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Abstract

Oxidative stress is a common feature of inflammation-driven cancers, and it promotes genomic instability and aggressive tumour
phenotypes. It is known that oxidative stress transiently modulates gene expression through the oxidation of transcription factors
and associated regulatory proteins. Neutrophils are our most abundant white blood cells and accumulate at sites of infection and
inflammation. Activated neutrophils produce hypochlorous acid and chloramines, which can disrupt DNA methylation by oxidizing
methionine. The goal of the current study was to determine whether chloramine exposure results in sequence-specific modifications
in DNA methylation that enable long-term alterations in transcriptional output. Proliferating Jurkat T-lymphoma cells were exposed
to sublethal doses of glycine chloramine and differential methylation patterns were compared using Illumina EPIC 850 K bead chip
arrays. There was a substantial genome-wide decrease in methylation 4 h after exposure that correlated with altered RNA expression
for 24 and 48 h, indicating sustained impacts on exposed cells. A large proportion of the most significant differentially methylated CpG
sites were situated towards chromosomal ends, suggesting that these regions are most susceptible to inhibition of maintenance DNA
methylation. This may contribute to epigenetic instability of chromosomal ends in rapidly dividing cells, with potential implications
for the regulation of telomere length and cellular longevity.

Introduction
The functional relationship between inflammation and cancer
is widely accepted, however, the molecular and cellular mech-
anisms that contribute towards this relationship remain poorly
defined. During pathogenic invasion, enhanced cell proliferation
occurs in an environment of increased inflammation, and a state
of chronic inflammation increases the risk of cancer (1). Pro-
liferating cells that are exposed to an inflammatory microen-
vironment may develop genetic or epigenetic changes that are
propagated in subsequent cell generations, even after inflamma-
tion subsides. DNA methylation patterns are often modified in
human cancers resulting in the silencing of tumour suppressor
genes and/or the activation of oncogenes (2). In an attempt to
gain insight into how the environment may influence disease
outcomes, many studies investigate how exposure to environmen-
tal factors can change patterns of DNA methylation (3–6). How-
ever, few studies have investigated the mechanisms behind the
modification of DNA methylation and how these changes become
established in the methylome. Many of the environmental factors
associated with epigenetic patterning, including inflammation,
are also recognized as risk factors in cancer (7).

Neutrophils are a rich source of oxidants and excessive or pro-
longed oxidant production can lead to tissue damage and chronic
disease states (8). There is now considerable evidence to implicate

neutrophils in all stages of neoplastic disease progression, from
initiation through to malignancy (9). Neutrophil oxidants can
directly damage DNA leading to mutation; they can activate key
enzymes and transcription factors pivotal for tumour growth and
repress anti-cancer T-lymphocytes (10–13). While oxidants have
been shown to interfere with T-lymphocyte functional properties
during inflammation, less is known about their potential to dis-
rupt the metabolic pathways essential for maintaining epigenetic
fidelity in these cells (14). One study has shown that methylation
of histone H3 (H3K79me2) in T-lymphocytes could be modified
due to the depletion of methionine by tumour cells, leading to
changes in gene expression and function. (15). Similarly, in an
inflammatory environment, there is potential for neutrophil oxi-
dants to oxidize methionine to methionine sulfoxide, restricting
the availability of methionine not only to T-lymphocytes but
also to tumour cells. Altered methionine levels can impact on
DNA methylation machinery and conserved changes in methy-
lation and subsequent gene expression could contribute to the
transformed phenotypes observed in both these cell types as a
consequence of neutrophil exposure.

Hypochlorous acid (HOCl), a major oxidant produced by the
neutrophil enzyme myeloperoxidase (MPO), reacts with endoge-
nous amines to yield chloramines (16). These species are cell
permeable, longer lived and more selective in their reactivity
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Figure 1. Experimental design. Jurkat cells were arrested in S phase of the cell cycle by using a thymidine block (n = 3 independent experiments). (1)
Cells were released from the block and split into treatment or control flasks. (2) The treatment flask immediately received 200 μm GlyCl and the control
received the volumetric equivalent of PBS (Time 0). (3) DNA extracted from cell lysates from samples taken at the 4 and 72 h time points was bisulfite
converted and used for analysis of DNA methylation. RNA extracted from cell lysates taken at the 4, 24 and 48 h time points was used for RNAseq
analysis. Cell count, proliferation and viability were assessed at each major time point. In a separate set of experiments (n = 4), the treatment flask
received 200 μm GlyCl and the control received the volumetric equivalent of PBS at 2 h after release from the thymidine block (step 2). RNA was not
analyzed for this dataset. Figure created with Biorender.com

than HOCl (17). Chloramines react readily with thiol groups and
free methionine and cause cell damage and enzyme inactivation
(18–20). We have previously observed that glycine chloramine
(GlyCl) directly inhibits DNA methyltransferase 1 (DNMT1) activ-
ity and oxidizes methionine, leading to depletion of the methyl
donor, S-adenosylmethionine (SAM) (19). This resulted in a global
decrease in the maintenance of 5-methylcytosine in proliferating
cells without significantly impacting cell viability (19). Through
the use of Illumina850K EPIC arrays, we have now discovered
that oxidative stress associated with GlyCl exposure causes site-
specific alterations in DNA methylation and subsequent gene
expression, and that the affected regions are enriched towards
chromosomal ends.

Results
We investigated DNA methylation and gene expression changes
in cultured Jurkat T-lymphoma cells following exposure to GlyCl.
Since GlyCl is quickly consumed by cell and media thiols and
methionine, and it acts to impair maintenance methylation dur-
ing new DNA synthesis, cells were synchronized with a thymidine
block to maximize the number undergoing DNA synthesis at the
time of oxidant exposure (Fig. 1). Thymidine halts cell division
at the G0/G1 phase of the cell cycle, and we have previously
demonstrated that a large proportion of cells enter S-phase 2 h
after release from thymidine block (21). We therefore exposed
cells to GlyCl immediately after the thymidine was removed.

Glycine chloramine sensitivity and cell
proliferation
Jurkat cells were treated with either a single bolus of 200 μM GlyCl
(treatment) or left untreated (control). Exposure to GlyCl corre-
sponded with a significant decrease in both percentage growth at
24 and 48 h (P = 0.02 and 0.01) (Fig. 2A), and a small decrease in

cellular viability at 24, 48 and 72 h (P = 0.02, P= 0.01 and P = 0.03,
respectively) (Fig. 2B). The synchronization process itself resulted
in a ∼ 20% loss in cell viability (Fig. 2B) (22).

