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BACKGROUND

Lung cancer is one of the leading causes of death, accounting
for approximately 23.3% of all cancer-related deaths in

| SangJin Lee’ | Tae-Won Jang’

Abstract

Background: The present study aimed to evaluate the performance of several machine
learning (ML) algorithms in predicting 1-year afatinib continuation and 2-year sur-
vival after afatinib initiation and to identify the differences in survival outcomes
between ML-classified strata.

Methods: Data that were also used in the RESET study were retrospectively collected
from 16 hospitals in South Korea. A stratified random sampling method was applied to
split the data into training and test sets (70:30 split ratio). Clinical information, such as
age, sex, tumor stage, smoking, performance status, metastasis, type of metastasis, dose
adjustment, and pathologic information on EGFR mutations were inputted. Training
was performed using eight ML algorithms: logistic regression, decision tree, deep neural
network, random forest, support vector machine, boosting, bagging, and the naive Bayes
classifier. The model performance was assessed based on sensitivity, specificity, and
accuracy. Area under the receiver operator characteristic curve (AUC) was calculated
and compared between the ML models using DeLong’s test. A Kaplan-Meier
(KM) curve was used to visualize the identified strata obtained from the ML models.
Results: No significant differences in the input variables were observed between the
training and test datasets. The best-performing models were support vector machine
in predicting 1-year afatinib continuation (AUC 0.626) and decision tree in 2-year
survival after afatinib start (AUC 0.644), although the performances of the ML models
were comparable and did not display any predictive roles. KM analysis and log-rank
test revealed significant differences between the strata identified from the ML model
(p < 0.001) in terms of both time-on-treatment (TOT) and overall survival (OS).
Conclusion: The performances of ML models in our study found no discernible roles
in predicting afatinib-related outcomes, although the identified strata revealed differ-
ent TOT and OS in the KM analysis. This implies the strength of ML in predicting the
survival outcome, as well as the limitation of electronic medical record-based variables
in ML algorithms. Careful consideration of variable inclusion is likely to improve the
general model performance.
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South Korea in 2020." Although a decline in lung cancer
development is observed in some countries,” the trend of inci-
dence differs according to the histologic type. For example, in
Brazil, the incidence of adenocarcinoma (ADC) has been
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increasing, and it is the predominant histological type.” Simi-
lar results were observed in an analysis from South Korea; the
rate of squamous cell carcinoma (SQC) is decreasing, while
that of ADC steadily increasing.* Furthermore, lung cancer
incidences in South Korea are decreasing among men and
increasing in the female population.*

With the rise of precision approaches in the manage-
ment of non-small-cell lung cancer (NSCLC), application
of machine learning (ML) has been highlighted for indi-
vidualized cancer detection, diagnosis, treatment, and
prognosis prediction. The ML technique is feasible for the
identification of early lung cancer, where more than 20 fea-
tures are imputed for model production.” Another study,
combining four clinical and 40 radiomic features, sug-
gested the role of the ML approach in identifying the his-
tologic subtypes of lung cancer.® The ML algorithm may
also help clinicians select appropriate candidates for
immune checkpoint inhibitors.” In terms of risk stratifica-
tion, an ML model that derived 34 features predicted
recurrence and overall survival (OS) more accurately com-
pared to the TNM staging system.®

This study aimed to evaluate the performance of several
ML algorithms in predicting the outcome of afatinib treat-
ment in patients with advanced EGFR-mutated NSCLC in
South Korea, using data collected from multiple medical
centers.

METHODS
Datasets

The present study utilized the data in the RESET study,’
which evaluated the real-world effectiveness of sequential
treatment with afatinib and osimertinib in patients with
EGFR-mutated advanced NSCLC. Data on all patients
and variables were extracted from the cohort collected by
the Korean Academy of Tuberculosis and Respiratory
Disease. The cohort retrospectively gathered electronic
medical record (EMR)-based information on patients
with advanced EGFR-mutated NSCLC. A total of 16 hos-
pitals in South Korea participated in the data registration
from 2014 to 2019.

The study protocol was approved by the Institutional
Review Board of Kosin University Gospel Hospital (KUGH
no. 2019-07-038). The study was conducted following the
Declaration of Helsinki. All procedures were performed in
accordance with relevant guidelines and regulations.

