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Regularities in animal behaviour offer insights into the underlying organiz-

ational and functional principles of nervous systems and automated tracking

provides the opportunity to extract features of behaviour directly from large-

scale video data. Yet how to effectively analyse such behavioural data remains

an open question. Here, we explore whether a minimum description length

principle can be exploited to identify meaningful behaviours and phenotypes.

We apply a dictionary compression algorithm to behavioural sequences from

the nematode worm Caenorhabditis elegans freely crawling on an agar plate

both with and without food and during chemotaxis. We find that the motifs

identified by the compression algorithm are rare but relevant for comparisons

between worms in different environments, suggesting that hierarchical

compression can be a useful step in behaviour analysis. We also use compressi-

bility as a new quantitative phenotype and find that the behaviour of wild-

isolated strains of C. elegans is more compressible than that of the laboratory

strain N2 as well as the majority of mutant strains examined. Importantly, in

distinction to more conventional phenotypes such as overall motor activity or

aggregation behaviour, the increased compressibility of wild isolates is not

explained by the loss of function of the gene npr-1, which suggests that erratic

locomotion is a laboratory-derived trait with a novel genetic basis. Because

hierarchical compression can be applied to any sequence, we anticipate that

compressibility can offer insights into the organization of behaviour in other

animals including humans.
1. Introduction
In introducing his four questions of ethology [1], Tinbergen emphasized that

observation shapes how mechanistic and evolutionary questions are answered.

That is, what we choose to measure determines the causal units that will form

our explanations. By this reasoning, exploring new ways of quantifying behav-

iour may identify new phenomena that were not apparent in previous

representations. These new phenomena can then become the subject of mechan-

istic studies to dissect their genetic or neural implementation. The importance

of understanding how animals structure their behaviour was recognized in

part by the example set by genetics [2], in which many of the principles of

inheritance were elucidated through careful observation and experimentation

long before the physical nature of genes was known. For animal behaviour,

the analogous long-term goal is to generate or constrain hypotheses on the

genetic and neural control of behaviour from the structure of behaviour itself.
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Advances in automated imaging and computer vision make

it possible to revisit the question of behavioural representation

without relying on expert annotation. These methods have

been used directly for quantitative phenotyping to measure

behavioural differences in response to genetic and neural

perturbation [3–11], as well as to study the dimensionality,

dynamics and structure of animal behaviour [12–16]. However,

even with the latest technology, automated analysis in complex

natural environments remains challenging [17]. Instead, we

study the full structure and complexity of a behavioural reper-

toire in a simpler environment and focus on the spontaneous

crawling of the nematode worm Caenorhabditis elegans confined

to the two-dimensional surface of an agar plate. We have

recently introduced a discrete representation of crawling pos-

tures and used it to identify short behavioural motifs that

worms use to respond to sensory stimulation or that differ

between worm strains isolated from different parts of the

world [18]. Here, we explore whether data compression algor-

ithms, which have been applied in domains where discrete

data are common such as natural language processing and

genomics, can reveal structure in worm locomotion.

Our approach is based on the minimum description length

principle, which states that the best model is the one that

describes the data most concisely [19]. We apply the minimum

description length principle to behaviour by first construct-

ing a dictionary of elementary behavioural states and then

merging these states into longer sequences using a data com-

pression algorithm. The resulting new dictionary then serves

as the ‘model’ of the behavioural data. Repeated steps of

compression can find patterns and ‘patterns of patterns’ in be-

haviour as proposed by Dawkins [2], thus generating a

hierarchical representation of behavioural data. In addition,

the degree to which these steps reduce the total length of

the sequence and dictionary, the compressibility, offers a

quantitative, objective measure of the behavioural complexity.