Cell proliferation was monitored with the cell permeable
fluorescent dye carboxyfluorescein diacetate succinimidyl ester
(CFSE) over 72 h for the control and treatment samples, with
fluorescence intensity halving at each cell division. GlyCl
treatment delayed cellular proliferation by an average of 7%
compared to control 24 h post-treatment and sustained this
delay with ∼ 20% fewer cells undergoing proliferation compared
to control at 48 and 72 h (Fig. 2C). However, the treated cells
at 72 h had the same concentration of CFSE as the control
cells at 48 h (Fig. 2D). These observations are consistent with
the percentage growth rate (Fig. 1A), and we conclude that
after oxidant treatment a large number of viable cells that had
undergone at least one round of cell division remained.

Glycine chloramine alters DNA methylation
Principal component and hierarchical clustering analysis demon-
strated that the 4 h treatment replicates clustered separately from
all the other groups (Fig. 3A and B). This indicates that treatment
corresponded with the most significant source of variation, and
that consistent changes were observed within these samples.

At 4 h, the largest and most significant fold changes were
decreases in methylation in the treatment group, compared to the
control (Fig. 4A). Both the effect size and significance were consid-
erably reduced at 72 h, with very few probes achieving genome-
wide significance (Fig. 4B). These results indicated that the major-
ity of significant changes in DNA methylation due to GlyCl treat-
ment observed at 4 h had reverted by 72 h (Fig. 4A and B).

Our previous mechanistic studies indicated that chloramines
affect methylation through depletion of SAM over 2 h (19). To
determine if GlyCl can impact methylation by an alternate
mechanism, we first performed a set of control experiments
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Figure 2. Viability, growth and CFSE dilution of GlyCl treated cells at each major time point. Cell measures were conducted at 24, 48 and 72 h post-release.
Circles represent control samples and triangles represent treatment samples. Data are means and SE of three independent experiments. Significant
differences were determined with paired t-tests and are denoted with asterisks ∗ = P < 0.05, ∗∗ = P < 0.01. (A) Cell growth after treatment, (B) cellular
viability after treatment, (C) relative proliferation of treatment cells compared to control. The percentage of total treated cells within the same gate as
the control cells at each time point as a percent of all analyzed cells (n = 3). (D) CFSE dilution of GlyCl treated cells at 24, 48 and 72 h post-release. The
number of cells is displayed on the y-axis and the concentration of CFSE fluorescence is on the x-axis. Representative cell histograms are shown for
control (black) and treated (red) cells. The grey histograms represent the control cells from the 4 h time point for reference.

where thymidine blocked Jurkat cells were exposed to 200 μM
GlyCl at 2 h post-release and methylation patterns assessed 2 h
later. This differed from the main experiments (presented below)
where treatment occurred at the time of cellular release (2 h
earlier than the control experiments). Under the conditions in
the control experiments, the cells would have sufficient SAM

to undertake the necessary maintenance methylation, but it
provides an opportunity for the oxidant to impact DNA methy-
lation through an alternate mechanism (21). As expected, there
was no significant difference in percentage growth or viability
observed in the treatment cells at 24 or 72 h; however, a significant
decrease in percentage growth was observed at 48 h (P = 0.03)
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Figure 3. Unsupervized assessment of data variability. (A) Multidimensional scaling of M-values, with the distances for leading log2FC in dimension 1
represented on the x-axis and the leading log2FC in dimension 2 are represented on the y-axis. Red and blue dots represent control samples (4 h and
72 h time points respectively), green and purple dots represent GlyCl treated samples (4 h and 72 h time points, respectively). (B) Hierarchical clustering
of β-values for all probes. The relative change in β-values is represented on the y-axis and individual samples are represented on the x-axis.

Figure 4. Volcano plots. Volcano plots displaying log2 fold changes (M-values) for all probes on the x-axis versus statistical significance on the y-axis
-log10 P-value. A log2 fold change cut-off of 1.5 is applied for the 4 h time point; however, this was not applied at the 72 h time point due to the smaller
effect size. Black dots represent probes with an adj. P < 0.05. (A) GlyCl exposure at 4 h (log2 FC > 1.5), (B) GlyCl exposure at 72 h.

(Supplementary Material, Fig. S1A and B). There were no distinc-
tive groupings observed in principal component analysis and
hierarchical clustering analysis revealed a lack of clustering in the
treatment or control samples and groupings appeared random
between replicates (Supplementary Material, Fig. S2A and B).
Probe-wise comparisons of significance versus effect size change
confirmed that GlyCl treatment at 2 h post-release from
thymidine block did not correspond with significant changes in
DNA methylation at either 4 or 72 h (Supplementary Material,
Fig. S3A and B and Supplementary Material, Tables S1 and S2). No
further analyses were undertaken with this dataset.

Glycine chloramine causes site-specific changes
in DNA methylation
Epigenetic variability across a population of cells can result in
transcriptional heterogeneity and promote diverse functional
states (23,24). We therefore investigated the differential variability
of all probes (DVP) after GlyCl exposure. At 4 h, the treatment
group demonstrated an increase in differential variability at 5910
positions compared to control, and a decrease at 13 769 positions.
At 72 h, 1892 positions demonstrated an increase and 2743
demonstrated a decrease. Twenty-three DVPs were observed at
both 4 and 72 h; however, only 6 of these DVPs (26%) demonstrated
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Figure 5. Genome-wide circular plot of all CpG sites. All CpG sites are
ordered per chromosome position, and P-values as the log10 (P values) are
presented on the y-axis. Positions that reached genome-wide significance
as determined using the ‘Benjamini-Hochberg’ method within Limma are
represented by the red squares. The 4 h time point is represented in the
outer ring and the 72 h time point is represented on the inner ring. The
bands in the outermost ring show the position of the centromere (red)
and the states of chromatin packing (black representing the most densely
packed chromatin through to light grey representing more loosely packed
chromatin).

a consistent direction of change between the two time points
(Supplementary Material, Table S3).

We next identified site-specific DNA methylation changes that
were associated with GlyCl exposure, by using a linear regression
model that accounted for time and biological replicate. At 4 h,
using a log2FC cut-off of 1.5, there were 2824 CpG sites that
displayed a significant decrease in methylation and 144 that
demonstrated an increase. These DNA methylation changes were
mapped by genomic location, and it appeared that many signifi-
cant changes were concentrated at specific gene loci (Fig. 5), and
towards the chromosomal ends (Supplementary Material, Fig. S4).
In order to select the DNA methylation changes that were most
likely to be of biological interest, the log2FC was increased to 2.
This returned 124 CpG sites that demonstrated decreased methy-
lation and no CpG sites that demonstrated an increase, which
indicates that the largest changes in differential methylation were
all decreases. A subset of the differentially expressed CpG sites
with the largest effect sizes are presented in Table 1 and a more
detailed list is presented in Supplementary Material, Fig. S5.

