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Fragment-based drug discovery (FBDD) is now established as a comple-

mentary approach to high-throughput screening (HTS). Contrary to HTS,

where large libraries of drug-like molecules are screened, FBDD screens

involve smaller and less complex molecules which, despite a low affinity to

protein targets, display more ‘atom-efficient’ binding interactions than lar-

ger molecules. Fragment hits can, therefore, serve as a more efficient start

point for subsequent optimisation, particularly for hard-to-drug targets.

Since the number of possible molecules increases exponentially with molec-

ular size, small fragment libraries allow for a proportionately greater cover-

age of their respective ‘chemical space’ compared with larger HTS libraries

comprising larger molecules. However, good library design is essential to

ensure optimal chemical and pharmacophore diversity, molecular complex-

ity, and physicochemical characteristics. In this review, we describe our

views on fragment library design, and on what constitutes a good fragment

from a medicinal and computational chemistry perspective. We highlight

emerging chemical and computational technologies in FBDD and discuss

strategies for optimising fragment hits. The impact of novel FBDD

approaches is already being felt, with the recent approval of the covalent

KRASG12C inhibitor sotorasib highlighting the utility of FBDD against

targets that were long considered undruggable.
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1. Introduction

Over the last two decades, fragment-based drug dis-

covery (FBDD) has proven its utility as a complemen-

tary, and highly successful, approach to high-

throughput screening (HTS) for the identification of

molecules for hit to lead campaigns during which

properties and potency of screening actives are exten-

sively optimised [1,2] (Fig. 1). To date, use of an

FBDD approach has resulted in six marketed drugs,

pexidartinib [3], vemurafenib [4], erdafitinib [5], vene-

toclax [6], sotorasib [7] and asciminib [8], as well as

numerous clinical candidates.

The method has become widely used in pharma,

biotech and academic institutions across the globe,

with 20 fragment to lead publications reported in

2019, and 21 publications in 2020 [9,10]. Fragment

libraries are able to sample much greater chemical

space than HTS libraries, with a much smaller number

of compounds. Complex molecules have a greater

chance of forming sub-optimal interactions and/or

clashes with the desired target, unlike fragments which

are more likely to make atom-efficient binding interac-

tions [11,12]. Thus, a library of only one to two thou-

sand small molecules can easily provide quality hits

for a drug discovery programme [13]. Moreover, frag-

ment hit rates can be used as an assessment of the

potential druggability of a target [14] and can be used

to identify difficult-to-target binding regions, such as

allosteric sites or small ‘hot spot’ binding pockets

which are often implicated in protein–protein interac-

tions [15]. This utility is highlighted by the success of

venetoclax, one of the first drugs to target a protein–
protein interaction (PPI) interface, and more recently

sotorasib, which targets the KRAS G12C mutant, pre-

viously considered undruggable.

What defines a fragment? The accepted core defini-

tion describes a fragment as a small organic molecule,

generally with ≤ 20 heavy atoms. Past fragment library

design tended to focus on physicochemical properties

broadly following the ‘rule of three’ (Ro3), which has

become synonymous to Lipinski’s rules in the fragment

Fig. 1. Timeline highlighting key papers influencing the course of FBDD (blue) and important dates showing its success (orange). In an early

conceptual paper, Jencks outlined the additivity of binding energies for fragments of larger molecules [16]. Andrews et al. [17] subsequently

estimated intrinsic binding energy contributions to ligand–receptor interactions for a range of functional groups. Based on a simple model of

complementary ligand–receptor features, Hann et al. [18] proposed that molecules of lower complexity are likely to provide better starting

points for drug discovery and discussed the need for highly sensitive assays. With increasing interest in fragment-based drug discovery,

commonly used metrics including ‘rule of three’ and ligand efficiency were developed [11,19]. FBDD, fragment-based drug discovery; FDA,

United States Food and Drug Administration.
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world [19]. These are: molecular weight ≤ 300 Da,

hydrogen bond donors (HBD) ≤ 3, hydrogen bond

acceptors (HBA) ≤ 3 and computed logarithm of the

partition or distribution coefficient (cLogP/cLogD) ≤ 3.

In addition, freely rotatable bonds ≤ 3 and polar surface

area (PSA) ≤ 60 are often considered Ro3 criteria. Yet,

this is not a ‘hard and fast’ set of rules and selection cri-

teria have evolved over time. Successful fragments will

often violate at least one of these rules [20], most com-

monly having a higher HBA count (Fig. 2).

Fragment hits tend to have weak affinities, with dis-

sociation constant (kd) values in the lM–mM range,

compared with HTS hits which generally have stronger

affinities within the nM–low lM range. Thus, they often

require more extensive chemistry efforts to reach a

lead-like compound, which can be particularly difficult

in an academic setting. Their weaker affinities also

mean that biochemical assays, which are typically used

for HTS screens cannot be used as an accurate mea-

sure of fragment binding. Instead, biophysical tech-

niques such as nuclear magnetic resonance (NMR),

surface plasmon resonance (SPR), X-Ray crystallogra-

phy and thermal shift assays are typically used to

probe binding, with two orthogonal methods often

used to validate any hits.

Finding quality hits is largely a result of good

library design; screening simple, highly attractive mole-

cules which span a breadth of chemical space. Herein,

we describe our views on fragment library design and

what constitutes a good fragment.