The connection between iterated dictionary compression and

hierarchical organization allows us to pursue two goals at once:

to achieve maximum compression of the data and to mine its

structure for biological meaning. In C. elegans, we find that the

dictionary sequences resulting from the compression algorithm

represent rare but relevant behavioural motifs. We also measure

the compressibility of behaviour and find that worm locomotion

has intermediate compressibility poised between random and

repetitive and that wild isolates of C. elegans have locomotion

that is more ordered than the laboratory reference strain N2

and mutants in an N2 background.
2. Experiments
The data analysed in this paper come from two previous

studies [4,18]. All N2, wild-isolate and mutant tracking on

food was done using single worms that were picked to the

centre of a spot of Escherichia coli OP50 on a 25 mm agar

plate. Worms were allowed to habituate for 30 min before

being tracked for 15 min. The worm side (whether it was

on its left or right side) was manually annotated, using a

stereomicroscope, before transferring plates to the tracking

microscope. For off-food and chemotaxis experiments,

worms were picked to the centre of 55 mm agar plates and

recorded immediately. The attractant for chemotaxis exper-

iments was 1 ml of benzaldehyde (diluted 1 : 100 in EtOH).
3. Behavioural analysis
3.1. Posture discretization and time warping
The angles of the worm midlines were determined at 49

equally spaced points [16]. The continuously varying skel-

eton angles were then discretized by matching the posture

in each frame to its closest match in a set of 90 postural tem-

plates that were derived from wild-type N2 worms using

k-means clustering (figure 1a). For details on the clustering

and discretization, see [18]. Because the motion of the

worm between frames is often smaller than the difference

between the 90 template postures, this procedure leads to

the same template being fitted in several consecutive

frames. In order to recognize repeated behaviours performed

at different speeds, we use a simple non-uniform time warp-

ing: repeats are removed from the posture sequences (for

example, the sequence f1, 2, 3, 1, 1, 1, 4, 1g would be reduced

to f1, 2, 3, 1, 4, 1g). Nevertheless, temporal information is not

lost, because we record the duration of each sequence tem-

plate for subsequent analysis. In order to compare results

across mutant strains and conditions, we used the same

wild-type posture templates in all cases.

3.2. Compression algorithm
Many popular dictionary compression algorithms are

designed to work ‘online’ with little memory and to scan the

data from left to right in a single-pass looking for repeated pat-

terns. We are more interested in finding repeating patterns

than in single-pass memory-efficient compression, and so we

use an ‘offline’ algorithm that considers the entire sequence

at each iteration. We follow Nevill–Manning and Witten’s

offline ‘compressive’ heuristic for inferring hierarchies of

repetitions in sequences [20]. This is a dictionary compression

method in which repeated subsequences are added to a

dictionary and replaced by a new symbol that indicates

where the subsequence is contained in the dictionary. At

each iteration, the subsequence that is replaced is the one

that gives the maximal compression taking into account its

length and frequency as well as the size of the dictionary.

The savings, S, owing to replacing a subsequence are given

by WN 2 (W þ 1 þ N), where W is the length of the subse-

quence and N is the number of times it occurs in the

sequence that is being compressed. The first term is the

reduction in the length of the sequence while the second term

includes the increase in the size of the dictionary (W þ 1) and

the number of new symbols introduced in the compressed

sequence (N). In the case of ties, where two subsequences are

equally compressive, the subsequence that appears first in the

sorted list of unique subsequences is replaced and added to

the dictionary. This procedure is applied recursively until no

more compressive repeats are found. Note that the compression

algorithm is lossless. The original sequence can be exactly

recovered using the compressed sequence and corresponding

dictionary. The algorithm is also greedy, taking the locally

most compressive sequence at each iteration, and thus is not

guaranteed to find the globally most compressive dictionary.

See the electronic supplementary material, figure S1, for an

extended example explaining how the sequence in figure 1

is processed.

