
1Scientific Reports | (2020) 10:9812 | https://doi.org/10.1038/s41598-020-66193-5

www.nature.com/scientificreports

Remotely sensed thermal decay 
rate: an index for vegetation 
monitoring
S. S. Kumar1,2 ✉, L. Prihodko3, B. M. Lind4, J. Anchang4, W. Ji4, C. W. Ross4, M. N. Kahiu5, 
N. M. Velpuri6 & N. P. Hanan3

Vegetation buffers local diurnal land surface temperatures, however, this effect has found limited 
applications for remote vegetation characterization. In this work, we parameterize diurnal temperature 
variations as the thermal decay rate derived by using satellite daytime and nighttime land surface 
temperatures and modeled using Newton’s law of cooling. The relationship between the thermal decay 
rate and vegetation depends on many factors including vegetation type, size, water content, location, 
and local conditions. The theoretical relationships are elucidated, and empirical relationships are 
presented. Results show that the decay rate summarizes both vegetation structure and function and 
exhibits a high correlation with other established vegetation-related observations. As proof of concept, 
we interpret 15-year spatially explicit trends in the annual thermal decay rates over Africa and discuss 
results. Given recent increases in availability of finer spatial resolution satellite thermal measurements, 
the thermal decay rate may be a useful index for monitoring vegetation.

Remote sensing has proven to be an invaluable tool for monitoring global vegetation over the last few decades, 
providing a variety of quantitative measures, retrieved using observations across wavelengths. In broad terms, 
the visible (VIS 0.4–0.7 μm) wavelengths respond to photosynthetic and non-photosynthetic pigments1, the Near 
Infrared (NIR 0.7–1.4 μm) wavelengths respond to the cellular structure and exhibit Solar Induced Florescence 
(SIF)2,3, and the Short Wave Infrared (SWIR 1.4–3 μm) wavelengths respond to senescent non-photosynthetic 
vegetation4. Further, the anisotropic behavior of vegetation at VIS- SWIR reflective wavelengths have been 
parameterized to describe vegetation structure5. Active sensors (for example light detection and ranging: lidar) 
using NIR wavelengths have also been used for quantifying vegetation-related structural parameters6–8. Beyond 
NIR/SWIR wavelengths, observations in the microwave (1 cm−1 m)9–11 region that respond to vegetation water 
content and structure have also been used for characterization. Observations in different spectral wavelengths 
provide unique quantitative descriptions on different aspects of vegetation and are being used extensively for 
remote vegetation monitoring.

The land surface temperature (LST), which can be remotely retrieved using Thermal Infrared (TIR ~10μm) 
observations over terrestrial systems, is an indicator of the interaction between the vegetation and its local envi-
ronment12–16. Reduction of LST with increasing vegetation cover is well established15,17. LSTs have been shown to 
be lower in pristine forests as compared to secondary growth18 and have also been shown to vary by vegetation 
type13,19. The difference between the maximum and minimum diurnal temperatures or the diurnal temperature 
range (DTR) has been related to biomass heat storage20,21.While many studies have used the temporal evolution 
of LST to characterize land by its thermal inertia22 and to diagnose surface energy and water balance23,24, few have 
used thermal information to characterize vegetation13,17,18 or biomass25,26.

In this work, we build on previous research and capitalize on a cooling curve paradigm to estimate the thermal 
decay rate that effectively captures land surface thermal dynamics mediated by vegetation. Daytime heating is 
predominantly radiative (from the sun) while cooling by live vegetation is governed by conductive and convective 
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mechanisms of heat transfer including evapotranspiration (ET) for which Newton’s law27 is applicable. The expo-
nential component of Newton’s law, also known as the thermal decay rate constant (Rdk [s−1]), is a function of the 
thermal properties that govern the heat transfer between an object and its surroundings and is inversely related to 
the density, specific heat, and volume to area ratio27. Thus, denser stands of vegetation, with higher specific heat 
and higher volume to area ratio are expected to exhibit smaller thermal decay rates. Conversely sparser vegetation 
with lower density, lower specific heat and lower volume to area ratio is expected to have larger thermal decay 
rates. Along with this dependency on vegetation structure, the decay constant also represents vegetation function 
as it is also governed by evaporative cooling caused by both evaporation and transpiration28 by the living plant 
tissues and its neighboring surfaces. Thus, the thermal decay rate can be expected to summarize both vegetation 
structure and function and hence is a novel index for vegetation monitoring.