2. The requirements of a fragment
library

2.1. Currently available fragment libraries and

their limitations

Fragment libraries are constructed to explore a broad

range of chemical space while screening a limited num-

ber of compounds. Therefore, diversity is generally the

main driver in library design. However, in some cases,

it may also be beneficial to consider the target class,

for example, whether specific ligand moieties known to

bind to functionally related protein targets should be

included. A number of fragment libraries are now

commercially available, spanning a range of properties

and chemical space. These are an incredibly useful

starting point for library development, having gener-

ally been filtered to contain desired pharmacophore,

chemical and shape diversity.

Despite this, there are some limitations to only util-

ising one commercially available library. The size and

diversity of each library varies (Fig. 2) and so may not

be optimal when compared to designing a bespoke set.

Commercial libraries are also generally larger than the

number of fragments required to run a successful hit

identification campaign, and so each library will often

need to be filtered to give a reasonable set size. While

there is some overlap between commercially available

compounds, normally there is a high degree of unique

chemical entities contained within each set. It can,

therefore, be beneficial to ‘mix and match’ to obtain

desired properties and optimal diversity. Moreover,

solubility [21,22] and stability of purchasable frag-

ments may need to be examined depending on the

screening method. Low solubility can be a particular

issue during FBDD, and so some vendors have now

sought to provide specific ‘high solubility’ sets. Con-

ventional organic fragment sets also tend to have a

high degree of planarity, which can contribute to solu-

bility issues, with sp2-rich aromatic rings appearing as

substructures in many compounds [23]. This partially

leads back to the traditional targets which fragments

have been screened against (such as kinases) and to

the rise in the use of catalytic sp2–sp2 coupling reac-

tions. Again, vendors have moved to address this by

offering libraries exhibiting greater sp3 and 3D charac-

ter. Regardless of the large number of commercially

available fragments, it is important to try and supple-

ment any library with noncommercially available frag-

ments from the likes of in-house chemistry efforts.

Such scaffolds can provide a good base for future opti-

misation strategies.

2.2. How do you design a library?

2.2.1. Medicinal chemistry considerations

Design and growth of a fragment set usually begins by

examining and filtering commercially available collec-

tions to exclude compounds containing known toxic

structures (toxicophores) and maintain desired phar-

macokinetic properties (Table 1). Although these prop-

erties broadly follow the Ro3, there are several other

selection criteria, which should be carefully considered.

Synthetically accessible modification points on the core

are important to enable growth vectors for lead opti-

misation. Solubility and hydrophobicity are also key

factors, which can affect unwanted potential aggrega-

tion. Inclusion of HBA, HBD and other binding

motifs is not only crucial to aid enthalpy-driven bind-

ing interactions but also to ensure cLogD is within a

desired range. Each fragment should be of minimal

size and complexity to drive efficient interactions and
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Fig. 2. Property distributions in selected unfiltered large commercial fragment sets. (A) General fragment sets were obtained from

Maybridge (30 061 compounds), Life Chemicals (50 597 compounds), Enamine (172 689 compounds) and ChemDiv (11 269 compounds).

Hydrogen bond donors/acceptors, heavy atom count and total polar surface area including N, O, P and S were calculated in VORTEX software

(Dotmatics, Bishops Stortford, UK). Predicted logD and water solubility were calculated in ADMET PREDICTOR software (Simulations Plus,

Lancaster, CA, USA). Black lines denote mean or median for continuous or discrete properties, respectively. (B) Distributions of maximum

internal similarity in the same fragment sets. For each compound, pairwise Tanimoto similarity was calculated in RDKit (RDKit: Open-source

cheminformatics; http://www.rdkit.org) against all other compounds in the set using Morgan fingerprints, radius 2. See the Section 2.2.2 for

an explanation of Tanimoto similarity. For each compound, the maximum value of similarity against any other compound was retained. (C)

Number of identical compounds in the same libraries. For example, 633 compounds are present in both Maybridge and Life Chemicals col-

lections. HBA, hydrogen bond acceptor count; HBD, hydrogen bond donor count; HAC, heavy atom count; TPSA_NOPS, total polar surface

area including N, O, P and S atoms; cLogD, calculated logarithm of distribution coefficient; LogSw, (calculated) logarithm of water solubility;

maxSim, maximum internal similarity (as defined above).
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avoid clashes with the target. As such, molecules with

a high degree of flexibility may result in lower affinity

hits due to entropic costs. Nevertheless, a balance must

be struck on the inclusion of polar functionality and

desirable pharmacophores, so that complexity and

diversity of the set can be maintained.

Similarity screening against already chosen frag-

ments, examining 2D fingerprints and/or 3D similarity,

facilitates library diversity. Unique hits are more likely

to be identified through the inclusion of a diverse set

of fragment shapes containing enthalpy-driven phar-

macophores, which would increase the sampling effi-

ciency of the relevant chemical space. Furthermore,

the inherent chemical stability and reactivity must also

be considered, along with the exclusion of any toxi-

cophoric liabilities. To this end, regular quality control

(QC) of fragment libraries is important to ensure

only high-quality compounds are screened. Pan-assay

interference compound (PAINS) filters can be used to

remove molecules, which bind nonspecifically to

numerous biological targets. Several frequent hitters

with little potential for advancement have also been

identified and should be avoided for this reason. As

discussed in detail below, several computational meth-

ods can be used both for property prediction and fil-

tering purposes.

