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Regression-based approaches are widely used in causal mediation analysis. The

presence of multiple mediators, however, increases the complexity and difficulty of

mediation analysis. In such cases, regression-based approaches cannot efficiently

address estimation issues. Hence, a flexible approach to mediation analysis is needed.

Therefore, we developed a method for using g-computation algorithm to conduct

causal mediation analysis in the presence of multiple ordered mediators. Compared

to regression-based approaches, the proposed simulation-based approach increases

flexibility in the choice of models and increases the range of the outcome scale. The

Taiwanese Cohort Study dataset was used to evaluate the efficacy of the proposed

approach for investigating the mediating role of early and late HBV viral load in the effect

of HCV infection on hepatocellular carcinoma (HCC) in HBV seropositive patients (n =

2,878; HCV carrier n= 123). Our results indicated that early HBV viral load had a negative

mediating role in HCV-induced HCC. Additionally, early exposure to a low HBV viral load

affected HCC through a lag effect on HCC incidence [OR = 0.873, 95% CI = (0.853,

0.893)], and the effect of early exposure to a low HBV viral load on HCC incidence was

slightly larger than that of a persistently low viral load on HCC incidence [OR = 0.918,

95% CI = (0.896, 0.941)].

Keywords: causal inference,mechanism investigation,mediation analysis, path-specific effect, multiplemediators

INTRODUCTION

Epidemiology studies and other health-related studies often investigate the overall effect of a certain
risk factor or exposure on health-related outcomes. Confirmation of such effects facilitates further
elucidation of possible biological mechanisms. Path analysis and mediation analysis are often used
to investigate causal mechanisms because they can decompose these effects into several pathways
according to the involvement of various mediators of interest (1). Mediation analysis aims to assess
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how exposure affects the outcome of interest through mediators
and sheds deep insight into the underlying mechanism of
the relationship between the exposure and outcome. Causal
mediation analysis, a branch of mediation analysis, explicitly
defines the causal effects of interest based on a counterfactual
(potential) outcome model (2–4). The counterfactual model
denotes the hypothetical outcome (here, it indicates the
“counterfactual level” of a certain variable of interest) an
individual would have, under a hypothetical condition when
the same individual had received a particular intervention on
previous variables. It is called “counterfactual” because this
individual might not have received this intervention in real
world. Since causal mediation analysis accounts for non-linearity
of outcomes and interactions between exposure and mediator,
it expands the use of mediation analysis to more general
conditions (2, 5–7). Additionally, in scenarios involving a single
fixed exposure and a single mediator, several techniques have
been proposed to account for various outcome scales, including
dichotomous variables (8), time-to-event variables (9–12), and
many others (13, 14).

In multiple mediator settings, i.e., settings involving more
than one mediator, however, mediation analysis is often
challenging. One example is the extreme complexity of
decomposing the effects of hepatitis C virus (HCV) infection on
hepatocellular carcinoma (HCC) in the presence of hepatitis B
virus (HBV) activity, which was the motivation for this study
(15, 16). Figure 1 shows that the mediation analysis assumed
causal relationships among HCV infection status, HBV viral
load at baseline, HBV viral load at follow up, and HCC status.
Baseline HBV viral load activity was used to represent the current
status of HBV activity; baseline HCV infection status was used
to represent relatively long-term HCV infection status. That
is, HCV infection status was assumed to precede HBV viral
load, which was considered a reasonable assumption. The role
of HBV viral activity in this mechanism in HBV sero-positive
patients at baseline and during follow up was investigated by
using mediation analysis to decompose the effects into four paths
(Figure 2). Effects in each of the four paths (i.e., the path-specific
effects, PSEs) can be categorized as (1) paths only through change
in early HBV viral load (PSE1); (2) paths only through change
in late HBV viral load (PSE2); (3) paths through change in early
HBV viral load that further impacts late HBV viral load (PSE12);
and (4) paths not through change in early or late HBV viral
load (PSE0). Decomposition of the overall effect into four PSEs
facilitates understanding of the role of HBV viral activity and
when the role of HBV viral activity is critical. These data can
then be used to reduce the HCC incidence in patients with dual
virus infection.

Before conducting mediation analysis in this case,
the two settings must be differentiated according to the
relationships between mediators. In the first setting, mediators
are independent of each other conditioned on all previous
covariates, including baseline confounders and the exposure.
In this setting, which is also referred to as “parallel” or “non-
ordered” multiple mediators, the motivating example is rational
only if early HBV viral load does not affect late HBV viral
load. The standard causal mediation analysis framework for a

FIGURE 1 | Causal relationship among HCV infection status (HCV), HBV viral

load at baseline (HBV1), HBV viral load at follow-up (HBV2), and HCC

status (HCC).

FIGURE 2 | Four path-specific effects (PSEs), as well as four interventional

PSEs, to be decomposed from the overall effect of HCV infection on the

incidence of HCC. PSE1: the path through the HBV1 only; PSE2: the path

through the HBV2 only, PSE12: the path through HBV1 which further impacts

HBV2; and PSE0: the path not through HBV1 or HBV2. PSE, path-specific

effect; HCV, hepatitis C virus; HBV, hepatitis B virus; HCC,

hepatocellular carcinoma.

single mediator is easily extended to this setting by performing
a sequential mediation analysis of each mediator. Notably,
methods have also been developed for simultaneous analysis
of parallel mediators (17, 18). Apparently, however, the above
parallel setting does not fit our motivating example since early
HBV viral activity would surely affect viral activity at follow up.
In the case of early HBV viral activity, the alternative setting,
“ordered” or “sequential” multiple mediators, is reasonable.
Unfortunately, effect decomposition in this setting is infeasible
since some PSEs cannot be identified by empirical data without
additional strong assumptions (15, 19–21). For example, to
identify full PSEs in the presence of two ordered mediators, the
assumption of independence between two counterfactuals of the
mediator is proposed for identification (21). This independence
assumption is extremely strong and unrealistic. Without further
assumptions, only partial effect decomposition, which evaluates
the cumulative PSEs, can be achieved.