At 72 h, there were no significant CpG sites when assessed
using a using a log2FC cut-off of 1.5. However, six CpG sites
demonstrated a significant increase in differential methyla-
tion and four CpG sites demonstrated a significant decrease
(adj. P < 0.05), when assessed using a log2FC cut-off of 1
(Supplementary Material, Table 4). Two of these differentially
methylated CpG sites were also significant at 4 h. These CpG sites
corresponded to the ERC2 and the MLF1IP genes, and had a smaller
log2FC at 4 h than at 72 h. Furthermore, neither exhibited a consis-
tent direction of change (Supplementary Material, Fig. S6A and B).

To identify differentially methylated gene regions (DMRs),
we limited analysis to investigate loci containing five or more

consecutive probes that displayed a significant average change in
differential methylation greater than 10%. Eighty-five significant
DMRs were observed at 4 h, and 14 of these consisted of 10 or more
adjacent significant CpGs (Supplementary Material, Table S5).
The top two DMRs with the highest number of significant
adjacent CpGs mapped to the MAPK8IP3 gene region (18 CpGs)
(Fig. 6A) and the TFAP2E gene region (16 CpGs) (Fig. 6B). No
significant DMRs were observed at 72 h under these parameters.
When the parameters were relaxed to detect changes in
methylation greater than 5%, there were four significant DMRs
(Supplementary Material, Table S6); however, the direction of
methylation changes was opposing between the 4 and 72 h time
points.

The differentially methylated CpGs at 4 h appeared to be
concentrated towards the chromosomal ends (Supplementary
Material, Fig. S4). To investigate this observation, the data were
categorized in regions representing 10% bins for each chromo-
some. There was a considerable enrichment in the number of
significant probes (49%) that were located within 10% of the end
of the chromosomes, even after correction for probe bias (Fig. 7A).
This observation also corresponded with a substantial decrease
in the log2FC of significant probes towards the chromosomal
ends, indicative of a general loss of methylation (Fig. 7B). Using a
Wilcoxon rank sum test, with ‘Benjamini-Hochberg’ correction for
multiple testing there was a significant difference between both
the normalized log2FC values and the normalized count values of
the significant probes that occur at each proximal end of the chro-
mosome, compared against the other regions (P value < .00005).
Specifically, these proximal regions correspond to between 2 and
5 million base pairs (bp) from each chromosome end, and are
towards the outer limit of CpG sites that are included in the array.
The array does not include telomeric or the subtelomeric regions,
which are typically characterized as within 50 000 bp upstream
from the telomeric regions.

The majority of significant differentially methylated probes
(64%) occurred within gene bodies or the first exon, with a
substantial underrepresentation from non-transcribed gene
elements (Fig. 7C). There was no substantial enrichment in
significant probes that occurred in relation to CpG islands (data
not shown).

Gene expression change in response to GlyCl
We next used RNA sequencing to investigate the impact of GlyCl
exposure on differential gene expression in the same Jurkat
samples used in the DNA methylation analysis. The statistical
approach was consistent with that used to detect significant
differential methylation, where changes were contrasted between
the groups (treatment versus control), and the effect of biological
replicate was accounted for. Gene expression changes were
assessed at 4, 24 and 48 h; low RNA yield meant that there was
insufficient sample available for an accurate assessment at 72 h.

Hierarchical sample clustering and principal component anal-
ysis indicated that 4 and 24 h treatment samples were the most
distinct from all other groups (Supplementary Material, Fig. S7A
and B).

At 4 h, there were 277 genes upregulated in the treatment
group relative to the control group, and 203 genes downregulated,
and these exhibited a similar significance and magnitude of
change (Supplementary Material, Table S7). Genes that demon-
strated decreased expression were associated with 27 Gene
Ontology (GO) terms and two Kyoto Encyclopedia of Genes and
Genomes (KEGG) terms, after correction for multiple testing
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Table 1. Top most significant differentially methylated probes with a Log2FC ∼ 2 and a >20% mean change between treatment and
control at 4 h

logFC adj.P.val Direction Gene Chr Location

cg10553894 −1.80 <0.001 Down CPT1A 11 68 550 534
cg13782884a −1.83 <0.001 Down FAM46B 1 27 339 287
cg05372828a −1.82 <0.001 Down KCNAB2 1 6 111 632
cg16852704a −1.75 <0.001 Down TLX2 2 74 743 243
cg04946721 −2.20 0.01 Down ERN1 17 62 131 780
cg18862597 −2.04 0.01 Down CROCC 1 17 265 457
cg06830450 −1.96 0.01 Down LOC100130776;AGAP2 12 58 121 004
cg12873037 −1.84 0.02 Down C17orf56 17 79 205 369
cg19635533 −1.91 0.02 Down NACC1 19 13 249 050
cg17049621 −1.77 0.02 Down FZD2 17 42 635 778
cg21871608 −2.03 0.02 Down ITPK1 14 93 409 468
cg07149030 −1.90 0.02 Down ABR 17 982 503
cg02080909 −1.94 0.02 Down BAIAP2 17 79 058 333
cg23120934 −1.83 0.02 Down SCRIB 8 144 887 083
cg10692302 −2.01 0.02 Down GRM2 3 51 747 227
cg27182230 −4.67 0.02 Down ZFHX3 16 72 882 824
cg08130783 −2.08 0.02 Down TFAP2E 1 36 056 577
cg14899522 −1.98 0.02 Down PRKCQ 10 6 472 750
cg15474728 −1.93 0.02 Down ABR 17 982 497
cg04801085 −2.13 0.03 Down RCOR1 14 103 150 012
cg10068222 −1.59 0.03 Down 16 899 108
cg08925720 −2.00 0.03 Down SYT7 11 61 314 936
cg16699148 −2.33 0.03 Down TACSTD2 1 59 043 255
cg00015930 −2.22 0.03 Down 1 46 921 746
cg26924445 −1.62 0.04 Down ACRC X 70 824 102
cg15002761 −1.87 0.04 Down IGSF9B 11 133 816 097
cg09400123 −1.72 0.04 Down RUNDC2C 16 29 324 046
cg10040530 −2.09 0.04 Down 14 104 010 839
cg08298555 −2.17 0.05 Down CACNA1H 16 1 260 656

aCpG methylation validated using BSAS (Supplementary info).

(Supplementary Material, Table S8). However, genes demonstrat-
ing increased expression were not associated with any GO or
KEGG terms.