There have been several discussions in recent years

regarding the inclusion of a higher degree of 3D frag-

ments within screening libraries [24], with some raising

concerns that this would lead to a lower hit rate. How-

ever, hit rate does not define the success of a library as

it is more important to identify ligand-efficient and

chemically tractable start points. Increasing the per-

centage of 3-dimensionality (or Fsp3) has the potential

to cover a broader range of biologically relevant chem-

ical space, improving the potential medicinal chemistry

start point [23,25,26], with ‘frequent hitters’ (com-

pounds which appear as actives in many unrelated

screens and which may, therefore, lack specificity) gen-

erally falling within the low Fsp3 range. It has been

shown that increasing sp3 character may improve sev-

eral compound properties and contribute to clinical

success. In particular, incorporation of out-of-plane

functional groups within a 3D structure can potentially

enable stronger receptor/ligand interactions, thus

improving potency and selectivity to a given target

[26].

Does library size matter? Yes and no. The majority

of successful FBDD campaigns utilise libraries ranging

from 1000 to 2000 compounds [27]; however, the

diversity of the library is more important than the

overall number. A study conducted by von Itzstein

showed that only ~ 2000 fragments are required to

represent the same level of true diversity as an overall

set of > 220 000 [27]. Therefore, playing the numbers

game is not necessary, but instead it is more beneficial

and cost-effective to design a smaller library with a

high degree of diversity (Fig. 3). Recently, small

libraries such as ‘SpotXplorer’ [28] have been designed

to maximise the coverage of experimentally confirmed

binding pharmacophores at protein hotspots. The effi-

ciency of this approach was demonstrated with a

library of only 96 fragments that were validated on

popular target classes, such as G-protein coupled

receptors (GPCRs), as well as emerging targets such as

Su(var)3-9, Enhancer-of-zeste and Trithorax-Domain

containing 2 (SETD2).

2.2.2. Computational library design

One approach to fragment library design is to start

from known bioactive molecules. Thus, fragments can

be obtained from deconstruction of larger molecules

according to some ‘breaking rules’ and commercial

availability determined for promising candidates. Frag-

ments which make contributions to binding known

targets can be determined, for example, by searching

in BindingDB [30]. The most well-known methods to

decompose existing molecules are RECAP (REtrosyn-

thetic Combinatorial Analysis Procedure) and BRICS

(Breaking of Retrosynthetically Interesting Chemical

Substructures) [31,32].

RECAP identifies fragments in existing molecules by

breaking bonds generated by common chemical reac-

tions. The cleavage involves only 11 chemical bond

Table 1. Typical property ranges used by the Beatson Drug

Discovery Unit in filtering commercial sets, together with

descriptive statistics illustrating composition of our 1H fragment

set in respect of each property. All Beatson library properties

calculated in ADMET PREDICTOR; Simulations Plus).

Property

Typical

range

Beatson 1H set (1062 cpds)

Minimum Maximum Mean/median

Heavy atom

count

8–20 8 23 14

Polar surface

area

≤110 3.2 120.9 47.1

Hydrogen bond

donors

≤3 0 3 1

Hydrogen bond

acceptors

≤4 1 7 3

Ring count ≤4 0 4 2

cLogD (pH 7.4) �3 to 3 �3.4 3.6 0.5

Rotatable bond

count

≤4 0 6 2
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types, and all the bonds are broken in a single step.

Ring motifs are left intact. Since its very early stages,

RECAP developers allowed user selection of alterna-

tive bond types and the code was subject to several

modifications over the years [32–34]. Among RECAP

modifications, BRICS is one of the most popular and

involves the inclusion of a complementary set of rules

for the recombination of the chemical space (such as

modelling of ring substitution and cleavage of sulfur

groups), leading to the definition of 16 fragment proto-

types [31]. It has been shown that these modifications

generally lead to the generation of a larger number of

fragments with a smaller size than the ones obtained

using RECAP rules [35]. Additionally, more fragments

with greater than one connection point resulted from

BRICS [31], which means more branching possibilities

in the obtained subset.

However, since a key advantage of FBDD is its effi-

cient sampling of chemical space, a library based solely

on available fragments from known bioactive com-

pounds would likely not be desirable and augmenta-

tion would be required. As an example, Selcia Ltd

developed their commercial library of 1366 fragments

through an initial selection based on curation of

RECAP-generated bioactive fragments meeting Ro3

and a calculated solubility threshold. These were sup-

plemented with under-represented fragment classes and

by a custom synthesis programme targeting noncom-

mercially available fragments to improve novelty

(https://www.selcia.com/sites/default/files/

SelciaFragmentLibrary.pdf).

Commercial fragment sets are often broadly Ro3

compliant (Fig. 2) [36]. However, specific types of

fragments may also have unique property distribu-

tions, as discussed below, and further property filtering

can be performed according to evolving needs in order

to augment the background composition of the library.

Importantly, one should not assume the absence of

unwanted functionality in commercial sets, especially

with larger collections. Therefore, sub-structural

searches are performed to identify liabilities (see [37]

and references therein), typically using filters expressed

in Daylight SMARTS format (SMILES arbitrary tar-

get specification format, https://www.daylight.com/

dayhtml/doc/theory/theory.smarts.html, in which

SMILES refers to the string-based simplified

molecular-input line-entry system molecular represen-

tation [38]).