Variables

The following two dichotomized (yes or no) factors related
to afatinib treatment outcomes were adopted as dependent
variables: (1) 1-year afatinib continuation, which was the
period between the first dose of afatinib and discontinuation
of the drug for any reason, including tumor progression,

drug toxicity, or death; and (2) 2-year survival after the initi-
ation of afatinib, which was the length of time from the start
of afatinib to death from any cause.

Explanatory input variables were selected from the initial
cohort database: age; sex; tumor stage classified based on the
8th edition of the American Joint Committee on Cancer
staging system; Eastern Cooperative Oncology Group per-
formance status; number of metastatic organs; presence of
the brain, liver, bone, and pleural metastasis; smoking status;
EGFR mutation status categorized as 19 deletion, L858R,
and others; type of brain metastasis (single versus multiple
with or without leptomeningeal seeding); and dose modifi-
cation for afatinib.

Statistics

All statistical analyses were performed using the R software
version 4.2.1 for Windows (R Development Core Team) and
Python in the Google Colaboratory. The threshold level of
statistical significance was set at p < 0.05. Clinical parame-
ters were summarized as frequencies and percentages. Com-
parisons between the test and training datasets were
summarized using chi-squared or Fisher’s exact tests. Before
individual model construction, a hold-out method was
applied to split the data into training and test datasets. This
process was performed using the R package caret, with 70%
of the data going to the training set and the remaining 30%
to the test set. The function createDataPartition splits the
dataset using a stratified random sampling method, which
can minimize the bias of the data distribution and create
balanced data.

The following eight ML models were used for analysis:
(1) for logistic regression analysis, a generalized linear
model was used, considering logit as a link function, (2) a
decision tree (DT) classifier was constructed using the R
package rpart. In this study, a popular DT algorithm, clas-
sification and regression tree (CART), was applied to
build binary trees. The Gini index was used to measure
the impurity of data, that is, a larger Gini index indicates
a larger impurity of the node. In this study, 10-fold cross-
validation was applied to assess the robustness of the
model, (3) a deep neural network (DNN) model was con-
structed using the R-function neural network, where five
perceptrons in two hidden layers were constructed. The
rectified linear unit (ReLU) was used as the activation
function. Resilient backpropagation with a weight back-
tracking algorithm was applied, (4) the random forest
model, which is an ensemble learning model for classifica-
tion, built 500 different trees and selected the most voted
tree, (5) the ksvm classifier from the kernlab package in
the R library was used to construct the support vector
machine (SVM). The quality of the model was evaluated
using 3-fold cross-validation of the training data, and a
sigmoid function was fitted to the resulting decision
values. The sequential minimal optimization algorithm,
invented by John Platt, was applied to the SVM, (6)
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boosting is an ensemble meta-algorithm that combines
several rough and moderately inaccurate models. The C50
R package contains the C5.0 classification model, which
was used to optimize the predictive value with 100 trials
of boosting interactions, (7) bagging, also known as boot-
strap aggregation, is another ensemble meta-algorithm.
This algorithm reduces the variance within a noisy data-
set. Repeated random samples were selected from the
original data with replacement, and then individual
models were created from the samples. The final model
was subsequently obtained through voting by combining
multiple classifiers, and (8) naive Bayes (NB) classifier
was applied using the R package e1071. The NB classifier
is a decision support model that depends on Bayes’ theo-
rem, and this algorithm is only applicable for
classification.

After constructing the ML models, sensitivity, specificity,
and accuracy were calculated to test the performance. Sensi-
tivity was defined as the proportion of true positives cor-
rectly identified by the test, while specificity was defined as
the proportion of true-negatives correctly identified by the
test. Accuracy was defined as the proportion of true results,
either true positives or true negatives. The receiver operator
characteristic (ROC) curve was then drawn for each ML
model, and the area under the ROC curve (AUC) was mea-
sured. DeLong’s test was used to compare the models with
the highest and lowest AUC values. Importance plots were
constructed to visualize the weights of the different variables
in each prediction algorithm.

In addition, we used the functions train and trainControl
in the R package caret, which automatically resample, tune
the parameters of individual ML models, choose the optimal
model, and estimate the performance to validate the model
performance of the ML algorithms. Apart from the hold-out
method that was used in the above models, we additionally
adopted two other resampling methods: the 10-fold cross-
validation method and bootstrapping. A 10-fold cross-
validation divides the data into 10 parts, fits the model with
90% of the data, and predicts with the remaining 10%. Boot-
strapping iteratively resamples a dataset with replacement
and applies the modeling to the resample. The default time
was set at 25.