At 24 h, there was the largest number of significant dif-
ferentially expressed genes observed over the duration of the
experiment, with 2155 genes upregulated in the treatment group
relative to the control group, and 1902 genes downregulated.
The largest fold changes all corresponded with increased
expression, and the genes that showed decreased expression
generally corresponded with smaller P-values and had a lower
magnitude of change (Supplementary Material, Table S9). At
48 h, the magnitude of changes and number of significant
changes substantially reduced, with 121 genes upregulated
in the treatment group relative to the control group, and
61 genes downregulated (Supplementary Material, Table S10,
Supplementary Material, Fig. S8). Supplementary Material, Figure
S9 provides a summary of the overlap between differentially
expressed genes at each time point.

To investigate the relationship between DNA methylation
changes and gene expression after GlyCl treatment, the sig-
nificant DNA methylation changes (Log2FC > 1.5) observed at
4 h were correlated against significant changes in differential
gene expression (Log2FC > 1.5) at the subsequent time points. We
limited our analysis to only assess significant DNA methylation
sites that were located within the promoter regions of genes that
displayed significant differential expression.

In total, there were 47 133 probes that displayed significant
DNA methylation, and were located within gene promoter
regions. Of these, there were 560 differentially methylated

CpGs located within the promoter regions of 266 differentially
expressed genes at 4 h. A significant, negative correlation (adj.
P < 0.05) was observed between 69 CpGs and 48 unique genes
(Supplementary Material, Table S11).

There were 4751 differentially methylated CpGs from 4 h
located within the promoter regions of 2255 differentially
expressed genes at 24 h. A significant negative correlation (adj.
P < 0.05) was observed between 398 CpGs and gene expression
in 400 genes (Supplementary Material, Table S12). No significant
correlations were observed between methylation levels at 4 h
and gene expression at 48 h. A summary of correlations between
promoter DNA methylation and gene expression is presented in
Table 2.

There was no apparent bias of significantly correlated genes
towards specific genomic locations at 4 h (Fig. 8). However, when
the 4 h DNA methylation was correlated with the 24 h gene
expression levels, significant correlations were frequently clus-
tered together along the chromosome at adjacent gene regions,
for example, the cluster of HIST genes on 6p22.2. (Fig. 9).

Pathway analysis of DNA methylation regulated
gene expression changes
Pathway analysis was conducted with the top most significant
CpG sites that demonstrated decreased methylation at 4 h within
the KEGG and GO databases. Fifty-two significant KEGG path-
ways were identified that had a false discovery rate (FDR) < 0.05
and 13 significant GO pathways were identified for this dataset
(Supplementary Material, Table S13).
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Figure 6. Differentially methylated gene regions. (A) DMR corresponding to the MAPK8IP3 gene (chromosome 16:1813796–1818819, width:5024 bp) that
displayed a significant change in methylation (β-values (y-axis)) across 18 CpGs (x-axis) between the treatment (grey) and control (black) for the 4 h time
point. (B) DMR corresponding to TFAP2E gene (chromosome 1:36037583–36039885, width:2303 bp) that displayed a significant change in methylation
(β-values (y-axis)) across 16 CpGs (x-axis) between the treatment (grey) and control (black) for the 4 h time point. Gene structure is placed on top of each
graph, exons are shown as black bars and the transcriptional start site is marked by a red arrow. Differentially methylated regions were interrogated
within the Minfi package using the statistical package DMRcate (25). The CpGs cg15047582 (TFAP2E) and cg05208399 (MAPK) were validated using BSAS
(Supplementary Material, Material, File S2)

To investigate whether genes that demonstrated a significant
correlation between promoter methylation and gene expression
were enriched for similar biological function, these genes were
also assessed using GO and KEGG databases. There were 10 signif-
icant GO pathways associated with genes that demonstrated a sig-
nificant negative correlation between DNA methylation and gene
expression at 4 h and 53 genes that demonstrated a significant
negative correlation between DNA methylation at 4 h and gene

expression at 24 h (Supplementary Material, Table S14). Numer-
ous pathways from both time points represented DNA break
repair mechanisms. Interestingly, several of the top most sig-
nificant pathways are of direct relevance in the development and
progression of Alzheimer’s disease, including microtubule based
processes (26), extracellular vesicles (27), 3′,5′-cyclic-nucleotide
phosphodiesterase activity (28), cytokine stimulus (29), and
negative regulation of cell–cell adhesion (30). Other significant

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac232#supplementary-data
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Figure 7. Significant differentially methylated CpGs (log2FC > 1.5) plotted by genomic features. SSN was adapted from the LUMI pipeline to adjust for
the number of probes the binds per region, and the total number of probes. (A) The adjusted number of significant differentially methylated CpGs
plotted by percent of total chromosome length. The x-axis shows the distance from the start of all chromosomes as a percentage. The y-axis shows
the normalized number of CpGs that showed significant change. Black numbers represent the total number of probes that bind in each region, and
grey numbers represent the number of significant differentially methylated probes that bind in that region. (B) Adjusted values for the total log2 fold
change of the significant probes (as determined by Limma) per region, the log2 fold change was also adjusted by the number of probes that bind per
region and the total number of probes. (C) Significant differentially methylated CpGs plotted by gene element which included gene body, 5’untranslated
regions (UTR), 3’UTR, first exon, area from the transcriptional start site (TSS) to −200 nucleotides upstream of TSS, and the region between 200 and
1500 nucleotides upstream of TSS, multiple groups encompasses CpGs that are not unique to a single group. The y-axis shows the log2 of adjusted
probe counts. Black numbers represent the total number of probes that bind in each region, and grey numbers represent the number of significant
differentially methylated probes that bind in that region.

Table 2. Summary of correlations between promoter DNA methylation at 4 h and gene expression at the indicated time point

Time point Total number of
assessed probes a

Total number of
corresponding
genesb

Number of genes
showing significant
correlation c

Percent of genes
showing positive
correlation

Percent of genes
showing negative
correlation

4 h 560 266 83 41.5 58.9
24 h 4751 2255 787 63.9 37.7
48 h 251 106 0 0 0

aTotal number of probes that showed significant DNA methylation change, and were located within the promoter region of genes that showed a significant
change in gene expression. bTotal number of genes corresponding with the assessed probes. cTotal number of genes showing a significant pairwise sample
correlation between DNA methylation values and gene expression values (see Materials and Methods).
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Figure 8. Genome-wide alignment of significant methylation logFC and significant gene expression logFC at 4 h. DNA methylation is represented to the
left of the central chromosome and gene expression to the right of the chromosome. Blue peaks represent positive logFC (treatment versus control) and
yellow peaks represent negative logFC (treatment versus control). Data are presented as density of logFC over one million base pair windows. Dark grey
horizontal bars represent significant correlation between promoter methylation and gene expression changes. The bars within the chromosome show
the position of the centromere (red) and the states of chromatin packing (black representing the most densely packed chromatin through to light grey
representing more loosely packed chromatin).

pathways were involved in the development of various cancers,
and in acute inflammatory response pathways.