Maintaining diversity is also critical. A simple first

step is similarity screening utilising appropriate cut-

offs in Tanimoto similarity of 2D fingerprints to

exclude compounds in a vendor set that are highly

similar to existing library fragments. A detailed discus-

sion on the most used molecular fingerprints goes

beyond the scope of this review, and interested readers

are referred to [39]. For a pair of binary fingerprints,

Tanimoto similarity is the ratio of the sizes of the sets

comprising the intersection/union of on-bits in each

fingerprint. Therefore, if all elements are shared in

both fingerprints, similarity is one. If no elements are

shared, similarity is zero. To measure the impact of

potential compound additions to a library, analysis of

intra-set similarity of the library with or without the

new candidate compounds can be performed. Filtering

can also be done with pharmacophore fingerprints. A

pharmacophore is defined as the optimal steric and

electronic features necessary to ensure the optimal

Fig. 3. Comparison of Cancer Research UK Beatson Drug Discovery

Unit 1H fragment set against selected commercial sets. (A) Average

maximum internal similarity. For each compound in any set,

Tanimoto similarity was calculated against all other compounds in

the set using Morgan fingerprints (radius 2) in RDKit. The maximum

value was retained for each compound and averaged over the set.

(B) Fraction of unique Bemis–Murcko scaffolds [29] in each set.

Scaffold SMILES were extracted for each compound in each set

using VORTEX software (Dotmatics, Bishops Stortford, UK) and unique

canonical SMILES retained. The number of unique scaffolds was

expressed relative to number of compounds in each library.

Commercial sets: Enamine. High Fidelity Library (1920 compounds);

Life Chemicals, General Fragment Library (50 607 compounds);

ChemDiv, Fragments Library (11 269 compounds); Bionet, 2nd

Generation Premium Library (1166 compounds). SMILES, simplified

molecular-input line-entry system.
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ligand/receptor interactions [40]. Pharmacophore mod-

elling represents molecules as collections of features at

the 2D or 3D level [41]. This information is binary

encoded to pharmacophore fingerprints, indicating

the presence or absence of pharmacophore features

together with ligand topological information. Pharma-

cophore fingerprints are thus particularly useful to

analyse similarity and remove redundancy [28,41].

The need for optimal molecular complexity is a

foundational concept in FBDD [18], and various met-

rics of synthetic tractability and structural complexity

have been developed which can be useful in filtering

fragments [42–44]. Improving shape diversity of

libraries has also received increasing attention in recent

years [24]. Where 3D character of the library is of par-

ticular interest, analyses that are less computationally

expensive than 3D pharmacophore shape similarity

can also be performed. Fraction of sp3-hybridised car-

bons (Fsp3) is a simple calculated property which, as

noted above, has been associated with improved phar-

macokinetic properties and clinical success [26,45].

Principal moments of inertia (PMI) express the torque

required to cause a change in angular acceleration of a

rigid body (a molecule, in this case) around orthogonal

axes of rotation. When appropriately normalised, tri-

angular PMI plots indicate the extent to which a mole-

cule is rod-like, disc-like or sphere-like [46]. Plane of

best fit (PBF) is another 3D shape metric, which calcu-

lates average distances of all heavy atoms in a single

calculated conformer away from a best-fit plane min-

imising this average [47].

An interesting approach for quantitative structure–
activity or structure–property relation modelling

(QSAR/QSPR) utilising chemical graph theory com-

bined with SMILES notation was recently reported

[48]. In this method, a graph (a set of nodes, represent-

ing atoms, and edges representing bonds) is built using

the connectivity information of an input molecule and

molecular fragments are obtained from the possible

subgraphs. All unique fragments obtained in a data set

of structures can be collated, and counts of each frag-

ment in individual molecules can then be used as

descriptors in QSAR/QSPR models. Interestingly,

fragments associated with activity in trained models

could be retrieved [48] suggesting this could also be

used as another plausible approach to fragment selec-

tion, though we are unaware of an example of this use

in library construction. The Reymond group also pre-

viously reported the ‘chemical universe’ database

GDB-17, comprising enumeration of all chemical

graphs consisting of C, N, O, S and halogens up to 17

heavy atoms [49]. Subsequently, the same group

released a low-complexity subset of 10 million of these

for use in virtual screening such as QSAR approaches

[50].

Beyond standard techniques to filter commercial sets

for the selection of new fragments, new approaches to

in silico de novo molecular design driven by advances

in artificial intelligence could have applications in

library generation through automated design of novel

fragments with optimal properties of interest [51].

De novo design refers to virtual generation of novel

compounds fulfilling criteria such as likely target bind-

ing and has been investigated for decades [52–54].
De novo design approaches are broadly categorised as

receptor-based (where the structure of a target binding

site is known) or ligand-based (for example, using 3D

pharmacophores of known binders without any pro-

tein structure information) [55]. Recently, considerable

effort in this area has been focussed on generative neu-

ral networks, which are trained to produce novel mole-

cules by learning features of large and diverse

compound sets. The reader is referred to [51,56] for in-

depth reviews of this area. Briefly, the majority of gen-

erative chemistry frameworks reported to date are

broadly based on autoencoders (AE), generative adver-

sarial networks (GAN) or, more recently, transformer

models.

Autoencoder consist of encoder and decoder parts.

The encoder produces a dimensionally reduced ‘latent

variable’ representation of its input. The decoder

receives this as input and learns to reconstruct each

input training example at the output [57]. Variational

autoencoders (VAEs) are similarly structured, although

in this case the training objective includes a term

which forces the latent variable distribution to be close

to a desired preselected prior distribution (typically

Gaussian). This addition enforces regularisation on the

learned latent space [58].