Specifically, only PSE2, PSE0, and the sum of PSE1 and PSE12
are identifiable. However, PSE1 and PSE12 cannot be further
distinguished, even without time-varying and unmeasured
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baseline confounders. Two strategies for resolving this problem
are possible. First, the overall effect can be decomposed into
the three components described above (16, 22, 23). We can
further pool all ordered mediators as a single mediator, and
decompose the total effect into effect either through or not
through this pooled mediator (18, 20). The second approach
is to measure the upper and lower bounds of PSE through
sensitivity analysis under causal framework (24, 25). However,
point estimate of PSE still cannot be obtained through this
method (21). Previously, Lin and VanderWeele proposed an
interventional approach to estimate analogs of PSEs under no-
unmeasured-confounding assumptions with a regression-based
approach (26). The concepts of the interventional approach
and PSE were also adopted by VanderWeele, Vansteelandt,
and Robins (20) for mediation analysis with a single mediator
in the presence of an exposure-induced mediator-outcome
confounder. Note that their work only derives the direct
effect, the sum of two PSEs passed through the mediator,
and the indirect effect, the sum of two PSEs without passing
through the mediator. Meanwhile, Vansteelandt and Daniel
also proposed a new interventional approach, which has no
assumption of structure among mediators, for deriving PSEs
(27), but different from Lin and VanderWeele’s method, they
still cannot distinguish PSE12 from the other PSEs. A limitation
of Lin and VanderWeele’s method is that the link function
of outcome model has to be linear or log-linear, and that
it cannot be adapted for a non-linear or generalized linear
models. Moreover, unlike the analysis of overall effect, the
analytical solutions for all PSEs estimates vary substantially in
different models even when the linear function of outcome
model is linear or log-linear. Therefore, the software of
the regression-based approach can only be applied to few
model choices.

To remedy this research gap, we adopted the simulation-
based approach based on g-computation algorithm to provide
a flexible computational algorithm for the estimation of
causal mediation analysis. g-computation algorithm was first
introduced by Robins in 1986 to estimate the causal effect
of a time-varying exposure in the presence of time-varying
confounders that are affected by exposure (3). Recently, the
simulation-based approach has been widely used for standard
causal mediation analysis (27–34). Thesemethods usually involve
using maximum likelihood estimation (MLE) to fit a set of
parametric models and then using g-computation algorithm
and bootstrapping methods to generate point and interval
estimates, respectively. This simulation-based approach provides
the flexibility to choose models and variables without considering
an analytic form. This approach also obtains more stable
and efficient estimates compared to weighted approach (14,
31, 35). Therefore, simulation-based approach is useful for
investigating mechanisms when the outcome variable does not
fit the requirements of a linear regression model. Therefore, this
study used this approach to develop a method of performing
mediation analysis in scenarios involving two ordered multiple
mediators. The proposed method was then used investigate
the mechanisms through which HCV induces HCC through
HBV activity.

FIGURE 3 | Relation among exposure A, two ordering mediators M1 and M2,

outcome Y, and covariates C. A: exposure, M1: the first mediator, M2: the

second mediator, Y: outcome, C: covariates.

MATERIALS AND METHODS

Data Description of the REVEAL-HBV
Study
This study was motivated by the Risk Evaluation of Viral Load
Elevation andAssociated Liver Disease/Cancer–Hepatitis B Virus
(REVEAL-HBV) study (36). The details of the REVEAL-HBV
study design and participant enrollment have been illustrated
in literatures (36–39). 23,820 Taiwanese residents aged 30–65
years were recruited from 1991 to 1992. Among the participants,
2,878 were HBV-positive, of which 188 developed HCC during
the follow-up period. Written informed consent for interview
questionnaires, health examinations, biospecimen collection, and
data linkage of health status with death certification profiles and
National Cancer Registry were obtained. Blood samples collected
at enrollment were examined for seromarkers and viral load
of HBV and HCV. Newly diagnosed HCC was recorded using
computerized data linkage with National Cancer Registry and
death certification systems.

Notation, Definition, and Effect
Decomposition for Dichotomous Outcome
Let A denote the exposure, Y a dichotomous outcome, M1 the
first mediator, M2 the second mediator, and C a set of baseline
covariates. For example, A is HCV infection status, Y is an HCC
event before the end of follow up, M1 is early HBV viral load,
and M2 is late HBV viral load. Let A =1 and A = 0 denote
two hypothetical levels of exposure: HCV infection and non-
infection, respectively. Figure 3 graphically illustrates the causal
relationships among A, Y, M1, M2, and C based on substantive
prior knowledge. Figure 4 is the case of more than two mediators
as well as time-varying mediator-outcome confounders, which
are affected by exposure. For simplicity, however, we assume
the absence of time-varying confounders, and we assume the
presence of only two ordered mediators of interest.

Counterfactual outcome models are used to define four
PSEs corresponding the four paths in Figure 2 based on causal
theory (2–6, 19, 40). For the individual i, Yi(a) denotes the
counterfactual level of Yi if this individual had received an
intervention on exposure A as level a. Similarly, M2i(a, m1)
denotes the counterfactual level of M2i if this individual had
received an intervention on exposure A as level a and on the first
mediator M1i as level m1. Here, the notation can be simplified by
removing the subscript i.
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FIGURE 4 | Relation among exposure A, three ordering mediators M1, M2,

and M3, outcome Y, baseline covariates C, and time-varying

mediator-outcome confounder C1. A: exposure, M1: the first mediator, M2: the

second mediator, Y: outcome, C: baseline covariates, C1: time-varying

mediator-outcome confounder.

For a dichotomous outcome, the total effect may be expressed
on risk difference (RD), risk ratio (RR), or odds ratio (OR) scale.
Although software used to perform simulation-based approaches
provides the results of all scales, the OR scale is used throughout
this discussion since OR is the most frequently used scale for
dichotomous outcomes. The total effect in OR scale, ORTE(1,0),
is defined as Odds(Y(1))/Odds(Y(0)), where Odds(B) is defined
as Pr(B = 1)/Pr(B = 0) for any dichotomous variable B [e.g. Y,
Y(1), or Y(0)]. The definitions of RD and RR scales are detailed
in Appendix A.

When investigating a mechanism with two mediators M1 and
M2 of interest, the total effect (ORTE) can be decomposed into
four PSEs: path not through M1 or M2; path through M1 only;
path through M2 only; and path through M1 and then through
M2; these four PSEs are expressed in OR scale as ORPSE0, ORPSE1,
ORPSE2, and ORPSE12, respectively, and are defined as follows:

ORPSE0 = Φ(1, 0, 0, 0)/Φ(0, 0, 0, 0)

ORPSE1 = Φ(1, 1, 0, 0)/Φ(1, 0, 0, 0)

ORPSE2 = Φ(1, 1, 1, 0)/Φ(1, 1, 0, 0)

ORPSE12 = Φ(1, 1, 1, 1)/Φ(1, 1, 1, 0) (1)

where Φ(a1,a2,a3,a4) is defined as
Odds(Y(a1,M1(a2),M2(a3,M1(a4)))). Here, Y(a1,
M1(a2),M2(a3,M1(a4))) denotes the counterfactual value of
outcome Y if the exposure is set to a1, the first mediator is set
to M1(a2), and the second mediator is set to M2(a3,M1(a4)) (or
the counterfactual value of M2 if exposure is set to a3 and first
mediator is set to M1(a4)). The ORTE is the product of four PSEs
in OR scale, which can be expressed as

ORTE = ORPSE0×ORPSE1×ORPSE2×ORPSE12 (2)

While Equation (1) gives a definition of four PSEs decomposed
from TE, the decomposition of TE is not unique. For
example, ORPSE0 = Φ(1,1,1,1)/Φ(0,1,1,1), ORPSE1 =

Φ(0,1,1,1)/Φ(0,0,1,1), ORPSE2 = Φ(0,0,1,1)/Φ(0,0,0,1), and

ORPSE12 = Φ(0,0,0,1)/Φ(0,0,0,0) are alternative decomposition
of TE. For two sequential mediators, 24 possible decompositions
have been provided in the previous study (21). This work
primarily focuses on the decomposition type defined in Equation
(1). The following identification and estimation are valid no
matter which decomposition is used.

