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Abstract 

Recently, discriminative correlation filter-based method becomes one of the popular directions in the field of visual 
tracking because of its computational efficiency and excellent performance, which make it especially suitable for real-
time application. Most of them are focused only on the transition estimation. However, accurate scale estimation of 
the target plays a very important role in long-term tracking task and is still a challenging problem. The principle of CF-
based visual tracking is introduced first. The approaches of adaptive scale estimation in correlation filter-based visual 
tracking methods are summarized in this paper, and their performances are analyzed by experiment comparison. 
The works here can provide a better understanding on the scale estimation problem for correlation filter-based visual 
tracking. Furthermore, maybe with the same strategy, other factors in visual tracking, such as appearance variation, 
can be integrated into the framework to improve the performance of correlation filter-based method.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
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and indicate if changes were made.

Introduction
Visual object tracking is one of the core problems of 
computer vision and used in a wide range of applica-
tions, such as intelligent human–computer interaction, 
security, video surveillance and analysis, compression, 
augmented reality, traffic control, medical imaging and 
video editing [1]. It also forms a basic part of higher-level 
vision tasks such as scene analysis and behavior recogni-
tion. Although visual object tracking has been studied 
for several decades and considerable progress has been 
made in recent years [2, 3], robust visual object tracking 
is still an open research problem in the field of computer 
vision, and there are some challenging factors for visual 
tracking, such as appearance changing, scale variations, 
occlusions, motion blur, fast motion, some factors caused 
by the motion between the object and camera and some 
others come from the environment, such as illumination 
change.

In view of its wide range of applications, consider-
able works in the field of object tracking have been 
done during the past few decades, and Ref. [4] makes an 

insightful review on this topic. Generally speaking, the 
existing tracking approaches can be classified into two 
groups according to the appearance model, discrimina-
tive model-based or generative model-based. Genera-
tive model-based trackers aim to build the metric model 
using, e.g., statistical models or templates to search the 
most similar patches for the tracked object [5–7]. On the 
other hand, discriminative model-based methods usually 
employ the binary classifier or machine learning tech-
niques to distinguish the tracked object from the back-
ground. Some classifiers, such as support vector machine 
(SVM), structured output SVM [8], ranking SVM [9], 
boosting, semi-boosting and online multi-instance boost-
ing [10], have been proposed for object tracking. SCM 
[11] even combines the discriminative classifier and gen-
erative model to achieve the high accuracy and robust-
ness. But it involves with the heavy computational cost, 
which hinders its capability on real-time applications.

Recently, discriminative correlation filter (DCF) has 
successfully been applied to visual tracking [12–15] and 
the result performance is impressive, especially on its 
efficiency. As described in convolution theorem, the 
correlation in time domain corresponds to an element-
wise multiplication in Fourier domain. Thus, the idea in 
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nature of correlation filter is that the correlation can be 
calculated in Fourier domain in order to avoid the time-
consuming convolution operation. Meanwhile, the corre-
lation filter is treated as similarity measurement between 
the two signals in signal processing, which gives a reliable 
distance metric and explains the reason of the promis-
ing performance achieved by the proposed approaches. 
The correlation-based trackers learn a DCF for locating 
the target in each new frame. Some works are focused 
on the basic conceptions of correlation filter and exploit-
ing the circulant structure. For example, Bolme et al. [15] 
trained the filter by minimizing the total squared error 
between the actual and the desired correlation output on 
a set of sample grayscale patches. By using circular cor-
relation, the authors showed that the resulting filter can 
be computed efficiently using only FFTs and point-wise 
operations. Henriques et al. [16] further showed that the 
DCF formulation equivalently can be cast as learning a 
least squares regressor (ridge regression) on the set of all 
cyclic shifts of the involved training sample patches. This 
formulation was then used to introduce fast kernelized 
correlation filters. Some other basic works are conducted 
in [17].