The theory, assumptions, limitations, and scope of this vegetation-related parameter are presented and dis-
cussed  herein. Correlations between annual average thermal decay rate constant Rdk and a range of 
vegetation-related parameters including Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation 
Index (EVI), Woody percent cover (Woody), Vegetation Continuous Field (VCF) percent tree cover, Leaf Area 

Figure 1.  Maps of all variables used in this work for the sub-Saharan Africa study area. Greener shades 
represent higher values while browner tones represent lower values.
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Index (LAI: Woody and Herbaceous), Vegetation Optical Depth (VOD), SIF, Canopy Height, Above Ground 
Biomass (AGB), and (ET) and precipitation (Long-term Mean Annual Precipitation (LMAP) and annual precip-
itation (Precip)) are presented and discussed. These variables were selected because they represent a wide range 
of vegetation characteristics. The vegetation indices are a measure of greenness while woody percent cover and 
percent tree cover are the fractional vegetation cover. LAI is a dimensionless variable, defined as the one-sided 
area of green leaves (m2) per unit ground area (m2). VOD describes vegetation attenuation properties in micro-
wave wavelengths attributed to the water content in vegetation. SIF is known to be correlated directly to photo-
synthesis, and canopy height and biomass are physical attributes of vegetation structure. Precipitation is also 
included in this work as it is one of the fundamental drivers of vegetation. Inter-correlation among these param-
eters are expected because they are all related to vegetation structure and function. Results from a comprehensive 
cross-correlation study are presented with a proof of concept time-series application for sub-Saharan Africa. 
Results suggest that the thermal decay rate relationship to vegetation biomass has potential as a new index for 
vegetation monitoring and modelling.

Results
The relationship between ( Rdk) and vegetation-related parameters is complex because it depends on many factors 
including vegetation type, density and structure, water content of both vegetation and soil, thermal properties of 
land surface components and seasonal weather. Here we evaluate Rdk through comparison to a suite of remotely 
sensed variables related to vegetation structure and function (see Materials and Methods).The spatially explicit 
data used for this work are illustrated in Fig. 1, including Rdk maps from both the National Aeronautics and Space 
Administration (NASA) Aqua and Terra Earth-observing satellites.

Sensitivity to temporal sampling.  Spatially explicit 2005 Rdk values derived using Moderate Resolution 
Imaging Spectroradiometer (MODIS) Aqua are compared with 2005 Rdk values derived using MODIS Terra in 

Figure 2.  Rdk values for 2005 for the sub-Saharan Africa study area derived using MODIS Aqua only (a) and 
MODIS Terra only (b). The relationship between the Rdk values derived using Aqua only and Terra only is also 
shown (c). Density is displayed using a (2n − 1) scale, with n shown in the legend. The dashed line marks the 1: 1 
line and the solid line is from RMA regression coefficients. Larger values are expected for Aqua as its time of 
over pass coincides with the time of maximum diurnal differences. The MODIS Terra over pass happens earlier 
when the diurnal temperature differences are not near their maximum. The Spearman’s and Pearson’s r is >0.97.
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Fig. 2. The Rdk values derived using Aqua are expected to be higher as the over pass times of the Aqua satellite 
occurs at ~1:30 PM and ~1:30 AM near the equator29, closer to the times of diurnal maximum and minimum 
temperatures30. The over pass times of Terra occur earlier as compared to Aqua at 10:30 AM and 10:30 PM near 
the equator29. Despite this time difference, a strong linear relationship between the two derivations of Rdk is 
observed (r > 0.97 Fig. 2). The reduced major access regression (RMA) coefficients suggest that the slope is ~ 0.77 
while the intercept is almost negligible (<~ 10% of the low values;). As a result, the Rdk values derived using 
Aqua are used for all further analyses presented in this work.