Subsequently, a Kaplan-Meier curve was drawn to visu-
alize the discrimination among the predicted strata obtained
from the ML models. The strata were divided into low- and
high-risk groups based on Youden’s index, which was calcu-
lated from the ROC curve for each model. Time-on-
treatment (TOT), defined as the time from the first dose of
afatinib to drug discontinuation for any cause, was used to
numerically compare the differences between strata created
for the prediction of 1-year afatinib continuation. Overall
survival (OS), the time from the start of afatinib treatment
to death from any cause, was used to estimate the differ-
ences between the strata created for the prediction of 2-year
survival after afatinib treatment. The log-rank test was per-
formed to validate the statistical differences between strata
discriminated by the ML model.

In addition, we used the DeepSurv algorithm to estimate
personalized survival probability.'” The DeepSurv module
calculates individualized risk and may provide personalized
treatment recommendations by constructing a nonlinear
Cox proportional hazard network. Deepsurv functions in
R library survival models and Python modules were used for
this estimation.

TABLE 1 Comparison of the characteristics of the training and
validation datasets

Test Training
(n=97) (n = 227) P
Male 49 (50.5%) 128 (56.4%) 0.333
Age (years) 0.808
<65 53 (54.6%) 128 (56.4%)
>65 44 (45.4%) 99 (43.6%)
Tumor stage® 0.806
3 and 4A 58 (59.8%) 131 (58.0%)
4B 39 (40.2%) 95 (42.0%)
Smoking 0.765
Never 59 (61.5%) 139 (61.8%)
Former 29 (30.2%) 62 (27.6%)
Current 8 (8.3%) 24 (10.7%)
ECOG PS
Oand 1 83 (85.6%) 191 (84.1%) 0.637
22 5 (5.2%) 18 (7.9%)
NA 9 (9.3%) 18 (7.9%)
EGFR mutation 0.578
Del19 49 (50.5%) 129 (56.8%)
L858R 33 (34.0%) 67 (29.5%)
Others” 15 (15.5%) 31 (13.7%)
Number of metastatic organs 0.643
0-1 47 (48.5%) 106 (46.7%)
2-3 43 (44.3%) 97 (42.7%)
4 or more 7 (7.2%) 24 (10.6%)

10 (10.3%)
42 (43.3%)
43 (44.3%)
34 (35.1%)

35(154%)  0.293
97 (42.7%) 1.0

54 (55.7%)  0.903
90 (39.6%)  0.457

Presence of liver metastasis
Presence of bone metastasis
Presence of brain metastasis

Presence of pleural metastasis

Type of brain metastasis 0.219
Single parenchymal 30 (30.9%) 55 (24.3%)
Multiple +/— seeding 67 (69.1%) 171 (75.7%)

Dose adjustment for afatinib 1.0
Yes 62 (63.9%) 144 (63.7%)

No 35 (36.1%) 82 (36.3%)

Note: Data are presented as numbers (percentages) unless otherwise stated.
Abbreviations: Dell9, deletion 19; ECOG PS, Eastern Cooperative Oncology Group
performance status; EGFR, epidermal growth factor receptor.

*Tumor stage is classified based on the 8th edition of the American Joint Committee
on Cancer staging system.

bPatients not presenting with EGFR Del19 and L858R mutations, including de novo
T790M mutation, are classified as the “Others” group.



s | WILEY.

KIM ET AL.

RESULTS

The baseline characteristics of the training and test sets are
presented in Table 1. For all imputed variables, no statisti-
cally significant differences were observed between the train-
ing and test datasets.

In terms of 1-year afatinib continuation, the highest
model performance was obtained by SVM (AUC = 0.626;
Table 2 and Figure 1a), followed by the NB classifier, bag-
ging, DNN, boosting, random forest model, logistic
regression model, and DT with AUCs of 0.611, 0.606,
0.605, 0.601, 0.596, 0.594, and 0.553, respectively.
The lowest model performance was observed for DT.
DeLong’s test found no statistically significant difference
(p = 0.563) between the best and worst performance
models. The importance plots of each model for predict-
ing 1-year afatinib continuation and the weights of differ-
ent variables according to the ML models are shown in
Figure S1.