Several works have recently addressed the generaliza-
tion of a DCF tracker. Galoogahi et  al. [18] extend the 
DCF with multi-channel filter and use HoG feature in 
CF. To improve the stability of correlation filter output, 
the color information is integrated in [12, 19]. However, 
because the multi-channel and multi-property of the 
target are employed in the CF, this kind of filter cannot 
directly apply to the online tracking problem. Alterna-
tively, approximate formulations for learning multi-chan-
nel filters have been investigated for visual tracking [12, 
13]. Danelljan et  al. [12] introduced an adaptive feature 
dimensionality reduction technique to reduce the com-
putational cost while preserving tracking performance.

Experiments with the benchmark dataset both in OTB 
[20] and VOT [21] show that DCF-based visual trackers 
present excellent performance, such as the capability of 
accurate target localization even in many different chal-
lenging tracking scenarios. Particularly, these trackers 
have the advantage of computing efficiency, which mak-
ing them especially suitable for the real-time application. 
The significant gain in speed is obtained by exploiting the 
fast Fourier transform (FFT) at both learning and detec-
tion stages. However, most methods that employ DCFs 
for tracking are mainly restricted to translation estima-
tion. This limits the performance of CF-based method; 
especially for long-term visual tracking, it is always the 
case in mobile robot and visual surveillance.

For long-term visual tracking task, many factors 
may affect the performance of the trackers, such as 
illumination variation, occlusion, scale changing and 

disappearance/reappearance, and the DCF-based tracker 
may imply poor performance under these situations. In 
this paper, we will focus on the scale estimation issue of 
DCF-based visual tracking. It is one of the most impor-
tant factors in long-term visual tracking and our works 
also confirmed it. The nature for this is that, for the 
long-term visual tracking of discriminative model-based 
method, a big well-known issue is the stability–plasticity 
dilemma [22, 23]. That is, if we use some stable samples, 
such as the target assigned in the first frame, to train the 
classifier, then the tracker is unlikely to drifting and more 
robust to occlusions. However, if the target appearance 
variation is not taken into account in this case, the tracker 
is doomed to work not well in long-term visual track-
ing process. Furthermore, the capability of accurately 
retrieving the target scale is beneficial in many tracking 
applications. Here, we first make a short summary on the 
existing scale estimation method, and then, experiment 
comparisons among these methods have been conducted 
to get a deep insight on this issue. And some problems on 
the benchmark dataset are discussed.

Scale estimation in DCF‑based visual tracking
The importance of accurate scale estimation for visual 
tracking has been shown in many works, especially in 
Ref. [14, 24]. And several works addressed the scale esti-
mation issues in CF-based tracking method. For example, 
Li et  al. [25] proposed a kernelized correlation transla-
tion filter with multi-resolution extension. To solve the 
scale estimation problem, the target in different scales are 
sampled first and then resized these samples into a pre-
fixed size, and the scale with the highest correlation score 
is regarded as the final result. However, to get sufficient 
scale accuracy, the translation filter needs to be run at 
several resolution layers, and this brings a higher compu-
tational cost. By incorporating context information into 
filter learning, Zhang et  al. [17] estimate the scale vari-
ation based on consecutive correlation results. In DSST 
tracker [14], a HOG feature-based adaptive multi-scale 
correlation filter is learned to cope with the scale change 
problem. By learning the appearance changes caused by 
scale variations directly, and using fused features such as 
raw intensity value and HOG feature, DSST tracker can 
estimate the target scale adaptively and track at a higher 
frame rate. However, this method does not address the 
online model updating issue. And these correlation filter-
based trackers are susceptible to drifting. Danelljan et al. 
[26] employed an adaptive feature dimensionality reduc-
tion method as in Ref. [27] to reduce the computational 
cost, while tracking the performance is preserved. A col-
laborative correlation tracker is proposed in [28]. The 
experiment results [14, 24] show that by combining the 
scale estimation with translation filter, their approaches 
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outperform 19 state-of-the-art trackers in the OTB 
dataset.

In this section, we first briefly introduce the basic cor-
relation filter-based visual tracking method; then, three 
typical strategies for scale estimation are presented, that 
is, multi-resolution-based [29], joint scale space filter, 
iterative joint scale space [14, 24].