Relationship to biotic variables.  Variables relating to the vegetation structure and function are considered 
biotic for the purpose of this study. The inter-variable Pearson’s and Spearman’s correlation r is summarized in a 
color-coded table (Fig. 3) and individual scatter plots in Fig. 4 illustrate the relations to Rdk values. Only locations 
with long-term mean annual rainfall of >100 mm/year are considered in this correlation analysis. We tabulate 
both correlation indices because Pearson’s r evaluates the degree of linear relationships, while the Spearman’s r 
provides a measure for monotonic relationships, which may or may not necessarily be linear. In general, we found 
the Spearman’s correlations to be similar to and sometimes marginally higher than the Pearson’s correlation, 
suggesting more monotonic than strictly linear relationships. This is also evident from Fig. 4. The Rdk values are 
highly and linearly correlated with the common vegetation indices NDVI and EVI (~0.86+). Similar high corre-
lations were observed with woody LAI estimates (0.86; Fig. 3), VOD (~0.8) and SIF (0.84), but Rdk is poorly 
correlated with herbaceous LAI (0.28) among the biotic variables. The highest inter variable correlation of over 
0.98 was observed between the NDVI and EVI among the biotic variables, which is expected as both were derived 
from the same sensor and similar spectral bands. It must be noted that poor inter variables correlations at conti-
nental scales may have been impacted by differences in the temporal span of the variable used. This is especially 

Figure 3.  Color-coded cross-correlation values between the different variables analyzed in this work. 
Locations with less than 100 mm of MAP were excluded from this study. Shades of red, yellow and green 
represent increasing magnitude of correlations irrespective of the sign. Absolute values of latitude were used for 
estimating correlation. Both Pearson’s (above the solid black diagonal line) and Spearman’s (below the diagonal 
line) correlation values (r) are presented. See Table 1 for variable description.
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true for LAI and Woody/Herbaceous LAI wherein the available 2008 data were used in this work. However, this 
temporal mismatch is less of an issue with correlation of the Rdk values with other variables because they were 
compared for similar time period as noted in the data section. In general, Rdk values showed correlation values 
>0.76 (Pearson’s r) for most of the vegetation-related variables and are broadly similar to correlations observed 
amongst the vegetation-related variables.

The DTR, defined here as the LST difference between day and night (LST day-night), is known to be related to the 
biomass heat storage and has been related to the vegetation cover20,21. The corroborating results shown in Fig. 3 
indicate a high correlation of annual average (LST day-night) with biotic parameters. Interestingly, both Spearman’s 
and Pearson’s correlations of the Rdk is typically higher, although marginally so (~ 0.03), than the correlation of 
(LST day-night) for almost all (except EVI, which is equal) vegetation-related parameters. The higher correlation 
with vegetation-related parameters implies that while (LST day-night) is correlated to biotic variables, the Rdk 
parameterization of LST is more closely related.

Figure 4.  Scatter plots showing the relationship of Rdk to all other variables considered in this study. Density is 
color coded on a 2n − 1 scale.
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Relationship with abiotic variables.  As expected, the Rdk values are highly correlated (Fig. 3) to the 
LSTday, ET and LMAP. In general, these correlation values are similar to the correlation of other established 
vegetation- related parameters with these abiotic variables (Fig. 3). Similar to observations with variables related 
to vegetation structure and function, the Spearman’s correlations are similar and marginally higher than the 
Pearson’s correlation for the same variable pair, and suggest the relationships are monotonic and not necessarily 
linear as seen in Fig. 4. As expected, the correlation is higher (0.83; Pearson’s) with the LMAP than for the 2005 
annual Precip (0.80), because long-term precipitation31 is one of the drivers of woody vegetation presence/
absence. These results clearly indicate that the Rdk is more closely related to biotic variables than to abiotic varia-
bles and thus has potential as a novel vegetation index.

Spatially explicit time series analysis.  Time series of Rdk may help identify trends over regions experi-
encing change in vegetation structure and/or function (e.g. growth, deforestation/reforestation, loss and recovery 
of vegetation following disturbance (drought, flood, fire, etc.) or vegetation change relating to vegetation commu-
nity change (shrub encroachment or invasion of exotic species)). Figure 5 shows the spatial distribution of signif-
icant increasing or decreasing trends in Rdk that could indicate such changes (a) over the study area and (b) a 
similar analysis with annual precipitation for reference. The results span a 15-year time period from 2003–2017. 
High and moderate statistical significance (p value < 0.1 and <0.05) is inferred from Mann Kendal tests32 for the 
Rdk and precipitation values paired with years of observation (2003–2017). An increasing trend in the Rdk values 

is interpreted as a decreasing trend in the vegetation (e.g. loss of woody vegetation) and is shown as red tones in 
Fig. 5a.