To further investigate what biological disease outcomes might
be influenced by the epigenetic regulation of gene expression
following GlyCl treatment, we assessed the significantly corre-
lated genes using WebGestalt (31) against the OMIM database.
This analysis confirmed that the regulation of several key
Alzheimer’s and cancer-related genes might be linked with the
corresponding methylation levels. There were also numerous
important genes involved in non-insulin-dependent (type II)
diabetes mellitus, a disease linked with inflammation (32)
(Supplementary Material, Table S15).

Discussion
Epigenetic modification of DNA is a means by which environ-
mental stimuli can modulate human gene activity, but the exact
mechanisms behind these processes remain unclear (33–35). We
investigated whether cellular proliferation in an inflammatory
environment can trigger epigenetic changes that lead to long-
term changes in gene expression, including propagation in
subsequent cell generations. By using methylation arrays, we

have shown that GlyCl exposure results in large genome-wide
decreases in methylation as well as increased heterogeneity of
methylation patterns in the cell population after completion of
DNA replication. This was associated with significant changes
in gene expression 24 and 48 h after oxidant exposure, and
while most of the significant methylation changes observed
were corrected during subsequent rounds of cell division,
some changes were conserved. The failure to restore correct
methylation patterns could lead to the propagation of these
aberrant patterns and subsequent alteration in cell function.
Furthermore, the chromosomal position of the most significant
differentially methylated CpG sites was concentrated in gene
bodies within 2–5 million base pairs of the chromosomal ends,
indicating that sequence-specific alterations in methylation can
occur through interference in a pathway that acts on molecular
methylation machinery.

At sites of infection and inflammation the heme enzyme MPO
generates HOCl, and its primary targets are most likely to be extra-
cellular methionine and amines (16,36). Resultant chloramines,
such as the GlyCl used in this study, will therefore be prominent
under physiological conditions. Their lower reactivity provides
them the opportunity to pass into neighbouring cells and alter cell

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac232#supplementary-data
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Figure 9. Genome-wide alignment of significant methylation logFC at 4 h and significant gene expression logFC at 24 h. DNA methylation is represented
to the left of the central chromosome and gene expression to the right of the chromosome. Blue peaks represent positive logFC (treatment versus control)
and yellow peaks represent negative logFC (treatment versus control). Data are presented as density of logFC over one million base pair windows. Dark
grey horizontal bars represent significant correlation between promoter methylation and gene expression changes. The bars within the chromosome
show the position of the centromere (red) and the states of chromatin packing (black representing the most densely packed chromatin through to light
grey representing more loosely packed chromatin).

function (18,36). It is well known that oxidants can impact gene
expression through direct oxidation of transcription factors and
associated regulatory proteins (37,38). HOCl exposure activates
several transcription factors in bacterial systems, resulting in the
upregulation of genes that protect the organism from oxidative
stress (39–42). Likewise in mammalian cells, HOCl-induced mod-
ified gene expression has been observed through its action on
stress-sensing transcription factors such as Nrf2 (NF-E2-related
factor 2) and NF-κB (nuclear factor kappa-light-chain-enhancer
of activated B cells), both through the oxidation of the regulatory
proteins Keap-1 and IκB (43–47). These changes are typically
transient, with thiol reduction occurring quickly after removal
of the oxidant. The epigenetic changes we have observed in our
study provide an alternate mechanism of redox regulation of gene
expression and one that will last substantially longer than that
achieved through direct effects of transcription factor activity.

GlyCl exposure prior to the cells entering into the stage of
DNA replication had a complex effect on 5-methylcytosine in
synchronized Jurkat cells. Large genome-wide changes in differ-
ential methylation and differential variability were observed at
4 h, and abnormal methylation was still detected at 72 h, after all

cells had undergone at least one round of cell division. We have
previously shown that GlyCl treatment depletes methionine and
SAM levels substantially 2 h after treatment, and anticipated that
exposure would be required prior to cellular DNA replication (19).
This was confirmed by our delayed GlyCl exposure experiment,
which demonstrated no significant changes in DNA methylation.
This exposure occurred at a time at which DNMT would be most
active and before SAM levels could become significantly depleted
by treatment. This suggests that the effect of GlyCl on SAM levels
is the critical driver of the methylation changes observed rather
than direct inhibition of DNMT activity.

The top most significant CpGs all demonstrated a decrease in
differential DNA methylation, with a substantial number of genes
involved in proliferation, tumour progression and cell death (48–
55). Pathway analysis reinforced this observation where enriched
pathways included vascular endothelial growth factor (VEGF)
signalling (86%), mitogen-activated protein kinases (MAPKs) (71%)
and apoptosis (67%). Two CpG sites corresponding to the ERC2 and
the MLF1IP genes demonstrated a significant change at both 4 and
72 h, but were not consistent in the direction of change, and also
had a smaller log2FC at 4 h than at 72 h. This may suggest that
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the most commonly occurring methylation changes (those with
the largest log2FC) are either detrimental to cell division and are
corrected by the cell or they trigger an apoptotic pathway and are
not represented at 72 h. However, changes that were more highly
represented (larger log2FC) at 72 h than at 4 h may be indicative
of cells that have acquired a reproductive advantage.

Many of the changes in methylation observed at 4 h were con-
sistent across relatively large numbers of adjacent CpGs mapped
to the same gene region. There were 18 adjacent CpGs that
demonstrated a significant decrease in methylation mapping to
the MAPK8IP3 gene. The MAPK8IP3 gene encodes the MAPK 8
interacting protein 3 also known as JNK/stress-activated pro-
tein kinase-associated protein 1 (JSAP1). MAPK8IP3 is a scaffold-
ing protein for the mitogen-activated protein kinase (MAPK)/c-
Jun N-terminal kinases (JNK). MAPKs are involved in a broad
range of signalling pathways including proliferation, differentia-
tion, autophagy and apoptosis which are pivotal for tumour inva-
siveness and progression (56). Oxidative stress has been shown to
modify MAPK pathways in other cell types and can either promote
a protective effect against oxidation (57,58) or trigger apoptosis
(59). It should be noted that because Jurkat cells are an acute T-
cell leukemia cell line they may be prone to developing changes
in cancer-related pathways. Jurkat cells have also undergone sub-
stantial genomic rearrangement, and may be more tolerant of
changes in DNA methylation than a primary cell (60).