Basic correlation filter‑based visual tracker
Correlation filters have been used in many applica-
tions such as object detection and recognition. Since the 
operator is readily transferred into the Fourier domain 
as element-wise multiplication, correlation filters have 
attracted considerable attention recently to visual track-
ing due to its computational efficiency. Bolme et al. [15] 
propose to learn a minimum output sum of squared error 
(MOSSE) filter for visual tracking on grayscale images, 
where the learned filter encodes target appearance with 
update on every frame. Many DCF-based visual tracking 
methods take it as a baseline approach. The basic idea of 
this method is as follows.

According to the convolution theorem, the correlation 
becomes an element-wise multiplication in the Fourier 
domain. To create a fast tracker, correlation is computed 
in the Fourier domain with fast Fourier transform (FFT). 
First, the 2D Fourier transform of the input image, 
F = F(f), and of the filter, H = F(h), is computed. We use 
the ⊙ ←  symbol to explicitly denote element-wise mul-
tiplication and ∗ ←  to indicate the complex conjugate; 
then, correlation takes the form:

The correlation output is transformed back into the 
spatial domain using the inverse FFT. The target loca-
tion corresponds to the maximum value in the correla-
tion output. Generally, a 2D Gaussian shape is expected 
for the correlation output, which peak is centered on the 
target in training image.

For the first frame, the filter is learned according to 
the provided input image and the expected correlation 
output, and it is 2D Gaussian output. Let us fi is a set of 
training images and gi is generated from the 2D Gaussian 
shape; then,

where the division is performed element-wise. To find 
a filter that maps training inputs to the desired training 
outputs, for the MOSSE method, a filter H is defined as 
that minimizes the sum of squared error between the 
actual output of the convolution and the desired output 
of the convolution. The cost function for this optimiza-
tion problem is defined as

(1)G = F ⊙H∗

(2)H∗
i =

Gi

Fi
,

By solving for H*, a closed form expression for the 
MOSSE filter is found:

In the following frames, an online update of H* is then 
performed based on that new location, such as

or in a more practical form as in MOSSE filter as

where

The computational complexity of DCF-based tracking 
is O(N logN ), where N is the number of pixels in the fil-
ter. This comes from the FFTs used during the correla-
tion operation and the online update. The advantages of 
DCF-based method are easy to implement and can be 
just accurate and much faster. Under the framework of 
DCF tracking, some works try to further improve its per-
formance by taking multi-channel features, spatial con-
straints into consideration. But most of these works are 
restricted to translation estimate, and this implies poor 
performance when encounter with significant variations 
in the target scale.

Multi‑resolution‑based scale estimation
For the object detection problem, a standard approach to 
eliminate the scale effect is to apply a detecting process at 
multiple resolutions. Accordingly, to tackle the problem 
of the fixed template size in correlation filter tracker, Li 
et  al. [25] proposed an effective scale-adaptive scheme. 
Moreover, they integrate HoG and color-naming feature 
together to further boost the overall tracking perfor-
mance. It is called SAMF (scale-adaptive multiple-fea-
ture) tracker. SAMF is the improvement in kernel-based 
correlation filter; to solve the scale change issue in object 
tracking, a sample searching strategy is implied. Here, 
only the scale estimation strategy in this method is briefly 
introduced.

Let the template size be ST = (sx, sy), and sx and sy 
denote the horizontal and vertical size, respectively, and 
define a scaling pool as S = {t1, t2, . . . , tk}. Every time, the 
target window size st in the original image space is resa-
mpled k sizes in {tist |ti ∈ S}. These samples are resized 

(3)min
H∗

∑

i

∣

∣Fi ⊙H∗ − Gi

∣

∣

2

(4)H∗ =

∑

i Gi ⊙ F∗
i

∑

i Fi ⊙ F∗
i

(5)H∗ = η
Gi ⊙ F∗

i

Fi ⊙ F∗
i

+ (1− η)H∗
i−1

(6)H∗
i =

Ai

Bi
,

Ai = ηGi ⊙ F∗
i + (1− η)Ai−1

Bi = ηFi ⊙ F∗
i + (1− η)Bi−1
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into the same size with fixed template ST, to match the 
requirement of the element-wise dot product in correla-
tion filter. The final response is calculated by

where zti is the sample patch with the size of tist, which is 
resized to ST. Since the result of the response function is 
a vector, the max operation is employed to find its maxi-
mum scalar. As the target movement is implied in the 
response map, the final displacement needs to be tuned 
by t to get the real movement bias. The updating proce-
dure is almost same as other DCF-based method.