Increasing trends in vegetation (i.e. gain of woody vegetation) are evident in the northern and eastern 
regions of Africa while decreasing trends are seen in the southern and western regions. The above-described 
increasing and decreasing patterns of vegetation are broadly similar to patterns inferred by previous stud-
ies33 using VOD data between 1992 and 2011, and between 2010 and 201634, studies using VIS-SWIR35 data 
between 2000 and 2015 for the whole of sub-Saharan Africa and over the west African Sahel36,37. Past 
work38,39 has shown with field observations and from remote sensing data that the Sahel region south of the 
Sahara Desert has been experiencing vegetation “re-greening”, particularly relating to recovery of woody 
populations. This trend for the Sahel is also seen in the Rdk trends (Fig. 5a; ~100 to 200 Lat, −150 to 300 Lon). 
Our results suggest that, although there are regions experiencing green-up and increase in precipitation, not 
all regions experiencing green-up in the Sahel show a significant increase in precipitation between 
2003 and 2015. In the west, a distinct degrading trend in vegetation is evident in Liberia (Fig. 5a; ~ 50 to 100 
Lat, −150 to 50 Lon) with no significant decrease in precipitation for the same time period (Fig. 5b). This 
decreasing trend may be attributed to shifting land use from forest to agricultural lands observed by past 
land cover studies36 over regions of west Africa. A distinct and large area of significant increasing trends in 
vegetation and in precipitation is evident in the east in the upper Nile Basin of Sudan (the Sudan; Fig. 5a; 
~100 Lat, 350 Lon). Recent studies40 have suggested a 14% increase in vegetated wetlands in this region for 
the 1999 to 2006 time period. Differences between the Rdk  and precipitation trends at local scale are 
expected due to coarser-scale precipitation data compared to the land surface data as well as local edaphic 

Figure 5.  Spatial patterns of decreasing (blues and greens) and increasing (yellows and reds) trends in (a) Rdk 
and (b) decreasing (yellows and reds) and increasing (blues and greens) precipitation, colored by their statistical 
significance (see legend). Vegetation trends are interpreted as the inverse trend in Rdk values, with negative 
trends indicating increase in biomass. Results illustrated are restricted to only those regions that had over 
100 mm yr−1 of MAP.
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factors that also mediate vegetation31,41. For example, the dense forest in central Africa has been experienc-
ing a significant decline in precipitation, however, a similar decline in the vegetation is only seen in scattered 
regions. These observations indicate that changes in vegetation as inferred from Rdk are more likely driven 
primarily by vegetation change, rather than changing precipitation, and thus Rdk has potential as a vegeta-
tion index.

Discussion
Remote observations in the thermal bands using Earth-observing satellites have been known to be useful to char-
acterize land cover and, in this work, we show how the diurnal change in temperatures could be parameterized 
and interpreted to characterize vegetation structure and function. We show that the thermal decay rate (Rdk), 
derived using principles governing the rate of cooling under certain assumptions, provides an index of vegetation 
with theoretical and empirical justification. We show that the annual average Rdk has interesting properties suit-
able for vegetation monitoring and modeling. In addition, the relationship of Rdk to biomass heat storage may be 
useful as a proxy in land surface models to improve energy balance21 calculations.

As expected, thicker dense vegetation had smaller decay rate values, while sparser vegetation was shown to 
have higher decay rate values. Spatially explicit time series analysis of the Rdk values and precipitation showed 
spatial agreement with known regions of vegetation green-up and degradation over Africa in the last decade33.

The derivation of Rdk can be applied to existing satellites such as the Visible Infrared Imaging Radiometer 
Suite (VIIRS)42 and the Sentinel 3A and 3B43 satellites with due consideration of their specific over-pass times. The 
decreased spatial variability in the nighttime temperatures (Fig. 1) opens the possibility of fusing available finer 
daytime satellite land surface temperatures with coarser resolution nighttime LST observations to derive finer 
spatial resolution Rdk . The successful launch and commissioning of the ECOsystem Spaceborne Thermal 
Radiometer Experiment on Space Station (ECOSTRESS; https://ecostress.jpl.nasa.gov/) mission, with improved 
thermal band spatial resolution, increases the number of satellites with thermal remote sensing capability (VIIRS, 
Sentinel 3A and B) and can be expected to pave the way for operationally using thermal bands for monitoring 
vegetation globally. Thus, future remote sensing programs can also consider using Rdk retrievals for vegetation 
monitoring.