Taken together, our results show that a single exposure of GlyCl
at the onset of replication had a significant initial impact on DNA
methylation at important genes that can either confer a survival
advantage or induce cell death. These enriched pathways were
not observed at the 72 h, indicating that the replenishment of
methionine/SAM levels allowed for restoration of methylation by
active DNMTs.

To investigate if the DNA methylation changes observed in
response to GlyCl treatment could regulate gene expression,
we sequenced RNA transcripts from matching cell aliquots. The
results demonstrated substantial changes in gene expression cor-
responding with GlyCl, which has not been previously reported.

There was a strong negative correlation observed between
probes demonstrating a significant change in promoter DNA
methylation at 4 h and gene expression at both 4 and 24 h.
These genes were highly concentrated within regions of open
chromatin, which is where the majority of DNA methylation
changes were observed. Unfaithful methylation in gene-rich areas
may have important implications for replication origin selection,
as epigenetic markers have been shown to favour open chromatin
structures (61,62). This analysis provides a preliminary list of
genes that are potential candidates for future research investi-
gating a role in immune-directed epigenetic gene regulation.

Pathway analysis indicated that some of the top most signif-
icant genes contribute towards aspects of cell division. Changes
in these genes should be interpreted with caution since GlyCl
appeared to stall cellular replication, and the treatment and con-
trol samples were no longer synchronized. At 48 h, both treatment
and control cells had settled into an equivalent asynchronous
state, but significant changes were still detectable, indicating that
cell cycle differences would not be the sole factor in altered gene
expression. GlyCl is also likely to have a detrimental effect on
genetic stability, as indicated by the significant upregulation of
gene pathways involved in DNA repair. Although this study was
carried out using only one cell type, the mechanism of inhibition
of methylation should be the same in all cells.

One of the most interesting findings of our study was the
observation that significant methylation changes were highly

concentrated towards the chromosomal ends. The precise mech-
anisms by which GlyCl targets methylation in these regions is
unclear, but we did not observe this effect for hydrogen peroxide
(21). We were limited by the scope of the bead chip array, which
does not cover telomeric and subtelomeric regions, but this pro-
vides an interesting avenue for further research. Regions close in
proximity to the telomeres have been shown to regulate telomere
length, impacting cell longevity and function (63). It is worth
noting that the TERT gene, responsible for maintaining telomere
length during replication, demonstrated a significant decrease in
gene expression 24 h after treatment. This effect demonstrated a
positive correlation with promoter methylation, and is consistent
with previous observations (64). Telomeres contain unmethylated
repetitive sequences found at the terminal ends of each chromo-
some that preserve the integrity of the chromosome by protecting
against chromosomal degradation, redundant DNA repair and
recombination or fusion events (65). While telomere shortening is
considered a by-product of somatic cell division, altered telomere
length is often observed in ageing and age-related pathologies,
particularly chronic inflammation and cancer (66–72). Increased
telomere length is a common characteristic of advanced can-
cer types that often have reactivated telomerases that repair
and lengthen end caps allowing for cellular immortality (73).
Numerous studies have reported associations between epigenetic
changes in CpG-rich subtelomeric regions and the regulation of
telomere length (74–78). Methylation of the TERT promoter plays
an integral role in activation of telomere maintenance machinery
in the context of human cancer, and has important clinical and
biological implications (79). This CpG was located in a CpG rich
region upstream of the TERT promotor, called TERT Hypermethy-
lated Oncological Region (THOR) (64). Methylation at this site has
been demonstrated to direct TERT expression, and has a unique
cancer specific signature (64).

Overall, this study indicates that immune cell-derived oxidants
can cause sequence-specific alterations in DNA methylation with
resulting changes in gene expression. These experiments were
performed by exposing cells to a single oxidant bolus. In a phys-
iological setting, cells would likely be subjected to repeated or
continuous oxidant exposure, and at sublethal doses, this is even
more likely to result in epigenetic changes that are inherited by
daughter cells through failure to reinstate methylation and gene
expression patterns after cell division. This provides a mechanis-
tic explanation for the epigenetic reprogramming that has been
reported in inflammation-associated diseases.

Materials and Methods
Study design
Treatment with GlyCl occurred immediately after release from the
cell cycle block. Growth rate was determined by live cell counts,
and flow cytometry was used to determine cell viability at 24, 48
and 72 h post-release. At 4 and 72 h post-release, 5 × 106 cells were
harvested and stored for DNA and RNA extractions. All harvested
cells underwent a slow centrifugation step (1000 × g for 5 min)
to avoid harvesting late apoptotic or dead cells. This procedure
was also performed with GlyCl treatment occurring 2 h after
release from cell cycle block. Independent biological replicates
were obtained by repeating the experiments on different days
with different oxidant preparations.

Cell culture procedure
Jurkat E6.1 human suspension T-cell lymphoma cells were
grown in RPMI 1640 medium supplemented with 10% v/v
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heat-inactivated FBS, 100 U/mL penicillin and 100 μg/mL
streptomycin at 37◦C in a humidified incubator with 5% CO2. Cell
concentrations were not permitted to exceed 1 × 106/mL and were
not seeded at concentrations below 2.5 × 105/mL. A log phase of
growth was maintained by subculturing the cells every 2 days.

Cell synchronization
Cell cycle arrest of Jurkat cells was performed by using an excess
of thymidine as previously described (19,80). Briefly, Jurkat cells
(1 × 106/mL) were treated with 1 mM thymidine for 18 h. Cells
were washed twice in phosphate buffered saline (PBS), and resus-
pended in fresh media supplemented with 50 μM cytidine to
promote progression out of G1 into S-phase. The cells were then
split into either a treatment or control flasks and the treatment
flask received a single bolus of 200 μM GlyCl while the control
received the volumetric equivalent of PBS.

Cell viability and proliferation
Cell viability was assessed using flow cytometry prior to thymi-
dine block (pre-block), immediately after release from block (post-
block) and at 4, 24, 48 and 72 h post-release. Growth rate was
determined by live cell counts at 24, 48 and 72 h post-release (cur-
rent day count—previous day count)/previous day count ×100.
The percentage of viable cells was assessed by the exclusion
of propidium iodide (PI). Cell cycle transitions were observed by
fixation with ice-cold 70% v/v ethanol and subsequent incuba-
tion with PI. At each major time point, cell proliferation profiles
were compared between treatment and control by labelling cells
with CFSE (Invitrogen, Auckland, New Zealand), as previously
described (80). The relative proliferation of the treatment cells
compared to controls was determined by gating around the CFSE
peaks of the control cells at each major time point and then
calculating the number of treatment cells as a percentage of all
treatment cells analyzed within the same gate.