Interventional Approach to Identification
The Φ(a1,a2,a3,a4) can be non-parametrically identified only
when a2 is equal to a4. Consequently, only ORPSE0, ORPSE2

and the sum of ORPSE1 and ORPSE12 are identified by empirical
data. Here, we introduce an interventional approach: instead
of defining the four paths as four traditional PSEs, the
four paths are defined as four interventional path-specific
effects (iPSEs). In an earlier work, these paths were referred
to as randomly interventional analogs of PSEs (26). The
advantage of the interventional approach is that all iPSEs can
be non-parametrically identified under the assumption of no
unmeasured confounding factors. (26). In OR scale, the paths are
denoted ORiPSE0, ORiPSE1, ORiPSE2, and ORiPSE12 and are defined
as follows:

ORiPSE0 = Ψ (1, 0, 0, 0)/Ψ (0, 0, 0, 0)

ORiPSE1 = Ψ (1, 1, 0, 0)/Ψ (1, 0, 0, 0)

ORiPSE2 = Ψ (1, 1, 1, 0)/Ψ (1, 1, 0, 0)

ORiPSE12 = Ψ (1, 1, 1, 1)/Ψ (1, 1, 1, 0) (3)

where Ψ (a1,a2,a3,a4) is defined as
Odds(Y(a1,G1(a2),G2(a3,G1(a4)))). Here, we set the exposure
as a1, the first mediator as G1(a2), and the second mediator
as G2(a3,G1(a4)). For any value of a and m, G1(a) is the
random draw of M1(a), and G2(a,m1) is the random draw
of M2(a,m1). In this setting, Y(a1,G1(a2),G2(a3,G1(a4)))
denotes the counterfactual value of outcome Y . Consequently,
G2(a3,G1(a4)) is the random draw of M2(a3,G1(a4)) while
G1(a4) is the random draw of M1(a4). As in the conventional
definition, the interventional definition for each path replaces the
counterfactual level of each mediator with its random draw. We
further define the product of four ORiPSE as the interventional
total effect (iTE), which can be expressed in OR scale as the
following equation:

ORiTE = ORiPSE0×ORiPSE1×ORiPSE2×ORiPSE12 (4)

TheORiTE are very similar to the standardORTE but not identical
(14, 35). Therefore, as in the effect decomposition of ORTE, the
interventional decomposition can be viewed as its analog. The
interpretations obtained when using iTE and iPSE, which are
defined according to the stochastic interventions, differ from
those of TE and PSE. These interpretations might be the best
interpretations for a mechanism investigation as only the upper
and lower bounds on PSE can be identified by empirical data
even without time-varying confounders. Since iPSEs are PSEs
analogs, iPSEs can still capture pathways. For example, ORiPSE12

is non-zero only under the following conditions: (1) the change
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in the exposure affects the distribution of the first mediator;
(2) the change in the first mediator affects the distribution
of the second mediator; and (3) the change in the second
mediator affects the distribution of the outcome. In extremely
pathological settings, iPSEs may fail to represent the effects
obtained by traditional PSEs. One example is the case of no
overlap among individuals in whom the exposure affects the
first mediator, individuals in whom the first mediator affects
the second mediator, and individuals in whom the second
mediator affects the outcome. In this case, ORiPSE12 is non-
zero while ORPSE12 is under null. In contrast, in the case
of complete overlap among all of these individuals (i.e., in
the case of complete overlap among individuals in whom the
exposure affects the first mediator, individuals in whom the
first mediator affects the second mediator, and individuals in
whom the second mediator affects the outcome) ORiPSE12 is
biased toward null. Further research on this topic in needed
to elucidate the deviation between PSE and its interventional
version in different scenarios and to extend the applications of
our method.

To identify Ψ (a1,a2,a3,a4) and to identify ORiPSE and ORiTE,
four no-unmeasured-confounding assumptions are required:

Assumption (1) no-unmeasured-confounding between the
relationships of exposure and outcome

Assumption (2) no-unmeasured-confounding between the
relationships of mediators and outcome;

Assumption (3) no-unmeasured-confounding between the
relationships of exposure and mediators;

Assumption (4) no-unmeasured-confounding between the
relationships of two mediators.

Assumptions (1) to (4) are essentially used to avoid
confounding bias in estimating iPSEs. It is worthy to note
that a further cross-world assumption of no exposure-induced
mediator-outcome confounder is commonly made in the
conventional approaches of mediation analysis (9, 15, 21)
but is unnecessary to the interventional approach. Using
random draw permits that iPSEs are identifiable even when an
exposure-inducedmediator-outcome confounder presents. Here,
we consider the case without an exposure-induced mediator-
outcome confounder for identification. The identification result
can be straightforwardly extended to the case where mediator-
outcome confounders are affected by exposure directly. Under
assumptions (1) to (4), ORiPSE and ORiTE are identified
as follows:

ORiTE = V(1, 1, 1, 1)/V(0, 0, 0, 0)

ORiPSE0 = V(1, 0, 0, 0)/V(0, 0, 0, 0)

ORiPSE1 = V(1, 1, 0, 0)/V(1, 0, 0, 0)

ORiPSE2 = V(1, 1, 1, 0)/V(1, 1, 0, 0)

ORiPSE12 = V(1, 1, 1, 1)/V(1, 1, 1, 0) (5)

where V(a1, a2, a3, a4) is defined as Q(a1 ,a2 ,a3 ,a4)
(1−Q(a1,a2 ,a3 ,a4) )

and

Q (a1, a2, a3, a4) =
∑

c

∑

m2 ,m1
Pr [Y = 1|C = c, A = a1,M1 = m1,M2 = m2]

Pr (M1 = m1|C = c, A = a2) ×
∑

m
′

1

Pr
(

M2 = m2

∣

∣C = c,A = a3,M1 = m′
1

)

Pr
(

M1 = m′
1

∣

∣C = c,A = a4
)

Pr (C = c ) (6.1)

If both M1 andM2 are continuous variables, (6.1) are replaced
by integrals (6.2):

Q (a1, a2, a3, a4) =
∫

c

∫

m2 ,m1

{Pr [Y = 1|C = c,A = a1,M1 = m1,M2 = m2]

dFM1|C,A (M1 = m1|C = c, A = a2)} ×
∫

m
′

1

{dFM2|C,A,M1

(

M2 = m2

∣

∣C = c, A = a3,M1 = m′
1

)

dFM1|C,A

(

M1 = m′
1

∣

∣C = c, A = a4
)

}dFC (c ) (6.2)

A previous work provide the proof for a generalized case in the
presence of time-varying confounders (26). Appendix A defines
iPSEs in RD and RR scales.