For faster computation, we calculate S only for subse-

quences up to length Wmax. We used Wmax ¼ 10 for the

results presented here. Increasing Wmax to 15 gave identical
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Figure 1. Dictionary-based compression extracts hierarchical structure in posture sequences. (a) Locomotion is represented as a sequence of discrete postural states.
At each point in time, the original skeleton (black) is matched by its nearest-neighbour posture in a set of 90 template postures. The orange dot indicates the head.
The numbers beneath each shape are the labels of the template postures in each case. (b) Simple sequence to illustrate the compressive algorithm. For the indicated
sequence, the subsequence that results in the greatest compression when it is replaced by a new state label is f1, 2, 1g. In the second iteration f3, 2, 2, 3g and
f3, 3, 2, 2g are equally compressive. We simply take the sequence that occurs first in the sorted list of unique sequences. The arc diagram on the right connects
adjacent repeats of dictionary sequences. (c) An arc diagram for a sequence of worm locomotion (blue) and the corresponding arc diagram for the same sequence
following random shuffling (black). (d ) Selected c-grams discovered from 150 min (approx. 104 postures) of worm behaviour. The most compressive sequence (i), the
most nested c-gram (ii) and three other behaviours (iii) are plotted underneath dendrograms that show the hierarchical structure represented in the dictionary. The
numbers in red indicate the number of times that the sequence under each branch occurred in the 150 min. (Online version in colour.)
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results in 97% of cases in a test of 200 worms and, where

results differed, the difference in compressibility was small

(electronic supplementary material, figure S2). The compres-

sibility of a sequence of uncompressed length l is given by the

sum of the savings S at each iteration divided by l.
4. Results
4.1. Hierarchical compression of posture sequences

identifies behavioural structure
Dictionary-based compression relies on an ability to identify

repeated patterns in a symbolic sequence. Worm locomotion

can be converted to such a symbolic sequence by representing
the continuously varying worm body shape as a sequence of

discrete postures (figure 1a). In this representation, the original

skeleton (in black) is matched by its nearest-neighbour posture

in a set of 90 template postures (in blue) at each point in time.

The templates themselves are determined using k-means

clustering, with k ¼ 90 postures chosen to capture most of

the variance of worm shapes (approx. 80%) without being

overly complex [18]. Approximately repeated behaviours can

now be found simply by identifying repeated symbolic

sequences or n-grams. An n-gram is any subsequence of

symbols of length n.

In a dictionary-based compression algorithm, a sequence

is compressed by adding an n-gram to a dictionary and

replacing each instance of that n-gram in the original

sequence by a new 1-gram not previously present in the
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sequence. Maximal compression is achieved for n-grams that

are both long and frequent. We call these maximally compres-

sive patterns ‘c-grams’ to distinguish them from the larger set

of n-grams they are drawn from. This is illustrated for a simple

sequence with two symbols in figure 1b. In this example, we

save seven symbols in total, because the original sequence

was 19 symbols long, the compressed sequence is 3 and the

dictionary contains a total of nine symbols. The compressibil-

ity per symbol is therefore 7/19, or 37% of the original

sequence length (see the electronic supplementary material,

figure S1, for a more detailed explanation).

To visualize the replacement rules for a given sequence,

we plot an arc diagram that connects each neighbouring

c-gram that was used in constructing the dictionary

(figure 1b, right). Frequently occurring c-grams are thus con-

nected by short arcs, whereas rarely occurring behaviours are

connected by longer arcs. The width of the arc corresponds to

the length of the c-grams that are connected. When applied to

wild-type worm locomotion (figure 1c), the arc diagram

clearly shows that the majority of c-grams are frequent and

short (small, thin arcs) but that there are some that are rela-

tively rare and are separated by a long distance (longer

arcs). The longest arcs connect c-grams that were only

observed twice in the entire 1700 state sequence. This struc-

ture does not merely reflect chance repeats owing to the

finite number of symbols (the labels of the 90 template pos-

tures). When the sequence is randomly shuffled to maintain

the posture frequencies but destroy temporal order, very

few repeats are observed (figure 1c, bottom).

Notably absent in the arc diagrams of worm behaviour

are long and highly nested repeats, which would be seen

if worms perfectly repeated long sequences at different

times. To provide further intuition for the level of repeti-

tion seen in spontaneous locomotion, we use the same

algorithm to compress texts with increasing levels of

structure and repetition: Moby Dick by Herman Melville

(as used in a previous study on finding motifs in unannota-

ted strings [21]), The Raven by Edgar Allan Poe, and Shake it
Off by Taylor Swift (electronic supplementary material,

figures S3 and S4).