In their experiments, the scale pool is set as:

Though only seven different scale spaces are used, and 
all the parameters are same for the experiments, with the 
benchmark dataset of VOT2014, the results are impres-
sive. One big difference to others is that the scale estima-
tion is included in SAMF.

Joint scale space estimation
The fused feature-based translation estimation and the 
scale estimation are separately processed in SAMF. The 
final results of translation estimation will be tuned to get 
a more accurate result. Instead of estimating the transla-
tion and scale separately, joint scale space-based method 
tries to jointly estimate the translation and scale of the 
target. It is achieved by computing the correlation scores 
in a box-shaped region of a scale pyramid representation. 
Both translation and scale estimates are then achieved by 
maximizing this score.

To update the joint scale space filter, a feature pyramid 
in a rectangular area around the given target location is 
first constructed. As shown in Fig.  1, the feature pyra-
mid is constructed such that the target size at the current 
scale corresponds to the spatial filter dimensions M * N. 
The training sample ft is set to the rectangular cuboid of 
size M  * N  * S centered around the target location and 
scale. Here, S corresponds to the number of the scale 
space. The joint scale space filter can be updated with for-
mula  (6), using a three-dimensional Gaussian function as 
the desired correlation output g.

Obviously, joint scale space-based method suffers from 
the computational cost and is not suitable for real-time 
application. Another issue is because the feature pyra-
mid at the detection step is constructed around the pre-
dicted target location. This might result in an inclusion of 
a shearing component in the transformation relating the 
test sample zt to the feature pyramid constructed around 
the actual target center. The shearing effect is caused by 
errors in the predicted target location. This significantly 

(7)arg max F−1 f̂ (Zti),

S = {0.985, 0.99, 0.995, 1.0, 1.005, 1.01, 1.015}.

affects the performance of the joint scale space filter by 
introducing a bias in the translation estimate.

Iterative scale space estimation
To reduce the impact of the scale space shearing dis-
tortion, the iterative scale space filter strategy can be 
employed. In this method, given a new frame, first using 
the previous target location and scale for the filter to esti-
mate the translation, generally, a standard translation fil-
ter is used. Then the scale estimation is something a little 
like multi-resolution method, which uses a search strat-
egy in scale space, and the scale is correspondent to the 
maximum correlation score. This procedure is performed 
iteratively until the convergence is achieved.

Typically, based on the observation that the target scale 
variation between two frames is small compared to the 
change in translation, the translation filter ht,trans is car-
ried out first to get the new target location; then, scale 
filter ht,scale is applied. The test sample for scale estima-
tion hz,scale is extracted from the new location. In many 
cases, the iterative step may be not necessary, just as in 
discriminative scale space tracking (DSST) method [24].

As shown in Fig. 2, the DSST method uses a 2D multi-
channel features for translation filter and a separate 1D 
scale filter for scale estimation. To construct the train-
ing sample ft,scale, the features are extracted using variable 
patch sizes centered around the target. Let P × R denote 
the target size in the current frame and S the size of the 
scale filter. For each

n ∈

{

floor

(

−
S − 1

2

)

, . . . , floor

(

S − 1

2

)}

,

Fig. 1  Architecture of joint scale space estimation method [24]
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an image patch In of size anP × anR centered around the 
target. Here, a denotes the scale factor between feature 
layers. The training sample at scale level n is ft,scale (n), set 
to the d-dimensional feature descriptor of In. As shown 
in Fig.  2b, a 1D Gaussian is implied as the desired cor-
relation output g. The updating of scale filter ht,scale is like 
Eq. (6) with the new sample ft,scale.

To estimate the translation of the target, the standard 
translation filter with raw pixel value and HoG feature are 
used in DSST [14]. To reduce the computational cost of 
the DSST tracker, the authors apply PCA-HoG for trans-
lation filter learning. Same to the translation filter, com-
pressed scale filter is used without any loss of information 
(fast DSST, fDSST for briefly). Compared with SAMF 
method which only uses 7 scale space level, fDSST and 
DSST use S = 33 and a = 1.02. This can cover a larger-
scale range and more accurate results of scale estimation 
than in SAMF can be achieved.