A logistic regression or other non-linear model can be used
to estimate the conditional probability of outcome. Without
assuming a rare disease (conditional probability of outcome
< 10%), Q(a1,a2,a3,a4) cannot be adequately approximated
by a closed form. Consequently, a regression-based method
is inapplicable, which was our motivation for developing the
proposed simulation-based approach. In the simulation-based
approach, the g-computation algorithm for iPSE is used for point
estimation, and bootstrapping procedures are used for interval
estimation. Since it does not consider the existence of the analytic
form for all estimations, the simulation-based approach provides
flexibility in the selection of statistical models.

Simulation-Based Approach for Estimation
In the proposed simulation-based approach, we use g-
computation algorithm for iPSE point estimation and
bootstrapping procedures for interval estimation. First, we
build parametric models for the outcome and two mediators.
For example, if two mediators are continuous variables and the
outcome is a binary variable, three regression models are built:

logit (Pr (Y = 1|A = a, M1 = m1, M2 = m2, C = c))

= θ0 + θ1a+ θ2m1 + θ3m2 + θcc (7.1)

E (M2|A = a, M1 = m1, C = c)

= β0 + β1a+ β2m1 + βcc (7.2)

E (M1|A = a, C = c) = γ0 + γ1a+ γcc (7.3)
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The simulation-based approach allows for flexible selection
of statistical models. Without considering the existence of the
analytic form for all estimation, we can use any link function
such as complementary log or probit function. Quadratic term
or even log transformation or exposure and an interaction term
between the exposure and the first mediator in model (7.1) can
be included:

clog
(

−log (1− Pr (Y = 1|A = a, M1 = m1, M2 = m2, C = c))
)

= θ0 + θ1a+ θ1sa
2 + θ1l log (a)

+θ2m1 + θ12am1 + θ3m2 + θcc (8)

After building parametric models for two mediators and
outcome, we fit these models and obtainMLEs for all parameters.
Based on all MLEs, we simulate the point estimations Q(1,1,1,1),
Q(1,1,1,0), Q(1,1,0,0), Q(1,0,0,0), and Q(0,0,0,0) based on
equation (6), as well as four ORiPSE and ORiTE based on
the definition in (5). We generate confidence intervals by
bootstrapping for the PSE inference as follows.

(step 1) Construct a regression model for conditional
distributionM1, M2, and Y .

(1a) Construct a regression model for M1 on A and
all confounders.

(1b) Construct a regression model for M2 on M1, A and
all confounders.

(1c) Construct a regression model for Y on M2, M1, A and
all confounders.

For example, we can construct models using the following
procedure as models (7.1)–(7.3):

M1 = θ1,0 + θ1,aA+ θ̃1,cC̃ + ε1

M2 = θ2,0 + θ2,aA+ θ2,1M1 + θ̃2,cC̃ + ε2

uy =
[

1+ exp
(

−
(

θy,0 + θy,aA+ θy,1M1 + θy,2M2 + θ̃y,cC̃
))]−1

C̃ =
(

C1,C2, . . . ,Cnc

)T

θ̃1,c =
(

θ1,c1 , θ1,c2 , . . . , θ1,cnc

)

θ̃2,c =
(

θ2,c1 , θ2,c2 , . . . , θ2,cnc

)

θ̃y,c =
(

θy,c1 , θy,c2 , . . . , θy,cnc
)

Y ∼ Bernoulli
(

µy

)

, ε1 ∼ normal(0, σ 2
1 ), ε2 ∼ normal(0, σ 2

2 )

(step 2) Fit models with real data to obtain MLE for all
parameters, i.e.

θ̂1,0, θ̂1,a,
ˆ̃
θ1,c, θ̂2,0, θ̂2,a, θ̂2,1,

ˆ̃
θ2,c, θ̂y,0, θ̂y,a, θ̂y,1, θ̂y,2,

ˆ̃
θy,c, σ̂ 2

1 ,

and σ̂ 2
2 .

(step 3) Conduct g-computation algorithm using MLE
and bootstrap.

(3a) Randomly sample the confounders C̃ with replacement
and intervene the exposure A as 1. Use models built in Step
1 and MLEs in Step 2 to generateM1 [denoted as G1 (1 )].

(3b) Randomly sample the confounders C̃ with replacement,
and intervene the exposure A as 0. Use models built in Step
1 and MLEs in Step 2 to generateM1 [denoted as G1 (0 )].

(3c) Randomly sample the confounders C̃, G1 (1) with
replacement, and intervene the exposure A as 1 and M1 as
G1 (1). Use models built in Step 1 and the MLEs in Step 2 to
generateM2 [denoted as G2 (1, G1 (1) )].

(3d) Randomly sample the confounders C̃, G1 (0) with
replacement, and intervene the exposure A as 1 and M1 as
G1 (0). Then use models from Step 1 and MLEs in Step 2 to
generateM2 [denoted as G2 (1, G1 (0) )].

(3e) Randomly sample the confounders C̃, G1 (0) with
replacement, and intervene the exposure A as 0 and M1 as
G1 (0). Use models constructed in Step 1 and MLEs from
Step 2 to generateM2 [denoted as G2 (0, G1 (0) )].

(3f) Randomly sample the confounders C̃, G1 (1),
G2 (1, G1 (1)) with replacement, and intervene the
exposure A as 1,M1 asG1 (1), andM2 asG2 (1, G1 (1)). Use
models built in Step 1 and MLEs from Step 2 to generate Y
[denoted as Y (1, G1 (1) , G2 (1, G1 (1)) )].

(3g) Randomly sample the confounders C̃, G1 (1),
G2 (1, G1 (0)) with replacement, and intervene the
exposure A as 1,M1 asG1 (1), andM2 asG2 (1, G1 (0)). Use
models built in Step 1 and MLEs from Step 2 to generate Y
[denoted as Y (1, G1 (1) , G2 (1, G1 (0)) )].

(3h) Randomly sample the confounders C̃, G1 (1),
M2 (0, G1 (0)) with replacement, and intervene the
exposure A as 1,M1 asG1 (1), andM2 asG2 (0, G1 (0)). Use
models built in Step 1 and MLEs from Step 2 to generate Y
[denoted as Y (1, G1 (1) , G2 (0, G1 (0)) )].