In contrast, GAN consists of generator and discrim-

inator networks. The generator draws random samples

from a multivariate prior distribution and transforms

these into candidate examples of the data of interest.

The discriminator scores examples presented and

attempts to classify them as real or fake. Both models

are simultaneously trained in adversity, resulting in a

2-player zero-sum game in which improvement of one

model leads to decreased performance of the other

[59]. Thus, improvement in the generator corresponds

to the production of samples that more closely match

the distribution of real data, as perceived by the dis-

criminator, by sampling from random noise.

For both model types, by sampling and decoding

from the learned latent representations or learned dis-

tributions, novel molecules not seen in training can be

generated. Frequently, such models have been trained
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to directly output the SMILES representation of nov-

el molecules [38]. In AE/VAE frameworks, this is a

‘sequence to sequence’ learning task suited to recurrent

neural networks (RNN) [60]. However, effective learn-

ing of long-range dependency and context in longer

sequences can be problematic for RNN. Improvements

can be made by the introduction of ‘attention’ mecha-

nisms, which encode information on positional con-

text [61]. Transformers extend this concept by using an

‘attention-only’ framework that eliminates the need for

RNN in sequence-based tasks [62]. Recently, this

newer approach has also been investigated for molecu-

lar optimisation and reaction prediction [63].

A range of other molecular representations are also

utilised in addition to SMILES. Deep-SMILES and

self-referencing embedded strings (SELFIES) are alter-

native string representations developed specifically for

generative modelling and which address the problem

that syntactically incorrect (invalid) strings are often

returned by SMILES-based generators [64,65]. Inter-

estingly, a fast generative algorithm which eliminates

the need for machine learning models was recently

reported using SELFIES [66]. Generative models using

molecular graphs have also been reported (reviewed in

[67]). Voxel-based representations can be used for 3D

generation [68]. Another approach to 3D generation

used a wave transform to overcome sparsity of voxel

representations [69].

Most applications of de novo molecule design in

drug discovery are naturally targeted at producing

drug-like molecules, although the model frameworks

above are equally suited to fragment generation. We

recently reported a fragment autoencoder model

trained to reproduce both SMILES and chemical fin-

gerprints [43]. Using in-house data from previous

screens, we applied transfer learning to the fingerprint

decoder layers to develop a model that scores the like-

lihood that novel generated molecules will be ‘privi-

leged’ fragments (capable of binding to multiple

protein targets [70]). Our sampling approach used par-

ticle swarm optimisation [71] to simultaneously opti-

mise for privileged fragment scores, synthetic

accessibility and Fsp3, among other criteria. A similar

sampling approach was also reported by Winter et al.

[72] to identify potential Epidermal Growth Factor

Receptor (EGFR) and b-site amyloid precursor pro-

tein cleaving enzyme 1 (BACE1) inhibitors while

simultaneously optimising against support vector mod-

els of several absorption, distribution, metabolism,

excretion and toxicity (ADMET) properties.

In another fragment-based approach, Arus-Pous

et al. [73] developed a ‘scaffold decorator’ model. This

consists of a scaffold generator model, which outputs

fragments with defined attachment points. These are

subsequently modified by a decorator model which

adds Ro3-compliant groups to each attachment point.

In one experiment, the authors trained the model using

a set of scaffolds and decorations obtained by frag-

menting known dopamine receptor D2 (DRD2) modu-

lators. The model was then able to generate novel

molecules with in silico predicted activity when diverse

new scaffolds were used. Such an approach could

potentially be utilised to suggest fragment hit growth

strategies against a given target. We further discuss

potential applications of generative modelling in frag-

ment elaboration below.

2.3. Different types of fragment libraries and

some considerations

2.3.1. 19F

NMR is both the oldest and most robust technique

used for the detection of weak binders [74], with Shu-

ker et al. having originally reported ‘SAR by NMR’ in

1996 [75]. Since then, the field has grown substantially,

and heteronuclear spectroscopy methods (which detect

chemical shifts originating from nuclei other than 1H,

such as 19F) are now widely used alongside 1H NMR

spectroscopy for the identification of novel binders.

With that in mind, the design of fragment libraries

containing fluorine atoms for 19F NMR screening is

now a key component in the fragment screening pro-

cess. The general library design considerations outlined

above should be applied to 19F fragment libraries,

with the obvious caveat that molecules must contain

at least one fluorine atom.

1H screening relies on fragment cocktails, which

need to be carefully designed to limit signal overlap.

In contrast, the use of 19F-containing fragments

enables simpler analysis of spectra due to the wider

chemical shift dispersions and minimal overlap with

background signals. As a result, 19F fragment libraries

can be screened in cocktails of approximately 20 com-

pounds, while standard cocktails contain only 5–6
molecular entities [76]. Interestingly, it has been shown

that a library size of ~ 1200 fluorinated compounds

can achieve similar levels of diversity to a set of

~ 2000 standard fragments [27]. Inclusion of fluorine

can be an added advantage due to the improved

physicochemical and metabolic properties, which are

associated with using it as a bioisostere. Thus, its

removal is not required during elaboration if it

enhances interactions and/or improves ADME proper-

ties of lead compounds.
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2.3.2. Covalents

Although standard 1H and 19F NMR libraries

account for the majority of FBDD screens, a number

of newer technologies have recently come to fruition.