Glycine chloramine preparation
GlyCl was prepared immediately before treatment by adding HOCl
dropwise to a 10 mM excess of glycine in an equivalent volume
of PBS while gently vortexing. The concentration of GlyCl was
determined using 5-thio-2-nitrobenzoic acid (TNB) by measuring
the change in absorbance at 412 nm, using the molar extinction
coefficient for TNB (14; 100 M−1 cm−1) and adjusting for the 1:2
stoichiometry of the reaction (GlyCl:TNB).

Sample preparation for methylation array
DNA was extracted from 5 × 106 Jurkat cells at 4 and 72 h time
points using the GeneJet genomic DNA purification kit (Thermo
Scientific, Finland) as per the manufacturer’s protocol for cul-
tured mammalian cells. Sodium bisulfite conversion on 1000 ng
of extracted DNA from the 4 and 72 h time points was performed
using Zymo Research EZ DNA Methylation Kit (Zymo Research,
Irvine, CA, USA) according to the manufacturer’s specifications
recommended for use on the Illumina Infinium MethylationEPIC
850 K array (Illumina, Inc., San Diego, CA, USA). Genome wide DNA
methylation profiles were assayed with the Illumina Infinium
MethylationEPIC 850 K kit, at the AgResearch Ltd (Invermay, New
Zealand). Analysis was performed on all samples in a single batch.

Data processing
Data analyses were performed using statistical software programs
and packages as previously described (21,81). R statistical pro-
gram (www.R-project.org) and Minfi and Limma Bioconductor

software packages were used for all statistical analyses. All pack-
ages, programs and workflows were based upon published scripts
(82,83). All datasets passed quality control and were normalized
using preprocessQuantile function within Minfi (84). However, one
control sample had an abnormal methylation profile, which was
likely due to low DNA quality and quantity. Inclusion of this
sample may have skewed the results and artificially inflated sta-
tistical significance. Therefore, this replicate was removed from
the analysis, and the data presented correspond to three repli-
cates. Probes that produced detection P-values > 0.05 for 1% or
more samples were considered unreliable and filtered out of
the dataset. Probes identified as having polymorphic hybridizing
potential and homology to common single nucleotide polymor-
phisms were also excluded (85). Probes were annotated using the
IlluminaHumanMethylationEPICmanifest (86) and genomic loca-
tions were converted to GRCh38 using the Bioconductor package
liftOver v.1.16.0. Multidimensional scaling of the top 1000 methy-
lation values was performed using pairwise distance method for
gene selection and hierarchical clustering was performed on a
‘minkowski’ distance matrix calculated using the β-values for all
probes, regardless of significance (83).

Validation of the MethylationEPIC 850 K array
using bisulfite-based amplicon sequencing
Bisulfite-based amplicon sequencing (BSAS) was utilized as an
alternative DNA methylation detection technique to validate CpG
sites detected using the EPIC array, utilizing the protocols pub-
lished by Nobel et al. (86). Six CpG sites were selected for validation,
based on their differential methylation status in the treatment
group compared to the control group. Four of these CpGs origini-
ated from the list of top differentially methylated CpGs at the 4
h time point, and two from the list of differentially methylated
regions. Three additional CpGs, which did not reach genome
wide sequence level using the EPIC array were also included in
the amplified target regions, bringing the total to nine CpGs,
across differing levels of significance. Primers were designed to
target regions of both methylated and non-methylated DNA, of an
approximate size of 250 bp. The 5′ end of each primer sequence
contained a 33 base pair sequence for Illumina barcoding during
high-throughput sequencing. The forward and reverse primers
were matched within 2 degrees (Celsius), for Tm which ranged
from 52◦C to 57◦C for all primers (Supplementary File 2). PCR
protocol for bisulfite converted DNA followed that described in
our previous publication (87).

PCR products were visualized by gel electrophoresis and puri-
fied using MagBio HighPrep™ PCR Clean-up System, according
to the manufacturer’s recommendations. DNA was eluted using
10 mM Tris pH 8.5 and quantified using the Qubit HS kit (Thermo
Fisher). Preparation of the sequence libraries and sequencing was
performed by Massey Genome Service (New Zealand), using the
Illumina MiSeq™.

Illumina MiSeq™ sequence reads were quality processed
by the service provider according to their internal protocols;
in brief, this included removal of PhiX genomic DNA using
Bowtie2, adapter removal using BBduk and trimming using
SolexaQA++. Sequences were further clipped using Trim Galore
(RRID:SCR_011847) (Version 0.6.5) and aligned to bisulfite
converted reference sequences using Bowtie2 (version 2.4.5). The
Bismark package (88) was then used to align individual reads to
their references sequence and produce counts for methylated
and unmethylated CpG sites for validation. The methylation
counts for each CpG were imported into R/minfi and combined
into a methylset data frame, and a coverage level greater than

www.R-project.org
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eight counts across unmethylated and methylated counts was
verified. Beta and methylation values were then calculated in
Minfi, according to the protocols for the EPIC array. An identical
statistical approach (general linear model, and adjustment for
multiple testing) was then performed on the BSAS values, as
with the EPIC array to detect differential methylation between
treatment and control samples at the two time points. Epic array
and BSAS beta values were visualized using a scatterplot with a
regression line for all samples, and for individual groups. A Bland
Altman analysis (89) was then used to visualize the agreement
between the two methods.

Data visualization and bioinformatic analysis of
DNA methylation
DVPs were identified using the DiffVar algorithm within the
missMethyl package (90,91). The methylation status of each
probe was calculated using normalized probe signals represented
as methylation values (M-values) and β-values. M-values were
generated within Minfi as the log2 ratio of the signal intensities of
methylated probe divided by the unmethylated probe. β-Values
(average DNA methylation level for each probe) were used for
data visualization and were generated by dividing the methylated
probe signal with the sum of the methylated and unmethylated
probe signals.

Differentially methylated positions that correlated with
treatment were identified using a linear regression model within
the Limma package, with adjustment for multiple testing. This
was calculated by comparing the methylation measurements
of the control samples with the treatment samples, for each of
the two time points (4 h post-release, and 72 h post-release).
Samples that originated from the same cell passage were treated
as a biological replicate, and the correlation coefficient between
these samples was incorporated into the statistical design
using Limma’s duppcorr function. The top most significant,
differentially methylated CpG positions were identified using
log fold change (logFC) weighted thresholds incorporated within
the statistical design. Adjustment for multiple correction was
performed using the ‘Benjamini-Hochberg’ (BH) method within
Limma (92). We prioritized significant results using filtering
criteria that excluded probes with less than 10% mean difference
in methylation between treatment and control samples, and
probes that had a mean methylation value less than 10% or
greater than 90% (in the control), as changes within the excluded
ranges are unlikely to be of biological significance.