(3i) Randomly sample the confounders C̃, G1 (0),
G2 (0, G1 (0)) with replacement, and intervene the
exposure A as 1,M1 asG1 (0), andM2 asG2 (0, G1 (0)). Use
models built in Step 1 and MLEs from Step 2 to generate Y
[denoted as Y (1, G1 (0) , G2 (0, G1 (0)) )].

(3j) Randomly sample the confounders C̃, G1 (0),
G2 (0, G1 (0)) with replacement, and intervene the
exposure A as 0,M1 asG1 (0), andM2 asG2 (0, G1 (0)). Use
models built in Step 1 and MLEs from Step 2 to generate Y
[denoted as Y (0, G1 (0) , G2 (0, G1 (0)) )].

(3k) Compute the means Y (a1, G1 (a2) , G2 (a3, G1 (a4))),
for i = 1, 2, 3, 4, and ai ∈ {0, 1}, which is
the g-computation algorithm approximation estimation of
Q (a1, a2, a3, a4, ). Based on formulae (5), we can obtain the
point estimations of iTE and the four iPSEs in the OR scale.
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(3l) Bootstrap to obtain the standard errors and
corresponding 95% confidence intervals. An R package
for this analysis can be downloaded free from webpage
http://shenglin.blog.nctu.edu.tw/methodology/, or see the
Supplementary Material.

A flow chart for the proposed simulation-based approach is
provided in Figure 5. In the approach above, randomly sampling
the confounders can be replaced by just using the observed
confounders if the sample size is large enough. For a small
sample size, the technique of sampling the confounders with
a sufficiently large sampling size could improve the stability
of the g-computation algorithm approximation. The proposed
estimation algorithm in Step 1 demonstrates how to construct
regression models for mediators and the outcome with main
effects. In practice use, the specifications of these regression
models are flexible and are allowed to include any interaction
effect. We evaluated the performance of the proposedmethod via
a simulation study. The detail of simulation settings is provided
in Appendix B, and the result is shown in Section Simulation
Study. In Section Simulation Study, we show the operating
characteristics of the new proposed estimators and compare them
with traditional linear SEM estimators. Additionally, we add
mediator interactions into the outcome model for evaluating the
characteristics of traditional SEM under model misspecification.
We evaluate the two methods by calculating the bias, the
empirical standard errors (ESEs), estimated standard errors
(SSEs), and coverage rates (COVs). ESE is calculated by the
sample standard deviation of estimates over simulations, and
SSE is computed by averaging the standard error estimated
by bootstrap resampling for each replication. ESEs and SSEs
from the bootstrap procedure agree closely for the estimators
of iPSEs, implying that the bootstrap procedure provides valid
inference. Coverage rate is a proportion of the time that the 95%
confidence interval obtained by bootstrap covers the true value
of the parameter. In the simulation study, COVs were calculated
by using 1,000 replications. If all assumptions we used in the
approach are satisfied, COVs should be close to 95%. By contrast,
if any assumptions are not met, COVs would be biased.

RESULTS

Simulation Study
A simulation study is conducted in Appendix B to show
the properties of the proposed estimators and compare them
with traditional linear SEM estimators. The corresponding
simulation code is provided in Appendix C. Results are shown
in Appendix Tables 1 and 2. Without mediator interaction (i.e.
θy,3 = 0), both iPSE and SEM methods have small biases. The
ESE and SSE values are similar in both methods. iPSE produced
slightly larger ESE and SSE values than the SEM method. The
coverage rates of both methods are approximately 0.95. When
there exists interaction between mediators (i.e. θy,3 = 1, 2, 3),
the biases for SEM method increase while the coverage rates
approach zero with the exception of iPSE0 because the SEM
estimate for PSE0 is still unbiased under this scenario. The iPSE
method yielded small bias, and the coverage rate was remained
approximately 95%.

FIGURE 5 | Flow chart for the proposed simulation-based approach. M1, M2,

and Y represent the first mediator, second mediator, and

outcome, respectively.

Application to Taiwanese REVEAL-HBV
Study
The performance of the proposed method was tested in the
Taiwanese REVEAL-HBV dataset. Specifically, the method was
used to investigate the role of HBV viral load in different time
windows as a mediating mechanism in HCV-induced HCC.
Here, the outcome was HCC status at the end of follow up, and
the exposure of interest was HCV status at enrollment. Mediators
M1 and M2 were HBV viral load at baseline and at follow up,
respectively. Baseline confounders included gender, age, smoking
status, and ALT level. All analyses were performed in R 3.4.1.

Path-specific effects were estimated using g-computation
algorithm (number = 100,000) and bootstrap (resampling size
= 1,000). The overall OR of HCV to HCC was 3.122 [95 % CI
= (3.108, 3.226)]. For the four paths, the OR of HCV to HCC
was 3.910 [95 % CI =(3.785, 4.035)] without mediation by (i.e.,
without change in) HBV viral load(iPSE0) ; 0.873 (95 % CI =
(0.853, 0.893) with mediation by baseline but not late HBV viral
load (iPSE1) ; 0.994 [95 % CI=(0.971, 1.018)] with mediation by
late but not baseline HBV viral load (iPSE2); and 0.918 [95 % CI
= (0.896, 0.941)] with mediation by both baseline and late HBV
viral load (iPSE12). Note that a high OR for PSE0 implies that
HBV viral load change conceals the detrimental effect of HCV on
HCC. Table 1 lists the above results along with RD and RR scales.

DISCUSSION

Three common approaches to causal mediation analysis include
regression-based method, weighting method, and simulation-
based method. Since the simulation-based estimation is an
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TABLE 1 | Total interventional effect of HCV infection on HCC incidence: four

interventional path-specific effects with HBV viral load at baseline (M1), HBV viral

load at follow-up (M2) as mediators in scales for risk difference, risk ratio, and

odds ratio.

Estimate SE 95 % CI

(lower bound)

95% CI

(upper bound)

Risk difference

Total effect 0.096 0.001 0.092 0.099

not via M1 or M2 0.127 0.001 0.123 0.130

via M1 only −0.019 0.001 −0.022 −0.015

via M2 only 0.000 0.001 −0.003 0.002

via M1 then via M2 −0.011 0.001 −0.014 −0.007

Risk ratio

Total effect 2.805 0.044 2.718 2.891

not via M1 or M2 3.385 0.050 3.285 3.484

via M1 only 0.893 0.008 0.876 0.911

via M2 only 0.995 0.010 0.975 1.015

via M1 then via M2 0.930 0.009 0.911 0.950

Odds ratio

Total effect 3.122 0.053 3.018 3.226

not via M1 or M2 3.910 0.063 3.785 4.035

via M1 only 0.873 0.010 0.853 0.893

via M2 only 0.994 0.012 0.971 1.018

via M1 then via M2 0.918 0.011 0.896 0.941

HCV, hepatitis C virus; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; SE,

standard error; CI, confidence interval.

approximation of the MLE, it is asymptotically efficient provided
all regression models are correctly specified. Contrarily to
the regression-based method, the weighting estimation cannot
achieve the efficiency bound even if the parametric assumptions
for the weights are correct. Here, our approach is more flexible
as it allows incorporation of non-linear, polynomial or cross-
product interaction terms. Even though OR is the outcome scale
of interest here, our method also allows for other non-linear
outcome scales.