With the resurgence in interest towards covalent inhi-

bitors, the field of covalent fragments has garnered

attention [77–80]. All covalent fragments contain a

reactive electrophilic functional group, generally cap-

able of forming an irreversible bond with an amino

acid residue. In addition to standard FBDD considera-

tions, the stability (both inherent and to physiological

conditions), reactivity and size of the electrophilic

functionality must also be taken into account when

designing covalent fragments. Unlike traditional frag-

ment screens, desirable parameters may change

depending on the targeted protein.

Library design may, therefore, be influenced by the

nature of the amino acid residue [81] and its location

within the active site [82]. The nucleophilicity and pKa

[83] of amino acid side chains can vary depending on

the protein environment, and thus, a less reactive

amino acid residue may require a more reactive war-

head for efficient reaction. It is, therefore, desirable to

maintain a library containing a range of reactivities

[84], as well as varying electrophilic functional groups

[85]. It is worth noting that the incorporation of highly

reactive warheads within a screen may lead to the

identification of lower affinity binders, with the inacti-

vation rate constant (kinact) playing a more significant

role in the binding event, due to covalent bond forma-

tion, than the inhibition constant (ki) resulting from

reversible binding.

As well as considering the reactivity of a warhead, it

is optimal for the electrophilic functionality to be

appended by a minimal linker and not embedded

within the fragment scaffold. This is largely because

the geometry of the warhead and angle of attack have

a significant role in the formation of the desired cova-

lent bond and, thus, ease of access to the warhead is

more likely to allow hit identification. Covalent hits

can be grown and merged using traditional fragment

strategies [86] to enhance the binding affinity through

noncovalent interactions. It may even be possible to

remove the warhead and maintain affinity once the

scaffold is optimised. To this end, a covalent approach

may be favoured to aid in the identification of lower

affinity allosteric sites. However, this approach is only

amenable when a suitable nucleophilic residue is pre-

sent. Caution should also be taken to ensure binding

occurs within a ‘real’ site, as with any fragment hit,

and is not a result of elevated fragment electrophilic-

ity.

Screening of covalent fragments can be carried out

by NMR as with traditional fragment sets. In fact,

peaks are often more pronounced with visibly

increased chemical shift perturbation in multi-

dimensional heteronuclear experiments, allowing for

easier analysis. Screens for high-profile targets such as

bromodomain-containing protein 4 (BRD4) [87] and

KRas [88] have been carried out in this way. Despite

this, NMR is generally underutilised and screening via

simpler MS studies is often employed instead [89]. Liq-

uid chromatography with tandem mass spectrometry

(LC–MS/MS) allows accurate detection of whether

covalent binding has taken place in a high-throughput

manner. Native MS is often combined with time-of-

flight (TOF) instruments to enable high sensitivity

detection of both the target and fragments [77]. A

digestion protocol may also be utilised to determine

exactly which amino acid has reacted. Covalent frag-

ment libraries of 100–1400 compounds (predominantly

acrylamides and chloroacetamides) have been screened

in this way to identify binders for well-known targets

such as Janus Kinase (JAK) [90] and KRas [89].

Covalent fragment docking algorithms were recently

introduced as an in silico approach to discover reversi-

ble and irreversible fragment inhibitors [91,92]. Screens

using other assay types have also been reported. A

nucleotide exchange assay was utilised to identify

KRASG12C mutant binders via Carmot Therapeutics

Chemotype Evolution technology, entailing rapid syn-

thesis and testing of libraries based on an existing

fragment-like molecule [93]. This generated a custom

library of ‘beyond rule of 3’ fragments through phar-

macophore linking. The acrylamide compounds were

not purified before screening and ultimately led to the

discovery of AMG-510 (sotorasib), which was granted

FDA approval for the treatment of nonsmall cell lung

cancer (NSCLC) in 2021 having only entered the clinic

in 2018. Notably, it took only 8 years from the initial

publication by the Shokat group in 2013 [89], demon-

strating the druggability of the KRASG12C mutant, to

treating real-life patients.

2.3.3. Fraglites and mini frags

In 2019, Waring et al. [94] and Jhoti et al. [95] inde-

pendently reported the use of ‘Fraglites’ and ‘Mini-

frags’ for the identification of ligand–protein
interactions. Waring et al. hypothesised that sites of

interaction could be identified using a small library of

molecules with minimal molecular weight (≤ 13 heavy

atoms) and complexity. Therefore, they utilised a set

of compounds containing a ‘pharmacophore doublet’

capable of forming two polar bonds but with different
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spatial orientations. Halogens were included alongside

these paired hydrogen-bonding motifs to allow unam-

biguous identification in X-ray crystallography, utilis-

ing the unusual scattering of the halogen substituent.

A set of 31 ‘FragLites’ were selected to encompass all

combinations of pharmacophore doublets with a high

degree of aqueous solubility for X-Ray crystallography

screening. The utility of the approach was demon-

strated through mapping of cyclin-dependent kinase 2

(CDK2), identifying both orthosteric and allosteric

sites, with hits being quickly developed into lead-like

molecules [94].

Similarly, the ‘Minifrags’ approach from Astex also

utilises highly soluble, ultra-low molecular weight com-

pounds (average HAC < 7), designed to sample chemi-

cal space [95]. A minimal set of 81 compounds allowed

the identification of hot and warm ligand-binding

spots for potential targeting on proteins, such as

ERK2. The Minifrag set was found to have both a

higher hit rate and to identify a larger number of theo-

retically druggable sites, than a more conventional X-

Ray set of 440 compounds. These approaches may

hold advantages in the future, allowing the identifica-

tion of new target sites with a minimal compound

screen. A version of the MiniFrag screening set has

already been used in the identification of hits against

SARS-CoV-2 main protease [96].

