrease in calcium concentration required for catalysis, is
associated with most erosive disease courses (Darrah et al.,
2013; Navarro-Millán et al., 2016). As a consequence of hyper-
citrullination, generation of neo-epitopes induced by changes in
protein antigenicity might raise autoantibodies. Autoantibodies
existing in synovial fluid opsonize target antigens and trigger
a complement cascade, thus maintaining the vicious cycles of
auto-inflammation and hyper-citrullination.

Potential Involvement of Oral
Pathobionts in ACP Generation
Bacterial toxins and enzymes have been reported to induce
citrullination of host proteins and release of PADs. The pore-
forming leukotoxin produced by Gram-negative Aggregatibacter
actinomycetemcomitans kills human neutrophils and induces
hyper-citrullination in neutrophils, thus contributing to
dysregulated citrullination (Konig et al., 2016). Likewise, as a
putative link between PD and RA, the pathobiont P. gingivalis
expresses a prokaryotic PAD (PPAD), which is thus far unique
among microorganisms. In contrast to human PADs, PPAD
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does not require calcium ion for its activity of citrullination of
C-terminal arginine residues (Rodriguez et al., 2009; McGraw
et al., 1999). Furthermore, while PADs are unable to catalyze
free L-citrulline, PPAD can citrullinate both free and peptide-
bound arginine (Abdullah et al., 2013). A cellular PPAD with
an approximate size of 75–85 kDa and a secreted PPAD sized
47 kDa have been described (Konig et al., 2014). PPAD is
extracellularly secreted or located in the outer membrane of
P. gingivalis together with virulence factors, arginine-specific
gingipains RgpA and RgpB, which cleave the carboxyl group
of arginine residue in their own target proteins. The cleaved
products exposing arginine residue at the carboxyl terminus
are prone to rapid citrullination by PPAD (Wegner et al., 2010;
Maresz et al., 2013).

Prokaryotic PAD also citrullinates human proteins, such as
fibrin, vimentin, epidermal growth factor (EGF), fibrinogen,
and α-enolase (McGraw et al., 1999; Mangat et al., 2010;
Wegner et al., 2010; Montgomery et al., 2016). Therefore, host
proteins modified by PPAD may function as antigens that
induce generation of ACPAs (Vossenaar and van Venrooij, 2004;
Moscarello et al., 2007; Nesse et al., 2012). As a consequence,
citrullination of EGF results in defects in cell-cycle modulation.
Since EGF activates cell proliferation, migration, repair, and
regeneration of gingival epithelial cells, its citrullination hampers
regeneration of damaged tissue. As a result, modification of
human proteins mediated by PPAD likely induces a biological
shift in the local environment (Pyrc et al., 2013). Also, PPAD may
be important for interactions of P. gingivalis with eukaryotic cells,
including neutrophils, macrophages, and epithelial cells (Quirke
et al., 2014). Additionally, it has been shown that monocytes
and macrophages exposed to viable P. gingivalis had increased
extracellular citrullination levels, while the endogenous PAD level
is not affected (Marchant et al., 2013). Bielecka et al. (2014)
also showed that PPAD citrullinates the C-terminal arginine
residue of the chemoattractant complement factor C5a, resulting
in decreased chemotaxis of human neutrophils and release of
pro-inflammatory cytokines from immune cells (Bielecka et al.,
2014). However, the extent to which PPAD enzymatic activity
affects the functions of oral host cells, including immune cells,
remains elusive. As a consequence of citrullination of bacterial
proteins, auto-citrullination of PPAD and antibodies against
gingipains can be detected in both PD patients and healthy
individuals. On the other hand, antibodies against citrullinated
PPAD are specific to RA, suggesting that citrullinated PPAD is
a member of early induced proteins that contribute to ACPA
generation.

In the context of mechanisms that induce antibody cross-
reactivity, P. gingivalis can citrullinate its own α-enolase, which
shares an 82% sequence homology with human α-enolase,
a finding that provides a convincing argument in terms of
epitope spreading and molecular mimicry (Lundberg et al., 2008).
Therefore, PD patients colonized with P. gingivalis might produce
antibodies against citrullinated bacterial proteins homologous to
human proteins and this molecular mimicry of the antigen may
elicit an immune response to human tissues. Similarly, PPAD
citrullination of host proteins allows for neo-epitope formation
that triggers autoimmune responses.