In some applications, portion mediated (PM) is a measure
of interest to assess the proportion of the effect of the exposure
mediated by the mediators. On the risk difference scale for
continuous outcomes, PM for each mediation path is defined
as a ratio of the corresponding iPSE to iTE. For a dichotomous
outcome, a odds ratio scale is adopted to define iPSEs, and
PMs would be defined on the log odds scale (8). Regardless
of on the risk difference scale or the log odds scale, reporting
PMs, however, is generally meaningful only if all of iPSEs are
in the same direction (e.g., all positive or all negative). As the
illustrative example of the Taiwanese REVEAL-HBV dataset, the
effects corresponding to the paths involving HBV were negative
while other effects were positive. In such a case, PM would not be
an appropriate measure to reveal the extent to which mediators
affect the causal effect.

There are several noteworthy limitations. Like all simulation-
based methods, this approach is computationally intensive.
Suppose the time of g-computation algorithm is similar to that
of the regression-based method, the computation time would

be five-hundred-fold if we constructed confidence intervals
by 500 bootstrap repetitions. Note that our approach may
be particularly prone to bias due to model misspecification.
However, this drawback can be resolved by including quadratic
terms for continuous independent variables in regression models
and increasing model flexibility. Moreover, the assumptions
of no unmeasured confounders may be violated and hard to
check. Longitudinal datasets are mostly used to investigate
the causal relationship between the exposure and outcome
variables. Since mediation analysis or path analysis is usually
the secondary analysis of longitudinal datasets, where we mainly
focus on exploration of exposure-outcome relationship instead
of mediator-outcome, mediator-exposure, or mediator-mediator
relationships when collecting confounding variables. We could
include application of sensitivity analysis techniques to address
violations of these assumptions in future research. Furthermore,
estimation of the simulation-based method is unstable when
the sample size is small in relation to the complexity of the
models, though this is not an issue here because the sample
size in Taiwanese HCC cohort is relatively large. It is also
worthy to note that a less complicated model is preferred for
generating more stable estimations despite flexible model choices
in the software.

CONCLUSION

HCC ranks sixth in cancer incidence and third in cancer
mortality and is a major social burden for all nations
(41). Currently, there are about 170 million HCV and 350
million HBV infected cases in the world (42). Our proposed
method partially separates the mechanism of HBV and HCV
infections on the incidence of HCC. Although HBV and HCV
have been confirmed as two etiologic factors for HCC and
classified as human carcinogens by the International Agency for
Research on Cancer (43), their biological mechanisms remains
elusive. Previous studies have shown that HBV and HCV
have subadditive interaction on HCC incidence (44–46), and
that HCV may suppress the expression and duplication of
HBV (47–51). These studies provide evidence that HBV viral
activity change may mask the effect of HCV on the HCC
risk. In addition, a previous study showed that the early HBV
viral activity is an important factor in the development of
HCC (15, 16). However, due to the restriction of traditional
methods, differentiation of the effects of early HBV viral
activity on HCC risk through or not through late HBV
viral activity remained difficult. In this study, we utilized
the interventional approach to show that both pathways are
statistically significant. This result implies that, though the
increased HCC caused by HCV infection is not solely through
the late HBV viral load (iPSE2), both early and late viral
load play important roles in the mechanism. Consequently, the
decreasing HBV viral load in both time-points can partially
prevent the HCC.

Categorical outcomes such as dichotomous or time-to-
event outcomes are common, especially epidemiology and
health-related fields. Although the iPSE can be identified
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non-parametrically, the existing regression-based method
does not have a closed form (i.e., analytic solution) for non-
linear outcome without the rare disease assumption. With
our approach, we can ensure that the effect decomposition
is applicable for non-linear outcome even without the
rare disease assumption. Finally, in our study only allow
measurement taken at the end of study as the outcome.
It is also important to develop methods for settings with
multiple mediators. This can be done by incorporating
time-to-event outcome with survival models such as
Cox proportional hazard model or accelerated failure
time model.

In conclusion, our approach is powerful and
versatile for settings with multiple mediators where
the traditional PSE is not identified. Furthermore,
we facilitate application for mechanism investigation
in more complicated settings in epidemiology and
health science.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available at
http://doi.org/10.1001/jama.295.1.65.

AUTHOR CONTRIBUTIONS

A-ST: conceptualization, formal analysis, software, visualization,
methodology, and writing—original draft. Y-TH: validation and
writing—review and editing. H-IY: data curation, validation, and
writing—review and editing. LL: writing—review and editing.
S-HL: conceptualization, data curation, funding acquisition,
investigation, methodology, project administration, resources,
supervision, writing—original draft, and writing—review and
editing. All authors contributed to the article and approved the
submitted version.

FUNDING

A-ST and S-HL are funded by 109-2636-B-009 -001 (Ministry
of Science and Technology, Taiwan). Y-TH is funded by AS-
CDA-108-M03 (Academia Sinica) and 108-2118-M-001-013-
MY5 (Ministry of Science and Technology, Taiwan).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpubh.
2021.757942/full#supplementary-material

REFERENCES

1. MacKinnon DP. Introduction to statistical mediation analysis. New York, NY:

Routledge. (2008).

2. Pearl J. Causal inference in statistics: An overview. Stat Surv. (2009) 3:96–

146. doi: 10.1214/09-SS057

3. Robins J, A. new approach to causal inference in mortality studies

with a sustained exposure period—application to control of the

healthy worker survivor effect. Mathematical Modelling. (1986)

7:1393–512. doi: 10.1016/0270-0255(86)90088-6

4. Rubin DB. Formal mode of statistical inference for causal effects. J Stat Plan

Inference. (1990) 25:279–92. doi: 10.1016/0378-3758(90)90077-8

5. Robins JM, Greenland S. Identifiability and exchangeability

for direct and indirect effects. Epidemiology. (1992) 143–

55. doi: 10.1097/00001648-199203000-00013

6. Pearl J. Direct and indirect effects. Proceedings of the Seventeenth conference

on Uncertainty in artificial intelligence. San Francisco, CA, USA: Morgan

kaufmann publishers Inc. (2001) p. 411–420.

7. VanderWeele T. Explanation in Causal Inference: Methods for Mediation and

Interaction. New York, NY: Oxford University Press. (2015).