Some illustrative c-grams derived from a 30 min (two

15 min sequences concatenated) sample of wild-type loco-

motion on food are shown in figure 1d. The most

compressive sequence overall is shown at the top (i). This is

the subsequence selected by the compression algorithm as

providing maximum compression of the original sequence

in the first iteration. Therefore, by construction, it is always

‘simple’ in the sense that it has no nesting structure. In this

case, it is a short bout of forward locomotion, consistent

with expectations given that wild-type worms spend a sig-

nificant portion of the time crawling forwards with a

stereotyped gait.

The most nested c-gram found in the 30 min is shown in

the middle (ii). Note that it contains the most compressive

sequence from (i). Two suffixes are added (posture 84

appeared after the most compressive subsequence 47 times

and this 4-gram was found with the 2-gram f58, 18g 21

times in a later iteration). Finally, a prefix completes the

larger behavioural unit. This illustrates how units formed

by basic templates are re-used within larger units. In addition

to various kinds of forward locomotion, we find c-grams cor-

responding to other behaviours. An example of a reversal,

pause and a turn are shown at the bottom of figure 1d(iii).
4.2. Compressive sequences increase discriminative
power across environmental conditions

Previous analysis has shown that the frequencies of 3-grams

used by worms during locomotion can be used to character-

ize behavioural differences in different environments (on a

lawn of bacterial food, on an agar plate without food and

during chemotaxis towards an attractant) [18]. However, it

is possible that sequences of other lengths are more informa-

tive for comparisons of behaviour in different conditions. The

c-grams in the dictionary produced by hierarchical com-

pression have variable lengths that are chosen adaptively

based on the input data, in contrast to the fixed-length

approach based on 3-grams. To determine whether they are

relevant for behavioural comparisons, we re-analysed the

data for worms in the different conditions.

We first compressed the postural sequences of each worm

in each condition to produce a dictionary of c-grams for that

individual. We then pooled all of the c-grams across all con-

ditions, keeping only the unique c-grams, and compared the

distributions of c-gram frequencies between conditions using

rank-sum tests, adjusted for multiple comparisons to control

the false discovery rate at 5%, using the Benjamini–Yekutieli

procedure [22]. Any sequence that was found to have a

significantly different frequency between at least two con-

ditions is a ‘hit’. The longest hits we detected were 10

postures long and represented bouts of forward locomotion.

This was not because the maximum sequence length con-

sidered in a single iteration was 10 (see section Behavioural

analysis), because the same six sequences were still the long-

est hits when the maximum sequence length was increased

to 15. One of the six 10-posture hits is shown in figure 2a and

represents a persistent bout of forward locomotion which is

most common during chemotaxis towards an attractant.

The finding that c-grams with lengths up to 10 can be used

to show behavioural modifications between conditions motiv-

ated us to revisit the previous analysis, using n-grams with

lengths of up to 10. For this relatively small dataset consisting

of 115 worms recorded for 15 min, this was tractable, but still

required the consideration of 1.02 million unique n-grams. Of

these, only 0.2% are used with a significantly different fre-

quency in at least one of the conditions and this percentage

is lowest for the longest sequences (figure 2b). In contrast,

there were only 3014 unique c-grams in the entire pool, with

30% being significantly modulated in the environmental con-

ditions. Furthermore, the fraction of significantly modulated

behaviours remains high up to the maximum hit length. The

n-gram hits are more likely to come from relatively frequent

n-grams, whereas the c-gram hits are spread more evenly

across the frequency spectrum (figure 2c). The precise frequen-

cies and compressibilities change with the number of postures

used in the representation, but the overall conclusions do not

depend sensitively on the number of postures (electronic

supplementary material, figure S5).