Methods
Study area.  Sub-Saharan Africa was chosen for this study because it presents a wide range of vegetation con-
ditions, from desert to savannas and moist tropical forests, in both southern and northern latitudes, making it a 
suitable study area to evaluate the relationship between Rdk and other biotic and abiotic parameters.

Data and processing.  Table 1 lists all data used in this work and includes key attributes, processing applied 
and reference to data products/source. All spatially explicit data used in this work are remotely sensed data that 
are freely available, either via data archives or direct from the authors. The variables used in this work are broadly 
categorized as biotic (vegetation related) and abiotic for convenience and clarity of this paper. Cloudy and missing 
data were excluded while collating the datasets. All data variables are directly available as data layers or computed 
as described in the column labeled processing in Table 1. Spatial datasets were mapped to a common spatial 
resolution of 1 km. The nearest neighbor method was used for downscaling data from a coarser spatial scale to 
finer scale, while regional mean was computed for upscaling data. All image pre/processing, subsequent analysis 
including graphical illustration of results were undertaken using Raster44 and RGDAL45 packages in the R open 
source environment46.

Theoretical considerations.  Newton’s law of cooling postulates that the rate of change of temperature of 
an object is proportional to the temperature difference between the object and its surroundings27,56,57. This can be 
mathematically expressed as:

= − −
d T t

dt
R T t T( ( )) ( ( ) ) (1)dk a

where T(t) [K] is the instantaneous temperature at a given time t [s], Ta [K] is the ambient temperature, and Rdk 
[s−1] is the thermal decay rate. It should be noted that (Eq. 1) makes certain implicit assumptions in its derivation 
that are discussed in the next section. The solution27 to (Eq. 1) is

= + −
−T t T T T e( ) ( ) (2)a a

R t
0

dk

where T0 is the initial temperature at t = 0, and (Eq. 2) can be rewritten as:

= + −− −T t
T

e T
T

e( ) (1 )
(3)o

R t a

o

R tdk dk

The second term in (Eq. 3) is small and can be ignored if we assume that the object is cooling from a relatively 
higher daytime (To) temperature to a cooler Ta such that Ta ≪ To, although this assumption may not be strictly 
valid at all times and locations (discussed below). Ignoring the second term and rewriting T0 as the daytime (Td) 
temperature cooling towards the nighttime temperature (Tn) over a time period from 0 to t = ∆t in (Eq. 3) yields:
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Theoretically, Rdk is related to the intrinsic properties of the object and the nature of its interactions with the 
environment as:

α
ρ

=
. . ( )

R
c

1

(5)
dk tot V

A

where αtot is the effective equivalent heat transfer coefficient considering all mechanisms of heat transfer (conduc-
tion, convection and radiation) to its surroundings, ρ [kg m−3] is the density, c [kg m2 k−1] is the specific heat and 
V [m3]/A[m2] is the volume to surface area of the object27.

Over objects with extended spatial spans such as pixels of vegetated regions, Rdk is the collective representation 
of the rate of cooling and is governed by many factors including the conductive, convective and radiative transfers 
of heat between neighbors (neighboring soil, plants and atmosphere). In this scenario, Rdk also incorporates the 
effects due to evapotranspiration and heat storage dynamics by individual vegetation components, each with its 
distinct thermal properties. Thus, as evidenced from (Eq. 5) dense vegetation stands, such as forests with objects 
(trees) that have high volume to area ratio, high density and high heat capacity, will have smaller Rdk values. 
Conversely, sparsely vegetated surfaces with high proportions of bare soil or grass with low density, low specific 
heat and low volume to area ratio will have larger Rdk values. When calculating Rdk over large areas, the presence 
of water bodies (high specific heat), wetlands, or areas with higher soil moisture will also lower Rdk, confounding 
the detection of vegetation density to some extent.

In this work, we compute the annual average thermal decay rate using remotely sensed day/night land surface 
temperature to minimize the effects of seasonality as:

Variable

Variable 
acronyms 
[units] Satellite product name Spectral bands

Spatial 
resolution

Temporal 
resolution Processing

Temporal 
coverage Source

Biotic

Vegetation Indices NDVI, EVI 
[dimless] MOD13Q1 VIS-NIR 250 m 8 day

Annual average 
and aggregation 
(mean) to 1 km

2005 47

Vegetation 
Continuous Fields

VCF [% Tree 
cover] MOD44B VIS-NIR 250 m Annual Aggregation 

(mean) to 1 km 2005 48

Sub-Saharan Woody Woody [% 
Woody cover] N/A VIS-NIR, microwave 1 km Annual None 2005