8. VanderWeele TJ, Vansteelandt S. Odds ratios for mediation

analysis for a dichotomous outcome. Am J Epidemiol. (2010)

172:1339–48. doi: 10.1093/aje/kwq332

9. Lange T, Hansen JV. Direct and indirect effects in a survival context.

Epidemiology. (2011) 22:575–81. doi: 10.1097/EDE.0b013e31821c680c

10. Martinussen T, Vansteelandt S, GersterM.Hjelmborg JvB. Estimation of direct

effects for survival data by using the Aalen additive hazards model. J Royal Stat

Soc. (2011) 73:773–88. doi: 10.1111/j.1467-9868.2011.00782.x

11. Tchetgen Tchetgen EJ. On causal mediation analysis with a survival outcome.

Int J Biostat. (2011) 7:1–38. doi: 10.2202/1557-4679.1351

12. VanderWeele TJ. Causal mediation analysis with survival data. Epidemiology

(Cambridge, Mass). (2011) 22:582. doi: 10.1097/EDE.0b013e31821db37e

13. Valeri L, VanderWeele TJ. Mediation analysis allowing for exposure–

mediator interactions and causal interpretation: Theoretical assumptions

and implementation with SAS and SPSS macros. Psychol Methods. (2013)

18:137. doi: 10.1037/a0031034

14. Lin SH, Young J, Logan R, Tchetgen Tchetgen EJ, VanderWeele TJ.

Parametric mediational g-formula approach to mediation analysis with time-

varying exposures, mediators, and confounders. Epidemiology. (2017) 28:266–

74. doi: 10.1097/EDE.0000000000000609

15. Huang Y-T, Yang H-I. Causal mediation analysis of survival

outcome with multiple mediators. Epidemiology. (2017) 28:370–

8. doi: 10.1097/EDE.0000000000000651

16. Huang Y-T, Yang H-I, Liu J, Lee M-H, Freeman JR, Chen C-J. Mediation

analysis of hepatitis B and C in relation to hepatocellular carcinoma risk.

Epidemiology. (2016) 27:14–20. doi: 10.1097/EDE.0000000000000390

17. Taguri M, Featherstone J, Cheng J. Causal mediation analysis with multiple

causally non-ordered mediators. Stat Methods Med Res. (2015) 27:3–

19. doi: 10.1177/0962280215615899

18. VanderWeele TJ, Vansteelandt S. Mediation analysis with multiple mediators.

Epidemiol Method. (2014) 2:95–115. doi: 10.1515/em-2012-0010

19. Avin C, Shpitser I, Pearl J. Identifiability of path-specific effects. Los Angeles,

CA: Department of Statistics, UCLA. (2005).

20. VanderWeele TJ, Vansteelandt S, Robins JM. Effect decomposition in

the presence of an exposure-induced mediator-outcome confounder.

Epidemiology. (2014) 25:300–6. doi: 10.1097/EDE.0000000000

000034

21. Daniel R, De Stavola B, Cousens S, Vansteelandt S. Causal mediation analysis

with multiple mediators. Biometrics. (2015) 71:1–14. doi: 10.1111/biom.12248

22. Huang YT, Cai T. Mediation analysis for survival data using semiparametric

probit models. Biometrics. (2015). doi: 10.1111/biom.12445

23. Huang Y-T, Yang H-I, Liu J, Lee M-H, Freeman JR, Chen C-J. Mediation

analysis of hepatitis b and c in relation to hepatocellular carcinoma risk.

Epidemiology (Cambridge, Mass). (2015) 27:14–20.

24. VanderWeele TJ. Bias formulas for sensitivity analysis for direct

and indirect effects. Epidemiology (Cambridge, Mass). (2010)

21:540. doi: 10.1097/EDE.0b013e3181df191c

25. VanderWeele TJ. Unmeasured confounding and hazard scales: sensitivity

analysis for total, direct and indirect effects. Eur J Epidemiol. (2013) 28:113–

7. doi: 10.1007/s10654-013-9770-6

26. Lin S-H, VanderWeele T. Interventional approach for path-specific effects. J

Causal Inference. (2017) 5. doi: 10.1515/jci-2015-0027

Frontiers in Public Health | www.frontiersin.org 9 January 2022 | Volume 9 | Article 757942

http://doi.org/10.1001/jama.295.1.65
https://www.frontiersin.org/articles/10.3389/fpubh.2021.757942/full#supplementary-material
https://doi.org/10.1214/09-SS057
https://doi.org/10.1016/0270-0255(86)90088-6
https://doi.org/10.1016/0378-3758(90)90077-8
https://doi.org/10.1097/00001648-199203000-00013
https://doi.org/10.1093/aje/kwq332
https://doi.org/10.1097/EDE.0b013e31821c680c
https://doi.org/10.1111/j.1467-9868.2011.00782.x
https://doi.org/10.2202/1557-4679.1351
https://doi.org/10.1097/EDE.0b013e31821db37e
https://doi.org/10.1037/a0031034
https://doi.org/10.1097/EDE.0000000000000609
https://doi.org/10.1097/EDE.0000000000000651
https://doi.org/10.1097/EDE.0000000000000390
https://doi.org/10.1177/0962280215615899
https://doi.org/10.1515/em-2012-0010
https://doi.org/10.1097/EDE.0000000000000034
https://doi.org/10.1111/biom.12248
https://doi.org/10.1111/biom.12445
https://doi.org/10.1097/EDE.0b013e3181df191c
https://doi.org/10.1007/s10654-013-9770-6
https://doi.org/10.1515/jci-2015-0027
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Tai et al. Causal Mediation Analysis With G-Computation

27. Vansteelandt S, Daniel RM. Interventional effects for

mediation analysis with multiple mediators. Epidemiology

(Cambridge, Mass). (2017) 28:258. doi: 10.1097/EDE.00000000000

00596

28. Imai K, Keele L, Tingley D, A. general approach to causal

mediation analysis. Psychol Methods. (2010) 15:309. doi: 10.1037/a00

20761

29. Imai K, Keele L, Tingley D, Yamamoto T. Causal mediation analysis using

R. Advances in social science research using R. Springer. (2010). p. 196:129–

154. doi: 10.1007/978-1-4419-1764-5_8

30. Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. Mediation:

R package for causal mediation analysis. J Stat Softw. (2014) 59:1–

38. doi: 10.18637/jss.v059.i05

31. Wang A, Arah OA. G-computation demonstration in causal mediation

analysis. Eur J Epidemiol. (2015) 30:1119–27. doi: 10.1007/s10654-015-0100-z

32. Taubman SL, Robins JM, Mittleman MA, Hernán MA. Intervening on

risk factors for coronary heart disease: an application of the parametric

g-formula. Int J Epidemiol. (2009) 38:1599–611. doi: 10.1093/ije/

dyp192

33. Hernan JMRaMA. Estimation of the causal effects of time-varying exposures.

In: Fitzmaurice G, Verbeke G, Molenberghs G, editor. Longitudinal Data

Analysis. Boca Raton, FL: Chapman & Hall/CRC. (2009).