With respect to 2-year survival after afatinib initiation,
the DT algorithm showed the highest AUC value of 0.612

TABLE 2 Prediction of 1-year afatinib continuation in patients with
EGFR-mutated NSCLC using several machine-learning models

(Table 3 and Figure 1b), followed by boosting, NB classifier,
logistic regression model, SVM, random forest, bagging, and
DNN, with AUCs of 0.61, 0.583, 0.573, 0.563, 0.558, 0.555,
and 0.543, respectively. However, no significant difference
was observed between the best and worst performance
models (P = 0.294). The importance plots of each model for
the prediction of 2-year survival after afatinib treatment and
the weights of different variables according to the ML
models are shown in Figure S2.

The Kaplan-Meier curve showed that the TOT between
ML-classified strata was significantly different across all ML
algorithms (p < 0.001 by log-rank test; Figure 2). In addi-
tion, the ML-identified strata significantly discriminated the
groups with low and high risk in terms of OS (p < 0.001 by
log-rank test; Figure 3). Individually predicted survival prob-
abilities using the DeepSurv module are shown in Figure S3.
The losses based on the learning rate and epochs are also
depicted. In addition, the concordance indices using the
DeepSurv module for TOT and OS were 0.503 and 0.569,
respectively (data not shown).

TABLE 3 Prediction of 2-year survival after afatinib initiation in
patients with EGFR-mutated NSCLC using several machine-learning
models

Sensitivity Specificity ~Accuracy

Sensitivity Specificity ~Accuracy

(%) (%) (%) AuC (%) (%) (%) AUC
Logistic regression model ~ 52.3 59.5 55.8 0.594 Logistic regression model ~ 85.4 33.3 62.1 0.594
Decision tree model 52.8 51.4 55.6 0.553 Decision tree model 75.0 53.9 65.6 0.644
Boosting 70.5 47.6 59.3 0.601 Boosting 79.2 41.0 62.1 0.601
Bagging 63.6 52.4 58.1 0.606 Bagging 75.0 46.2 62.1 0.606
Random forest model 70.5 57.1 64.0 0.596 Random forest model 83.3 35.9 62.1 0.596
Support vector machine ~ 70.5 54.8 62.8 0.626 Support vector machine  75.0 43.6 60.9 0.593
Deep neural network 68.2 40.5 54.7 0.605 Deep neural network 64.6 56.4 60.9 0.605
Naive Bayes classifier 75.0 333 54.7 0.611 Naive Bayes classifier 81.3 41.0 63.2 0.611

p = 0.563 between the random forest model and support vector machine by
DeLong’s test for the comparison of AUC.

“p = 0.48 between the support vector machine and decision tree model using
DeLong’s test for the comparison of AUC.
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FIGURE 1

ROC curves for the prediction of 1-year afatinib continuation (a) and 2-year survival after afatinib initiation (b)
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FIGURE 2 The Kaplan-Meier curve for the time-on-treatment (TOT) according to the strata identified using several machine learning
algorithms. The dotted lines indicate the time at which the probability drops to 0.5



s | WILEY.

KIM ET AL.

Logistic regression

Decision tree

100 Risk group 100 Risk group
—— Low —— Low
——— High — High
7% 7%
g g
2 2
R L I L I At
s s
2 3
2 2
o o
25 25
o p<0.001 o p<0.001
[ 12 36 48 60 72 0 12 2 36 60 72
Time in months Time in months
Deep neural network Random forest
100 Risk group 100 Risk group
— Low —— Low
—— High ~——— High
7% 7%
g g
2 =
5 50 5 50
3 3
2 3
o o
25 2
of p<0.001 o/ p<0.001 e
[ 12 2 36 48 60 72 [ 12 24 36 48 60 72
Time in months Time in months
Support vector machine Boosting
Risk grou
100 Risk group 100 group
Low
Low —— High
~— High
7% 7%
g g
= 2
5 50 T 501 oo
s s
2 2
g g
o o
2 26
of p<0.001 of p<0.001
0 12 36 48 60 72 0 12 24 36 a8 60 72
Time in months Time in months
Bagging Naive Bayes classifier
100 Risk group 100 Risk group
— Low — Low
—— High ~—— High
7% 7%
g g
2 2
L) IR, SRR 3 50
s s
3 -1
2 2
o o
25 25
o p<0.001 o
0 12 2 60 72 [ 12 24 36 48 60 72
Time in months

FIGURE 3 The Kaplan-Meier curve for the overall survival (OS) according to the strata identified using several machine learning

36 48
Time in months

algorithms. The dotted lines indicate the time at which the probability drops to 0.5



KIM Er AL.