2.3.4. Phabits

Recently, the field of FBDD has expanded to include

photoaffinity-based screening approaches, with Bush

et al. reporting the use of ‘Phabits’ for the identifica-

tion of protein–ligand interactions through covalent

capture [97]. The methodology utilises photoreactive

fragments which, upon irradiation with light, crosslink

to proximal protein residues in a biochemical setting.

Hits can then be identified by intact protein LC–MS,

with follow-up studies to determine binding affinity

and the site of crosslinking. This follows earlier work

reported by Cravatt and co-workers where photoreac-

tive fragments were used for the identification of frag-

ment–protein interactions in live cells [98]. Phabits

utilises purified protein to enable high-throughput and

targeted screening against proteins of interest, which

was demonstrated in the paper through the identifica-

tion of binders to KRASG12D and BRD4-Protacs using

a mere 556 fragments. Identified hits can immediately

be used as reporters in displacement assays to screen

for more potent binders in a site-specific manner.

Despite potential future advantages, access to commer-

cially available photoreactive fragments is still poor. In

addition, some target classes, such as membrane-

bound proteins, are unlikely to be responsive to the

approach, as they often need to be stabilised in a lipid

bilayer. Moreover, crosslinking yields are often low

and do not always correlate with affinity [99].

3. Growing a fragment

As with any screening campaign, hits need to be pri-

oritised to focus resources. But what makes a good

fragment hit [100]? Consideration of multiple parame-

ters is necessary. Biological activity is obviously one of

the most important, and so target binding validation

and generation of parameters such as ligand efficiency

(LE) or lipophilic efficiency (LiPE) can help facilitate

proper comparison [15]. As a generalisation, growing a

molecule will add lipophilicity and so a more hydro-

philic hit may be advantageous. In addition to this, it

is important to consider a number of other factors:

solubility, the availability of commercial analogues

and starting materials, overall synthetic tractability

and, perhaps most importantly, the availability of

binding mode structural information. The availability

of close analogues for validation and immediate SAR

is highly important as it will determine how rapidly a

project can be progressed [101]. Frequent hitters and

unwanted functionality should be discounted at this

point. Although, with a properly designed screening

library hits of this type should be minimal.

Growing the hit to increase the size of the molecule

and include additional functionality is the most

straightforward approach to go from a fragment to a

drug-like molecule. Identification of growth vectors

and potential points of interaction with the target is

important for rational design and can be difficult with-

out the aid of a crystal structure. To this end, X-Ray

crystallography has become an increasingly popular

screening method for rapid hit exploration, with plat-

forms such as XChem (https://www.diamond.ac.uk/

Instruments/Mx/Fragment-Screening.html [96]) and

FragMAX [102] now widely available. Several groups

have also explored the screening of crude reaction mix-

tures via this method [103,104]. However, growing

crystals can be challenging, resolution can be poor

[105], and secondary techniques are still required to

determine binding affinities.

In cases where structural information is unavailable,

evidence can be gained from NMR experiments or

fragment/receptor complex obtained from docking cal-

culations can be used as an educated guess [106].

Docking calculations allow predicting receptor/ligand-

binding motifs and assigning a ranking score to the

obtained binding poses. In the most fortunate cases,

the docking score can be directly correlated with the
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experimental binding affinity. Assessment of the

results, using existing receptor/ligand crystallographic

data with known experimental binding affinities, is

always a good practise, especially for cases where the

receptor shows high flexibility.

Docking can be applied both in screening a frag-

ment library and to assist in fragment elaboration.

Usually, docking is performed with a flexible ligand

and a rigid receptor, treating the fragment core(s) as

fixed. However, most of the time this assumption is

not true, because receptor conformational changes

occur upon binding. Therefore, techniques such as

induced-fit docking [107] and molecular dynamics

(MD) are also used to assess the predicted binding

motifs by docking. Due to the higher computational

cost of the method, induced fit is usually kept for

refinement purposes and not used at the very early

screening stages. A faster and cheaper way to consider

protein conformational freedom when screening a

library of the order of thousands of compounds is to

perform rigid receptor docking calculations on differ-

ent receptor conformations, coming either from experi-

mental data or obtained beforehand making use of

MD simulations. These can be coupled with enhanced

sampling techniques such as accelerated MD [108] and

metadynamics [109] in order to speed up the apo-

receptor space exploration and assign the protein con-

formations a converged probability estimation. This

can be treated as a conformational receptor probabil-

ity score and used to average and reweigh the docking

scores [110]. In this context, apo-receptor simulations

can be extremely useful when the receptor structure is

not crystallised and is constructed via homology mod-

elling or obtained from an AlphaFold prediction

[110,111].

A common issue to most docking calculations is

that typical scoring functions are not able to accu-

rately predict poses far from the known bioactive

ligand. Binding poses can always be improved by

enhancing the exploration of the ligand conforma-

tional space. This can be done using molecular dynam-

ics simulations, for example, or enhanced sampling

techniques such as metadynamics [112,113]. These

algorithms are computationally more expensive and,

therefore, not advised to be used for the initial screen-

ing phase, but for a refinement stage on a selected

fragment subset. Docking scores can also be comple-

mented by a more accurate estimation of the binding

affinity, using molecular mechanics Poisson–Boltz-
mann surface area (MM/PBSA) [114], which provide a

reasonable trade-off between speed and accuracy [115].