In Vivo Evaluations of PPAD Functions
Connecting PD and RA
Due to diverse factors that influence PD and RA, animal models
have been utilized to detect a causal relationship between those
diseases. Kinloch et al. (2011) demonstrated that citrullinated
enolase induces experimental arthritis, and showed that enolase
citrullinated by human PAD or P. gingivalis PPAD induces
autoantibody production in DR4-IE-transgenic mice (Kinloch
et al., 2011). Utilizing a collagen-induced arthritis (CIA) mouse
model, Maresz et al. (2013) demonstrated that the ability of
P. gingivalis strain W83 to augment CIA was dependent on PPAD
activity. Moreover, infection with the wild-type strain, but not
its PPAD-null mutant, induced elevated levels of autoantibodies
to collagen type II (Maresz et al., 2013). These in vivo results
emphasize the importance of PPAD as a potential virulence factor
of P. gingivalis and a key component connecting PD and RA.

Relevance of ACPAs in Pathogenesis
of RA
Recent findings have demonstrated that osteoclasts express PAD
enzymes at all stages of their development, while detectable
citrullinated proteins have also been detected on their cell
surface (Harre et al., 2012; Krishnamurthy et al., 2016).
ACPAs can therefore bind to osteoclast precursors and induce
expression of IL-8, which acts as an autocrine growth factor
and drives differentiation into mature bone-resorbing osteoclasts
(Kopesky et al., 2014). While those findings account for bone-
resorption mechanisms to some extent, they are clearly not
sufficient to induce chronic synovial inflammation (Catrina
et al., 2017). Indeed, animal models have shown that a single
ACPA administration does not induce arthritis. However, if
mild synovial inflammation already exists, severe joint disease
reminiscent of human RA has been found to develop in the
presence of ACPAs (Sohn et al., 2015). These findings suggest
that ACPAs are important but not alone sufficient for inducing
chronic inflammation, though they apparently play an active role
in the disease processes leading to RA.

SUMMARY

Oral pathobionts are constituents of a complex ecosystem and
provide a mutually trophic metabolism together in a state of
equilibrium with host factors and the immune system. Dental
biofilms in each anatomical site are characterized by a distinct
composition of bacterial species. A continuous existence of
periodontal biofilm exacerbates host inflammatory response
and drives a shift in the periodontal microbiome, which leads
to onset of PD. As a red complex member, P. gingivalis
affects the functions of various host cells and manipulates
antimicrobial host response, thereby posing dysbiosis and
prolongation of an inflammatory status along with periodontal
tissue damage. Furthermore, recent findings indicate that
particular periodontal pathobionts, such as P. gingivalis, have
an exacerbating role for generation of ACPAs, which has been
confirmed by epidemiological data showing an interrelationship
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between PD and RA. ACPAs activate immune response,
including complement activation, and thus facilitate local hyper-
citrullination, while they also activate osteoclasts to absorb bone
and provide the basis for RA development. Imbalances in the
oral microbiome shape the pro-inflammatory axis of the cytokine
network, which offers a broad framework to comprehend
the pathogeneses of autoimmunity and chronic inflammatory
diseases (Hooper et al., 2012). However, the exact mechanisms
by which oral pathobionts have effects on both the cytokine
network and autoimmunity remain obscure. Further research
is needed to evaluate the involvement of genetic/environmental
susceptibility factors, citrullination, and cytokine networks in
the reciprocal relationship of PD and RA. As shown in this
review, it is currently not possible to finally conclude if
oral pathobionts like P. gingivalis can simply be classified as
bystander microbiota or if they are disease initiators, with the
consequence that perhaps early prophylactic treatment could
prevent systemic and chronic diseases, such as atherosclerosis,
infective endocarditis, diabetes, adverse pregnancy outcome,
respiratory diseases, and RA.
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