WILEYL®®

TABLE 4 Comparison of model performance using automatic parameter tuning using different sampling methods

10-fold cross validation Bootstrapping
1-year afatinib continuation Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%)
Logistic regression model 54.4 57.5 55.8 514 52.9 52.3
Decision tree model 16.7 48.8 46.5 48.1 50.0 48.8
Boosting 45.7 47.5 46.5 48.9 51.2 50.0
Bagging 48.8 51.2 50.0 45.2 49.1 47.7
Random forest model 50.0 52.2 51.2 45.5 49.1 47.8
Support vector machine 56.3 60.5 58.1 55.0 56.5 55.8
Deep neural network 51.6 58.3 53.5 52.4 54.6 53.5
Naive Bayes classifier 37.5 50.0 48.8 56.7 55.4 55.8
2-year survival after afatinib Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%)
Logistic regression model 52.6 61.2 57.5 52.0 58.1 56.3
Decision tree model 55.6 66.7 60.9 52.4 62.2 57.5
Boosting 48.9 59.5 54.0 51.7 58.6 56.3
Random forest model 45.5 55.6 51.7 50.0 58.2 55.2
Support vector machine 54.1 62.0 58.6 48.0 56.5 54.0
Deep neural network 53.8 68.6 60.0 56.8 64.0 60.9
Naive Bayes classifier 58.3 57.3 57.5 222 52.6 494

Note: The values of sensitivity, specificity, and accuracy are the means of the results from the 10-fold cross-validation.

The results of the automatically customized tuning
process for several ML models are presented in Table 4.
Both resampling techniques implemented for evaluating the
performances of ML models using automatically tuned
parameters in the caret package, 10-fold cross validation,
and bootstrapping showed no difference from the estima-
tions observed in Tables 2 and 3.

DISCUSSION

The present study attempted to identify the performance of
several ML models for the prediction of 1-year afatinib con-
tinuation and 2-year survival after drug administration, using
nationwide cohort data of advanced EGFR-mutated NSCLC
in South Korea. The performances of several ML algorithms
were comparable, although their predictive values, which
were calculated by the sensitivity, specificity, accuracy, and
AUC, were poor. None of the ML algorithms provided any
advantages over the other algorithms. Promisingly, the ML
models adequately classified strata that exhibited significant
differences in terms of treatment time and OS. Our results
indicate the potential benefit of ML models in classifying
patients with better survival outcomes, as well as the limita-
tion that prediction of outcome based on EMR-based vari-
ables might not necessitate complicated ML algorithms.

The ML algorithms used in the current study did not
have an outstanding predictive value for afatinib treatment
and the following are the possible reasons for this finding.
First, the relationship between the input and output variables
may not be complicated. Consistent with our results, in one
study on patients with oral SQC, where recurrence-free

5-year survival was predicted using various ML models, esti-
mated AUCs in ROC were 0.69, 0.65, 0.5, 0.77, and 0.69 for
logistic regression, KNN, NB classifier, DT, and random for-
est models, respectively.'' The strength of the ML technique
lies in its ability to analyze large, complex biological informa-
tion and discover the differences and significance within the
data.'” Given that previous reports imputed many predictors
in their ML models compared to our study,™® the algorithms
that were selected in our study might not exhibit any discern-
able role in our data.

Second, the relatively small sample size may have
affected the predictive value. Like our results, a previous
study in patients with prostate cancer evaluated the perfor-
mance of DNN, k-nearest neighborhood, and DT algorithms
to identify early recurrence and reported AUCs of 0.607,
0.596, and 0.534, respectively.'> They discussed that the
small numbers of study participants might have impacted
the poor performance of their ML models. The accuracy of
ML algorithms depends on the input size, that is, it can be
increased with an increase in the data input.'* Although our
study enrolled over 200 patients with NSCLC for model
training, a small number of training examples may have
caused a high variance in the classification results. A previ-
ous study assessed the ML algorithm bias related to sample
size and suggested that a minimum of 1000 samples were
needed to maintain the robustness of ML models."