It could be that the hierarchical compression algorithm is

simply selecting frequent behaviours and that these are more

likely to be informative for comparing worms in different

conditions. To check this, we repeated the n-gram analysis,

but took only the five most frequent n-grams of each length

up to 10 from each worm and added it to the pool. This

resulted in 3905 unique n-grams to use for comparing

worms in the different conditions. This improved the effi-

ciency of hit detection, in fact increasing it above that of the
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Figure 2. c-grams are rare but relevant subsequences. Hits are any sequences that are found to have a different frequency between N2 animals crawling on food, off
food or performing chemotaxis. (a) The longest hit is a bout of forward locomotion that is more common during chemotaxis. The box plot shows the frequency of
this behaviour in the three conditions (red points are outliers, which are greater than the difference between the 25th and 75th percentiles outside of the box).
(b) In each condition, the most compressive sequence is a hit in at least one comparison, indicating that compressive sequences are more likely to be modulated across
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worm behaviours are identified through compression and these would be missed by focusing only on the most frequently occurring n-grams. The behaviours are shown
on the left with their highest frequency rank observed across all worms in the comparison group shown in red to the right. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160466

5

c-grams, especially for short n-grams (electronic supplemen-

tary material, figure S6a). However, this improvement in

efficiency comes at a cost: rare behaviours are no longer

included in the analysis. This can be seen directly in the

frequency rank distribution of the hits (electronic supplemen-

tary material, figure S6b). Because this distribution includes

the rank of each hit across all individuals, it is possible, in

principle, that some of the n-grams that are among the five

most frequent in one individual would be extremely rare in

another individual, especially in a different condition. For

the data considered here, that is not the case. The frequent

n-gram distribution shows a much steeper drop-off than the

c-gram distribution.

Examples of rare hits that would have been missed by

focusing only on the most frequent n-grams are shown in

figure 2d. These include potentially interesting behaviours

such as a dorsal turn, a pirouette (reversal followed by

turn) and a long reversal. Their highest rank across all

individuals is shown in red for each behaviour.

4.3. Worm behavioural sequences have intermediate
compressibility

Hierarchical compression provides a new global feature for

characterizing worm behaviour: the compressibility of the

sequences. It is clear that highly repetitive sequences will be

more compressible than random sequences and we know

from the plot in figure 1c that worm behavioural sequences

are not random. We also know that compressibility must be

greater than 0 and less than 1 by definition. To provide

further intuition, we compared the compressibility of several
‘toy’ sequences (simulated controls) with real worm behav-

ioural sequences as a function of sequence length (figure 3a).

The first toy sequence we considered was a deterministic

sequence that is simply the symbols 1–90 repeated in turn up

to the desired length. This sequence is highly compressible,

surpassing 0.8 compressibility for sequence lengths below

1000. Compressibility increases with length as more nearly

optimal sequences are found, but can only reach 1 in the

limit of infinite sequences. At the other extreme, we con-

sidered random sequences generated by sampling values

from 1 to 90 from a uniform distribution. Uniform random

sequences with 90 possible symbols are essentially incom-

pressible for all observed lengths. At a length of 1000, the

compressibility is 1 � 1024+ 3 � 1024 (mean+ s.d.). In con-

trast, behavioural sequences from wild-type N2 worms

crawling on food show intermediate compressibility, reach-

ing 0.4 for the longest sequences considered. Control

sequences that are more similar to real behaviour sequences

were also generated by sorting and randomly shuffling be-

haviour sequences, yielding sequences that are more and

less ordered than the original sequences but that have the

same posture frequencies. Again, the natural sequences are

poised between random and ordered. Finally, we also com-

pared the natural sequences with sequences generated from

a first-order Markov model with transition probabilities

determined from worm behaviour sequences. Although

more similar than shuffled sequences, the Markov model

sequences are still less compressible (i.e. less stereotyped)

than the original worm sequences.

Plots of compressibility as a function of length for individ-

ual worms reveal interworm variability in compressibility
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(figure 3b). The least compressible worm sequences are also

among the shortest, which result from worms that move

less and therefore have fewer transitions. The fact that shorter

sequences are more random suggests that the shape tran-

sitions that drive locomotion are more stereotyped than

those that occur during dwelling. As expected, decreasing

the number of postures in the representation increases com-

pressibility (more repetition) and increasing the number of

postures decreases compressibility (less repetition; electronic

supplementary material, figure S7).
4.4. Stereotypy varies across strains and does not
simply reflect the degree of locomotion

Compressibility is a distinct feature for comparing the stereo-

typy of worm behaviour and so we analysed data from

previously published mutant strains [4] and wild isolates [18].
Compressibility per symbol increases with length (figure 3),

because there are more opportunities for compressive subse-

quences to be found in longer sequences. We therefore chose

to compare worms using a fixed sequence length of 500.