34. Westreich D CS, Young JG, Palella F, Tien PC, Kingsley L, Gange SJ, et al.

The parametric g-formula to estimate the effect of highly active antiretroviral

therapy on incident AIDS or death. Stat Med. (2012). doi: 10.1002/si

m.5316

35. Lin SH, Young JG, Logan R, VanderWeele TJ.Mediation analysis for a survival

outcome with time-varying exposures, mediators, and confounders. Stat Med.

(2017) 36:4153–66. doi: 10.1002/sim.7426

36. Chen C-J, Yang H-I, Su J, Jen C-L, You S-L, Lu S-N, et al. Risk of

hepatocellular carcinoma across a biological gradient of serum hepatitis

B virus DNA level. JAMA. (2006) 295:65–73. doi: 10.1001/jama.295

.1.65

37. Chen CL, Yang HI, Yang WS, Liu CJ, Chen PJ, You SL, et al. Metabolic

factors and risk of hepatocellular carcinoma by chronic hepatitis B/C

infection: a follow-up study in Taiwan. Gastroenterology. (2008) 135:111–

21. doi: 10.1053/j.gastro.2008.03.073

38. Iloeje UH, Yang HI, Jen CL, Su J, Wang LY, You SL, et al. Risk

and predictors of mortality associated with chronic hepatitis B infection.

Clin Gastroenterol Hepatol. (2007) 5:921–31. doi: 10.1016/j.cgh.2007.

06.015

39. Lee M-H, Yang H-I, Lu S-N, Jen C-L, Yeh S-H, Liu C-J, et al.

Hepatitis C virus seromarkers and subsequent risk of hepatocellular

carcinoma: long-term predictors from a community-based cohort study.

Journal of Clinical Oncology. (2010) 28:4587–93. doi: 10.1200/JCO.2010.2

.1500

40. Hernán M, A. definition of causal effect for epidemiological

research. J Epidemiol Community Health. (2004) 58:265–

71. doi: 10.1136/jech.2002.006361

41. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer

J Clin. (2005) 55:74–108. doi: 10.3322/canjclin.55.2.74

42. Lauer GM, Walker BD. Hepatitis C virus infection. N Engl J Med. (2001)

345:41–52. doi: 10.1056/NEJM200107053450107

43. WHO. IARC Working Group on the Evaluation of Carcinogenic Risks to

Humans. Vol. 59. International Agency for Research on Cancer, & World

Health Organization. (1994). Available online at: https://monographs.iarc.

who.int/wp-content/uploads/2018/06/mono93.pdf

44. Huang Y-T, Jen C-L, Yang H-I, Lee M-H, Su J, Lu S-N, et al.

Lifetime risk and sex difference of hepatocellular carcinoma among

patients with chronic hepatitis B and C. J Clin Oncol. (2011) 29:3643–

50. doi: 10.1200/JCO.2011.36.2335

45. Kuper H, Tzonou A, Kaklamani E, Hadziyannis S, Tasopoulos N, Lagiou P,

et al. Hepatitis B and C viruses in the etiology of hepatocellular carcinoma; a

study in Greece using third-generation assays. Cancer Causes Control. (2000)

11:171–5. doi: 10.1023/A:1008951901148

46. Sun C-A, Wu D-M, Lin C-C, Lu S-N, You S-L, Wang L-Y, et al. Incidence

and cofactors of hepatitis C virus-related hepatocellular carcinoma: a

prospective study of 12,008 men in Taiwan. Am J Epidemiol. (2003) 157:674–

82. doi: 10.1093/aje/kwg041

47. Tsiquaye K, Tovey G, Kessler H, Hu S, Lu XZ, Zuckerman A, et al. Non-A,

non-b hepatitis in persistent carriers of hepatitis b virus. J Med Virol. (1983)

11:179–89. doi: 10.1002/jmv.1890110302

48. Liaw YF. Role of hepatitis C virus in dual and triple hepatitis virus infection.

Hepatology. (1995) 22:1101–8. doi: 10.1002/hep.1840220413

49. Koike K, Yotsuyanagi H, Moriya K, Kurokawa K, Yasuda K, Lino S, et al.

Dominant replication of either virus in dual infection with hepatitis viruses

B and C. J Med Virol. (1995) 45:236–9. doi: 10.1002/jmv.1890450222

50. Shih CM, Lo SJ, Miyamura T, Chen SY, Lee Y. Suppression of hepatitis B virus

expression and replication by hepatitis C virus core protein in HuH-7 cells. J

Virol. (1993) 67:5823–32. doi: 10.1128/jvi.67.10.5823-5832.1993

51. Schüttler CG, Fiedler N, Schmidt K, Repp R, Gerlich WH, Schaefer S.

Suppression of hepatitis B virus enhancer 1 and 2 by hepatitis C virus core

protein. J Hepatol. (2002) 37:855–62. doi: 10.1016/S0168-8278(02)00296-9

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Tai, Huang, Yang, Lan and Lin. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Public Health | www.frontiersin.org 10 January 2022 | Volume 9 | Article 757942

https://doi.org/10.1097/EDE.0000000000000596
https://doi.org/10.1037/a0020761
https://doi.org/10.1007/978-1-4419-1764-5_8
https://doi.org/10.18637/jss.v059.i05
https://doi.org/10.1007/s10654-015-0100-z
https://doi.org/10.1093/ije/dyp192
https://doi.org/10.1002/sim.5316
https://doi.org/10.1002/sim.7426
https://doi.org/10.1001/jama.295.1.65
https://doi.org/10.1053/j.gastro.2008.03.073
https://doi.org/10.1016/j.cgh.2007.06.015
https://doi.org/10.1200/JCO.2010.29.1500
https://doi.org/10.1136/jech.2002.006361
https://doi.org/10.3322/canjclin.55.2.74
https://doi.org/10.1056/NEJM200107053450107
https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono93.pdf
https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono93.pdf
https://doi.org/10.1200/JCO.2011.36.2335
https://doi.org/10.1023/A:1008951901148
https://doi.org/10.1093/aje/kwg041
https://doi.org/10.1002/jmv.1890110302
https://doi.org/10.1002/hep.1840220413
https://doi.org/10.1002/jmv.1890450222
https://doi.org/10.1128/jvi.67.10.5823-5832.1993
https://doi.org/10.1016/S0168-8278(02)00296-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles

	G-Computation to Causal Mediation Analysis With Sequential Multiple Mediators—Investigating the Vulnerable Time Window of HBV Activity for the Mechanism of HCV Induced Hepatocellular Carcinoma
	Introduction
	Materials and Methods
	Data Description of the REVEAL-HBV Study
	Notation, Definition, and Effect Decomposition for Dichotomous Outcome
	Interventional Approach to Identification
	Simulation-Based Approach for Estimation

	Results
	Simulation Study
	Application to Taiwanese REVEAL-HBV Study

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