At the time of 
publication, 
data are not 
publicly 
available 
(See data 
availability)

Vegetation Optical 
Depth VOD [τ dimless] N/A microwave 0.250 × 

0.250 Annual
Resample 
(nearest 
neighbor) to 
1 km

1992–2011 33

Canopy height Canopy Height 
[m] N/A LiDAR 1 km Annual

Resample 
(nearest 
neighbor) to 
1 km

2005 49

Above Ground 
Biomass AGB [Mg ha−1] N/A VIS-NIR, LiDAR 1 km Annual

Resample 
(nearest 
neighbor) to 
1 km

2005 50

Leaf Area Index
LAI, LAI 
Woody, LAI 
Herbaceous [m2 
m−2]

MOD15A2, LAI 
Woody/Herbaceous VIS-NIR 1 km Annual N/A 2008 51,52

Solar Induced 
Fluorescence

SIF [W 
m−2sr−1mm−1] N/A NIR 20 × 20 monthly

Annual average 
and resample to 
1 km

2015 53

Abiotic

Land surface 
temperature

LST Day, LST 
Night [K] MYD11A2 TIR 1 km 8 day Annual average 2005 14

Rdk Aqua [hr−1]
Rdk Terra [hr−1]

MYD11A2 MOD11A2 TIR 1 km 8 day
Eq. (6) MYD,
Equation (6) 
MOD.

2003–2017 This work

Precipitation Precip, LMAP
[mm year−1] CHIRPS TIR 0.050 × 

0.050 Monthly Annual and 30-
year average 1981–2011 54

Evapotranspiration ET [mm year−1] N/A TIR 1 km Monthly Annual average 2005 55

Table 1.  Data description and source.
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where Rdk represents the annual mean and i is the number of paired day/night observations in that year.

Assumptions and limitations.  The validity of Newton’s law and associated assumptions govern the appli-
cability of remotely sensed Rdk. Newton’s law of cooling is valid when heat transfer is largely due to conduction 
and convection, rather than radiation. If heat transfer is dominated by radiation, then the difference in tempera-
ture of the object and its ambient surroundings should be small27,56,57 to maintain validity of Newton’s law. Further, 
it assumes that the LST is homogenous within each pixel and is cooling towards an ambient temperature that is 
constant and does not change over time.

These assumptions may not be strictly valid when considering the Rdk of a land surface. Failure of the assump-
tions may manifest as a bias, which could potentially be constrained and, if small, may be ignored. Further, the 
temperature of the vegetated surface and its ambient temperature may or may not be uniform or constant, which 
can also bias the estimation of Rdk using (Eq. 4). Equation (4) is an approximation with an assumption that Ta ≪ 
To to avoid explicit estimation of the second term in (Eq. 3). However, if it is non-negligible, the second term in 
(Eq. 3) may introduce bias in the simplistic reduction to (Eq. 4).

These biases may change with location and time depending on local conditions including weather/season, 
vegetation type, clouds, atmospheric conditions and interaction with neighbors. Further, satellitebased observa-
tions are limited to their specific over pass times that may not coincide with the maximum and minimum diurnal 
temperatures. However, these time- and season-based biases may potentially be constrained by examining the 
relationship between the Rdk and variables driving the bias at specific locations. Further, formulation of (Eq. 4) 
does not explicitly model the changing sun angles and/or cloud cover through time. Instead of explicitly modeling 
these potential biases, we maintained consistency in the time of day of sampled observations to constrain the 
impact of these potential biases on Rdk. It should be noted that the formulation of (Eq. 4) also does not consider 
temperatures below freezing, nor does it consider the possibility of active heat sources such as fire. The validity of 
the assumptions may also be sensitive to the scale of observation and spatial distribution of objects.

Data availability
Data used in this work were downloaded from freely available public domains or can be obtained from the 
respective corresponding authors. MODIS data were downloaded from EARTH DATA https://ladsweb.modaps.
eosdis.nasa.gov/. Precipitation and evapotranspiration data were downloaded from U.S. Geological Survey FEWS 
NET Data Portal https://earlywarning.usgs.gov/fews. The sub-Saharan Woody cover data may be requested 
from NPH, and the woody/herbaceous LAI data are available from the Dryad Digital Repository, https://doi.
org/10.5061/dryad.v5s0j.
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