Sequences from worms that went through more than 500 dis-

tinct postures were divided into 500-posture chunks for

analysis. Because dwelling worms seem to be less stereotyped

than roaming worms (figure 3b), we also kept a track of the

time worms spent in each posture.

In figure 4a, we show a two-dimensional histogram of

the distribution of compressibility against state duration for

a set of 239 mutant strains that are not uncoordinated

(‘other mutants’). Each point in the histogram comes from

one 500-posture chunk. The state duration value is simply
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the average time spent in each of the 500 postures. The

overlaid lines are the full extent at half-maximum contours

for the wild-isolate strains and for uncoordinated mutants.

The distributions for the wild isolates and uncoordinated

strains are plotted separately in figure 4b. Consistent with

expectations from the N2 results, the wild-isolate strains,

which are known to move more persistently on food than

N2, are highly compressible, whereas worms that transition

slowly between postures tend to be less compressible (there

are few points in the upper right quadrant of the distri-

bution). Nonetheless, differences in activity do not explain

all of the variation in compressibility that is observed

between strains.

This variation is clear from the strains highlighted

in figure 4a (red bars, mean+ s.e.). The Hawaiian isolate

CB4856 is known to be more active than N2 and it is also

more compressible. However, two other hyperactive strains

with loss-of-function mutations in cat-2 and npr-1 are signifi-

cantly less compressible than CB4856 (figure 4c). This

suggests that, even though they move more persistently than

N2, their locomotion is less stereotyped—more random—than

that of CB4856.

These differences could be due to the use of N2-derived

postures for all of the strains. This is a particular concern

for uncoordinated strains that will adopt postures not seen

in N2. We therefore re-derived postures for each of the strains

individually and re-calculated their compressibility/duration

histograms (electronic supplementary material, figure S8). We

also re-calculated the histograms using 250- and 1000-

posture chunks (electronic supplementary material, figure S8).

The conclusions about relative compressibility are not altered

in either case.
5. Discussion
5.1. Hierarchical structure in behaviour
The task of finding relevant behavioural motifs from a long

string of postures is analogous to the task of finding genes

in unannotated genomic data. However, unlike the situation

in genomics, we do not yet have a ‘behavioural code’ that

could guide the search. Instead, we take a more general

heuristic approach to finding meaningful sequences inspired

by the minimum description length principle. When we com-

press sequences of worm postures, we generate a hierarchical

structure, but one that does not show a very high degree of

nesting. Instead, the repeat structure of worms’ spontaneous

locomotion is characterized by short motifs that are used

repeatedly but not normally in the identical context. In this

sense, worms’ spontaneous locomotion on food is more

like a novel than a poem or song with a chorus (electronic

supplementary material, figure S3). This is consistent with

previous results using n-gram frequencies in worm loco-

motion. There is a small number of frequently used

n-grams and a much larger set of rare n-grams [18]. The struc-

ture we identify through compression suggests that the set of

rare sequences is large enough to break up the repeated use

of frequent patterns and to prevent the emergence of highly

nested ‘patterns of patterns’.

A hierarchically organized action selection can lead

to repetitive patterns in sequences [23], but the fact that a hier-

archical representation can be constructed from a flat sequence

does not necessarily imply that the underlying generating
process is hierarchical. Instead, the nested structures we

detect are best thought of as candidate behavioural units that

may serve as hypothesized motifs for further study.

Conversely, while there is more structure in worm behavioural

sequences than in the corresponding shuffled data (figure 1c),

we cannot rule out the presence of a deeper hierarchy in the

underlying neural control. We would underestimate hierarchi-

cal structure if the output of a putative high-level command

were implemented differently at the postural level because of

environmental heterogeneity. That is, if different posture

sequences were to be used because of different local conditions

despite the same overarching command.