Third, the constraints of the tabular dataset, the most
common data type in real-world statistics, may contribute to
the poor ML performance in our study. Tabular data gener-
ally refer to an organized table with a set of samples (rows)
and the same set of features (columns). However, when
applying ML models to this form of data, several issues, such
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as data noise and data fragmentation, should be adequately
controlled. Several efforts have been made to mitigate this
problem. For example, the tabular constraint learner
(TaCLe) was suggested as a method for finding row-wise
and column-wise constraints in an unsupervised manner.'®
However, various obstacles remain in the application of tab-
ular data for deep learning. The lack of spatial relationships
between features makes it difficult to apply algorithms based
on inductive bias, such as occurs in convolutional neural
networks."”

In cancer computing, several studies have been performed
to analyze and predict cancer-related issues. Many algorithms
have been modified to improve accuracy and achieve better
predictive performance. Previously, the application of ML
could improve the accuracy of cancer prognosis by 15-20%."®
Chen et al. reported an accuracy of 83% in lung cancer using
an artificial neural network when gene expression data were
combined."” Furthermore, ML exhibited the ability to individ-
ually classify patients with NSCLC according to whether they
might be candidates for immune checkpoint inhibitors by
integrating hundreds of gene expression data.*’ In terms of
reproducibility, inclusion of large volumes of genomic data
may be unfeasible, but clinicians may find simple clinical and
histopathological features.

Notably, although the AUC values of our ML algorithms
were numerically poor, the ML models provided adequate
significance levels (p < 0.001) for determining the high- and
low-risk groups. The ML-measured OS months were com-
parable to those in the LUX-Lung 6 trial (median 23.1, 95%
confidence interval 20.4-27.3).>' In agreement with our
results, the OS prediction was successfully accomplished
using DNN in patients with NSCLC.*> The ML model dem-
onstrated outstanding performance in distinguishing the
groups showing different survival in the Kaplan-Meier
curve, and this discrimination has the potential to yield dif-
ferent signatures in cancer.”> The ML model demonstrated
outstanding performance in distinguishing the groups show-
ing different survival in the Kaplan-Meier curve, and this
discrimination has the potential to yield different signatures
in cancer.”

The conventional approach to cancer management may
be limited by inter-individual diversity and intra-individual
tumor heterogeneity. Several studies have been performed
to bridge the gap between the traditional approach and per-
sonalized assessment, emphasizing the potential risk of
over- and undertreatment from an insufficient approach,”
therefore future work in this field will consider a strategy
for the enrollment of additional variables to enhance model
performance. It seems that the accuracy of our study is
better than that of the study by Chang et al,, where the
AUC was 0.4 to 0.7 when considering only clinical and histo-
pathological data.’® However, the authors demonstrated an
improvement in the accuracy of their models with the inclu-
sion of genomic variables. Similarly, considering imaging data
for clinical features could effectively improve outcome predic-
tion.”” A balance between model performance and ease of
achievement for data input should be considered.

Our study had several limitations. First, it lacked an
external validation, a method used to test the performance
of prediction models for new patients to determine
whether the models have generalizability and reproducibil-
ity.”® Although we partitioned our dataset into training
and test sets using stratified random sampling, this action
was limited as an internal validation. Second, the outcome
variables were binary variables. Several cancer-related out-
come studies have reported results as continuous variables,
such as OS, TOT, and progression-free survival. ML algo-
rithms can be applied to either a classification that predicts
discrete class labels or a regression that predicts a continu-
ous quantity. However, numerous ML studies on cancer
diagnosis and prediction have constructed models based
on classification, rather than regression.

CONCLUSION

The ML methods used in this study did not offer any advan-
tage in predicting 1-year afatinib continuation and 2-year
survival after afatinib initiation. Despite poor performance,
ML algorithms successfully classified the strata that showed
significant differences in survival outcomes, which were
assessed using TOT and OS. The application of ML using
routine EMB-based variables may be cost inefficient. Further
studies using ML techniques to predict the outcome of
NSCLC would benefit from including various clinical, histo-
pathological, and genetic predictors.
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