Among these three strategies for scale estimation, 
multi-resolution-based method is simple, but the com-
puting load is higher. Joint scale space estimation is 
more efficient than the multi-resolution-based method. 

Iterative joint scale estimation is the most efficient one, 
though compressive data are used for both the transla-
tion and scale estimation, but there is no much informa-
tion lost.

The comparison experiments
Though there are few papers which take the scale estima-
tion into consideration in correlation filter-based visual 
tracking, their results show that the performance of these 
methods is impressive. It is necessary to make a compre-
hensive study on the scale estimation issue.

According to the previous section, there are three strat-
egies for scale estimation in correlation filter-based visual 
tracking. Actually, due to the computational cost of joint 
scale space estimation, it lost the advantages of the origi-
nal CF-based method. fDSST is a compressed version of 
DSST, but there is no much information lost according to 
their results. Because of this, in the comparison experi-
ments, we just take SAMF and fDSST into consideration.

All experiments are performed on an Intel Duo P8600 
2.4  GHz CPU with 8  GB RAM. For the standard DSST 
method, the default parameter values are a  =  1.02, 
S = 33, and the standard deviation in the scale dimension 
of the desired correlation output g is set to 1/16 times the 
number of scales S. For the fDSST, the 32-dimensional 
HOG and intensity combination is reduced to 18 dimen-
sions in our experiments. The dimensionality of the scale 
features from d ≈ 1000 to only S = 17 dimensions. The 
parameter values of SAMF for all videos are set to the 
same, a Gaussian kernel type and HoG-Color feature 
type are used, the cell size is 4, and nine orientations are 
used for HoG. The padding size is set to 1.5.

The methods are quantitatively evaluated under MAT-
LAB 2016b with the datasets of the online tracking 
benchmark (OTB) dataset [20]. Because we focus on the 
comparison of scale estimation performance, only the 
videos marked with scale variation are used. These vid-
eos are Biker, BlurBody, BlurCar2, BlurOwl, Board, Box, 
Boy, Car1, Car24, Car4, CarScale, ClifBar, Couple, Cross-
ing, Dancer, David, Diving, Dog, Dog1, Doll, Dragon-
Baby, Dudek, FleetFace, Freeman1, Freeman3, Freeman4, 
Girl, Girl2, Gym, Human2, Human3, Human5, Human6, 
Human7, Human8, Human9, Ironman, Jump, Lemming, 
Liquor, Matrix, MotorRolling, Panda, RedTeam, Rubik, 
Shaking, Singer1, Skater, Skater2, Skating1, Skating2.1, 
Skating2.2, Skiing, Soccer, Surfer, Toy, Trans, Trellis, 
Twinnings, Vase, Walking, Walking2, Woman. There are 
totally 57 video sequences used.

Moreover, the tracking results about the three stand-
ard evaluation metrics namely overlap precision (OP), 
distance precision (DP) and tracking speed in frames per 
second (FPS) are reported in the existing literatures. So 
we mainly compare the performance on how large-scale 

Fig. 2  Training samples used in DSST and fDSST method. a Construc-
tion of translation filter sample. b Construction of scale filter sample
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variation they can suffer from and can still work under 
this condition.

According to the ground-truth data, the referent scale 
value is proposed and can be calculated as follows,

Here, the initial scale value S0 = 1 in first frame, (w0, h0) 
denotes the target width and height in first frame, (wi, 
hi) is the current width and height, and Si denotes the 
current scale value. We have tried several other metric 
methods, such as the relative width/height change, but 
the scale value computed by (8) is seemed more practical 
for the comparison.

Though the video sequences used for the comparison 
study show a relatively large-scale variation, most of 
these video sequences also include other attributes. For 
example, video Lemming is included in scale variation 
(SV), occlusion (OCC), fast motion (FM) and out-of-
plane rotation (OPR) [20]. And, moreover, different visual 
trackers show different performances on these attributes, 
so the experiment results on these video sequences are 
not the same. But for most of these videos, both track-
ers show the consistent scale change trends. Because of 
this, we only list some typical cases and the causes for the 
results are analyzed.