The organization of locomotion could be clarified by com-

paring patterns of behaviour with patterns of neural activity

by imaging [24–28] and thermo- and optogenetic pertur-

bation [15,24,29,30]. Experimental manipulation of modular

behavioural units was recently used to uncover a hierarchy

of actions in grooming flies [23]. A parallel model of action

selection based on a suppression hierarchy was sufficient to

reproduce the gross pattern of behaviours. In this case, the

hierarchy of actions had a very simple structure in which acti-

vation of a higher behaviour suppressed the performance of

the lower actions in the sequence. Dawkins referred to this

kind of hierarchy as a ‘peck order’ [2] to distinguish it from

more general control hierarchies that can have a complex

branching structure. For complex hierarchies, even detecting

the behavioural modules to probe may be more difficult. If

modules can be identified and controlled, inferring the

underlying control structure in the more complex case may

be aided by using c-grams as candidate patterns to explore

in more detail.

5.2. Rare but relevant motifs
Compared with the total set of unique n-grams, the c-grams

that are identified by hierarchical compression are a much

smaller subset. In the case of worms in different environ-

mental conditions, from the total set of unique n-grams

only 0.3% were identified as c-grams. These proved to be a

diverse set of behavioural motifs that were informative for

comparisons between worms in different environments

even though they were discovered on a per worm basis with-

out reference to the environments the worms were in.

Hierarchical compression can thus serve as a pre-processing

step in behavioural comparisons that will make it possible

to apply behavioural motif analysis to the large behaviou-

ral databases that are increasingly being created through

high-throughput phenotyping pipelines [3,4,8,31].

5.3. Compressibility as a quantitative phenotype
Compression provides a new measure for phenotyping that

may give insights into mutant and wild-isolate differences.

It was previously known that most wild isolates are faster

on average than the laboratory strain N2, but we have

found that this difference does not account for the differences

we see in compressibility. For example, strains with a loss-

of-function allele of the neuropeptide receptor gene npr-1
show many of the phenotypes that are associated with wild

isolates including increased speed, a shift in collective behav-

iour towards aggregation, as well as growth and pathogen

avoidance [32,33]. However, we find that npr-1 mutant

behaviour is less compressible than the wild-isolate strains,

including the well-studied Hawaiian strain CB4856. In other
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words, although they move persistently, their locomotion

is more random than the wild isolates, as are the less

persistent N2 worms.

The majority of mutant strains show patterns of loco-

motion that are less compressible (more random) than

the wild-isolates. Ranked in terms of compressibility, the

17 wild isolate strains have a median rank of 301 out of a

total of 337 strains that were analysed and a maximum

rank of 250. Compressibility is related to predictability, and

being too predictable, especially in response to sensory

stimulation, can be deleterious in some circumstances; a fact

that is strikingly demonstrated by tentacled snakes preying

on fish [34]. Unpredictability is also likely to be important

for worms as recent work has demonstrated that ongoing net-

work activity increases behavioural variability above the level

predicted by sensory noise [35]. Furthermore, a degree of ran-

domness is an important element of C. elegans search

strategies [36–38]. Nonetheless, during directed locomotion,

the most efficient gait is likely to be repetitive, and so we

speculate that the high compressibility of wild isolates reflects

a selective pressure for efficient locomotion and that the more

random locomotion observed in N2 is due to a relaxation of this

pressure in a laboratory environment. Laboratory domesti-

cation is known to have occurred in N2 based on the analysis

of other phenotypes [39,40]. Regardless of the ultimate

cause, behavioural compressibility is a novel quantitative phe-

notype that is different between N2 and CB4856 and that is not

explained by loss of npr-1 function. It therefore presents an

opportunity to explore the genetics of this behavioural differ-

ence using recombinant inbred lines derived from these

strains [41–45].
5.4. Hierarchical compression beyond worms
Compressibility is a general measure that can be applied to

the behaviour of any organism that can be tracked and discre-

tized or converted to a series of labels by other means. The

Nevill–Manning compressive heuristic has already been

applied to human motion capture data [46–48] and our

approach could be readily applied to an ethogram derived

either manually or automatically for any organism, including

humans. This last possibility is worth considering, because

some human diseases affect locomotion (e.g. Parkinson’s)

and stereotypy (e.g. schizophrenia [49]) and compressibility

might provide a simple scalar measure to quantify or even

diagnose variation in a medically relevant phenotype.
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