Pathway analysis was performed by comparison with the KEGG
(93) database using the missmethyl R package, with correction for
probe bias. Differentially methylated regions were interrogated
within the Minfi package using the statistical package DMRcate
(25). A methylation differential cut-off of 10 was used, and unless
stated otherwise significance was determined using a FDR of 0.05
in conjunction with a P-value cut-off of 0.05.

Chromosomal probe position
To investigate where significant changes in DNA methylation
were localized on the chromosomes, the probe position was clas-
sified as a percentage of chromosome length. The top most sig-
nificant probes at the 4 h time point were determined as probes
that demonstrated log2FC > 1.5. This resulted in 2968 significant
differentially methylated probes. Each chromosome was divided
into 10 bins as a percentage of the total length and the number
of significant probes that were located in each bin was summed
across all chromosomes. Simple scaling normalization (SSN) was
adapted from the LUMI pipeline to control for probe bias (94).
This was applied as the total significant probe counts per region

divided by the ratio of the total probes per region divided by
total probes (809460). A similar method was applied to calculate
a normalized logFC. Here, the sum of the logFC for significant
probes in each region was divided by the ratio of the total probes
per region divided by the total probes (809460). This approach
normalized for the total number of probes on the array and the
number that bind in each bin.

RNA sequencing
Cell aliquots were pelleted and frozen at –80◦C for RNA extraction
using the NucleoSpin RNA plus kit (Macherey-Nagel, Duren, Ger-
many) according to the manufacturer’s recommendations. RNA
quality was checked using the Agilent RNA Screen Tape and
sequencing was outsourced to Custom Science (Auckland, New
Zealand) according to their protocol for LncRNA-seq. For shipping,
RNA was treated using the RNAstable Tube Kit (Biomatrica). Qual-
ity control and filtering of sequence data was performed by the
service provider according to their internal protocols. In brief, this
utilized cutadapt for adapter and low-quality read filtering from
the raw data (Pass Filter Data), removal of primers and adapters
sequences, removal of the end sequences with base quality less
than 20, removal of sequences with N content greater than 10%
and removal of reads with lengths less than 75 bp after filtering.
BWA (v. 0.7.12) (95) was also used to filter out host sequences
based on host genome sequence. Filtered fastq files were then
processed and aligned to the human reference genome (Gencode
release 29) based on the GRCh38.p12, using the STAR spliced
read aligner (v. 2.7.8a) (96), and a two-pass alignment mode. This
resulted in a mean of ∼ 22 million (+/− ∼ 5 million) uniquely
mapped read pairs per sample. A gene matrix was built from
the resulting Sam sorted, BAM files using GenomicAlignments (v.
1.26.0) (97) package in R (v. 4.0.3) and summarizeoverlaps within
edgeR (v. 3.32.1) (98) utilizing the ‘union’ mode for paired-end,
stranded sequencing. This was performed by making a gene level
transcription database against the same gencode v. 29 annotation
gene transfer file used for alignments. Filtering was performed by
filterByExpr within edgeR and resulted in 20 374 genes retained for
further analysis. An average of 29 million (range: 23–31 million)
read pairs were successfully assigned in each sample. Differen-
tially expressed genes were called using DESeq2 package (v. 1.30.1)
(99) with adjusted P-value cut-off of 0.05, and an internal log2FC
of 0.2. The statistical model used to detect differential expression
was consistent with the approach used for identifying differential
methylation, where data was grouped by time and treatment. The
effect of biological replicate was incorporated into the statistical
model as a covariate, and differentially expressed genes were then
identified by contrasting samples for each time point.

Gene set enrichment analyses for the DEGs at each time point
were performed using goseq v. 1.44. This approach is significantly
more stringent due to the ability to correct for gene length
bias, and significance adjustment for multiple testing (100). GO
categories with fewer than five genes in the final GO ranking
list were excluded (101), with GO and KEGG annotation drawn
from the org.Hs.eg.db v. 3.10.0 database (102). The web-based
bioinformatic platform WebGestalt (31) was used to assess the
potential overrepresentation of significant results with biological
disease, within the Online Mendelian Inheritance in Man (OMIM)
database (103).

Integrative analysis of DNA methylation and
gene expression
To identify which significant promoter DNA methylation changes
associated with significant gene expression changes, correlative

http://org.Hs.eg
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analysis of the DNA methylation and RNAseq data was car-
ried out. The significant effect of GlyCl treatment was already
determined for the gene expression and methylation data in
the respective analyses; therefore, the correlation was performed
on all paired samples, regardless of condition. The correlation
was performed using methylation values (M-values) of significant
CpGs against gene expression data, which was transformed and
normalized using the DESeq2 ‘regularized log’ transformation.
The significant methylation probes were selected if they had an
adjusted P-value less than 0.05 and absolute log2FC greater than
1.5 from the 4 h comparison of DNA methylation. They were
further filtered for those that occurred within regions 2000 bp
upstream and 400 bp downstream of the transcription start site.
The Pearson correlation (r) was calculated between the paired
samples for methylation and RNA sequencing data for pairwise
observations. Significance adjustment for multiple testing was
determined using the ‘BH’ method. The significant methylation
probes were selected if they had an adjusted P-value less than
0.05 and absolute log2FC greater than 1.5 from the 4 h comparison
of DNA methylation. They were further filtered to those that
occurred within regions 2000 bp upstream and 400 bp down-
stream of the transcription start site using the GenomicFeatures
package v. 1.44.2 (97). Genomic locations were then converted
using LiftOver, and methylation sites were annotated by location
using the same gene transcription file previously used for RNA
sequencing. Significant promoter methylation was merged with
significant RNA transcripts using their ensemble gene identifica-
tion number. This ensured that the promoter filtered methylation
probes and RNA gene transcripts were accurately assigned to the
same corresponding gene. In the instance where multiple CpGs
bound in the same gene promoter region, the correlation was per-
formed on each CpG value separately. Gene-enrichment analysis
of significant correlated genes was performed using web-based
functional annotation bioinformatics tool, DAVID Resources 6.8
(104,105). Goseq was not used for this analysis, as there was no
need to prioritize gene length corrections. To investigate what
biological disease outcomes might be influenced by the epige-
netic regulation of gene expression following GlyCl treatment, we
assessed the significantly correlated genes using WebGestalt (31)
against the OMIM database.
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