For the consistent results, we select the video Dog1, 
Car1 as examples, and the experiments show that the 
scale estimation results of SAMF and fDSST are consist-
ent with the ground truth. As shown in Fig.  3, the blue 
dotted line is for the ground truth, the green dashed line 
is the results of fDSST, and the solid red line is the results 
of SAMF. Although the magnitudes of scale values are 
not same, it may be caused by the different metric meas-
urement, but the trends of the curve are almost the same.

The experiment results with videos, such as BlurCar2, 
as shown in Fig. 4, and the results of SAMF and fDSST 
show a general resemblance with the ground truth, but 
small differences in some local sections, for example, 
from frame number 300–500 in Fig. 4, exist among them. 
For these figures, we follow the same color label rules; 
that is, the red color (R) indicates the result of SAMF, 
the green color (G) presents the output of fDSST, and 
the blue color (B) represents the ground truth. We pick 
out some frames from BlurCar2 and show the tracking 
outputs in Fig. 5. In this experiment, we can see that the 
ground truth may be not accurate enough, as indicated 
in frame no. 5. On the other hand, because of the motion 
blur, it is hard to say which one is more accurate than 
the others, as indicated in frame no. 369/465/531. In this 
case, the output of SAM/fDSST and the ground truth are 
basically same, but there are small differences which may 
result from inaccuracy of the ground truth.

(8)Si =
wi ∗ hi

w0 ∗ h0
.

Fig. 3  Some videos show the consistent results. a Scale estimation 
results for Dog1. b Scale estimation results for Car1

Fig. 4  Scale estimation results for BlurCar2
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For some videos, such as Lemming and Soccer, the 
result of SAMF is outperformed over fDSST, as illus-
trated in Fig. 6. In this experiment, we found that fDSST 
is failed since frame no. 335, as shown in Fig. 7, because 
of the occlusion. But SAMF can track the Lemming con-
tinuously after the target reappears. It may be benefit 
from the usage of color-naming feature. Figure  8 shows 
the results for Soccer, and it can confirm that by mak-
ing use of color-naming feature, the output of CF-based 
tracking is more stable.

For some videos such as Freeman1, the results of 
fDSST are better than SAMF, as shown in Fig. 9. In this 
experiment, we found that SAMF is failed after frame 
no. 139, as shown in Fig. 9b, when Freeman takes off his 
glass. It is interesting that in this case, however, fDSST 
can work well. We found that because this video is a gray-
level image sequence, this makes the color of the hand 

Fig. 5  Tracking results of SAMF(R)/fDSST(G)/the reference(B)

Fig. 6  Scale estimation results for Lemming

Fig. 7  Tracking output of SAMF(R)/fDSST(G)/the reference(B) with 
Lemming

Fig. 8  Experiment results with Soccer. a Scale estimation results. b 
Tracking output of SAMF(R)/fDSST(G)/the reference(B)
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and face look like the same. But the color-naming feature 
is a very important part in SAMF tracker, and the tracker 
is distracted by hand this time.

Conclusion and discussions
In this paper, several adaptive scale estimation methods 
based on correlation filter are analyzed and compared. 
Both the SAMF and fDSST show their high performance 
even in some challenging scenarios. The SAMF algo-
rithm integrates the HoG with color-naming feature in 
a multi-resolution framework, and the computational 
cost is larger than fDSST, but it shows high performance 
when the color information is available, such as Soc-
cer and Lemming. It can work more stable and accurate 
than fDSST and even recover from the occlusion some-
time. On the other hand, when only gray-level image is 
available, the color-naming feature will lose the advan-
tages, because compressive HoG is employed, and fDSST 
tracker is more efficient. Which tracker is suitable for the 
application will depend on the efficiency and the accu-
racy. Both trackers are capable of adaptive scale estima-
tion and greatly improve the tracker’s performance.

 But it is interesting that, for the experiment with Free-
man1, the tracker is distracted by the hand color. The 
reason for this will be further explored. Moreover, how 
to take the two approaches advantages to cope with the 

challenging tracking scenarios is  the scope of future 
works.
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