Although docking is an established technique for

HTS, it has only recently started to be systematically

employed for fragment libraries. The small size of

fragments together with their weak affinity and

dynamic binding motifs make computational structure-

based fragment virtual screens challenging. Moreover,

the absence of a complete data set of protein–fragment

complexes complicates validation and docking results

assessment. Nevertheless, several studies have shown

acceptable performance of the most used docking pro-

grammes for small molecules [116–120].
Once structural information of known ligand–target

complexes is known, techniques such as scaffold hop-

ping can be used to substitute a central element of

the molecular scaffold by a new molecular frag-

ment [121]. In an ideal scenario, the features of both

initial building blocks should additively contribute to

affinity. However, geometry is key and so several

linking/merging options might need to be considered

[122]. From the computational perspective, several

techniques can be used to estimate binding affinity.

Among these, we name MM/PBSA [115] and free

energy perturbation (FEP) [123], the latter proven to

be particularly effective for ligand optimisation,

specifically when small changes in the ligand design

are introduced.

The recent explosion in machine learning-based

de novo design methods also provides numerous

approaches with the potential to assist in fragment

elaboration. Besides the scaffold decorator model dis-

cussed earlier [73], Lim et al. [124] trained a graph-

based VAE using dual inputs of molecules and their

Bemis–Murcko scaffolds [29]. The model could then

generate new molecular graphs by sequentially adding

atoms and bonds to a provided scaffold. Additionally,

generation could be conditioned on molecular proper-

ties. Green et al. also recently reported a convolutional

neural network trained to predict a unique fingerprint

corresponding to a fragment that could be added in a

known receptor/ligand structure to improve binding

affinity of the known input ‘parent’ ligand [125,126].

Predicted fingerprints could then be matched against a

fingerprint library of known fragments.

Olivecrona et al. trained a recursive neural network

SMILES generator using reinforcement learning (RL)

and illustrated its use on several tasks including

similarity- and target activity-guided generation [127].

RL combines a generator with a ‘critic’ which assigns

reward to generator outputs. The generator is trained

to maximise this expected reward. The target-activity

task required a training data set of active/inactive

compounds against the chosen target (DRD2 recep-

tor), which would likely be lacking in early hit elabora-

tion for novel targets. However, RL can also be used

for property-guided generation [128,129]. Stahl et al.
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used an explicit fragment-based encoding of molecules

in their RL model [129].

Another approach which could be applied to gener-

ate molecules which are similarly structured to a frag-

ment hit but with properties in a target range is mol-

cycleGAN [130]. The cycleGAN method [131] aims to

provide a mapping between two unpaired data

domains, X and Y (one example from its original use

in image translation is photographs of horses and

zebras which are not directly paired). This consists of

two coupled GAN models. One model aims to learn

to translate elements of X to resemble elements of Y

(horse ? zebra, for example). The other model aims

to learn the inverse mapping. The models are trained

together with a ‘cycle-consistent’ objective such that an

element of X translated into the domain Y by the first

network should map back to itself through the second

GAN. In use, one network is used. For example, an

image of a horse may be given zebra-like stripes [131].

In mol-cycleGAN, the training sets could be inactive/

active compounds or sets which diverge in another

property of interest. The method was used for several

tasks including optimising cLogP while retaining struc-

tural similarity, in addition to a predicted DRD2

activity optimisation task [130].

The aforementioned studies are a small sample of

a rapidly growing field, and a thorough review is

beyond this work. However, we note that the excite-

ment surrounding novel AI-driven de novo methods in

drug discovery derives from the suggestion that these

approaches could be used to arrive more or less

directly at the clinical candidate (or at least drastically

reduce the time spent in design-make-test-analyse

cycles). To date, one of the most successful companies

in this space, Exscientia, and its partners have pro-

gressed three molecules discovered in accelerated pro-

grammes with the use of its design platform into

phase I [DSP-0038, a dual 5-hydroxytryptamine (5-

HT) 1A/2A antagonist; EXS-21546, an adenosine

A2A receptor antagonist; and DSP-1181, a 5-HT1A

antagonist] (https://www.exscientia.ai/). In this con-

text, one could ask whether de novo design might

supersede FBDD. However, many publications which

have applied AI-based design to specific targets have

focussed on well-known and previously drugged tar-

gets for which relatively large bioactivity data sets are

available, such as DRD2. Therefore, the impact that

AI-based de novo design will have on very difficult tar-

gets, the area in which FBDD excels, remains to be

seen. Nevertheless, this is a rapidly developing field

and strategies that integrate structure-based informa-

tion to drive improvements in generation are of partic-

ular interest [132].

4. Conclusion

In this review, we have aimed to give the reader an

appreciation of key considerations in designing a frag-

ment library, in addition to an overview of emerging

technologies, both chemical and computational, which

are likely to accelerate FBDD. As we noted at the start,

the use of an FBDD approach has resulted in six mar-

keted drugs to date and many additional clinical candi-

dates. Although many of these agents were discovered

using ‘classical’ FBDD approaches, the impact of newer

FBDD technologies is already being felt by patients. We

noted above the rapid development of Sotorasib, which

was granted FDA approval in 2021 only 8 years after

the initial demonstration of the druggability of the

KRASG12C mutant. By comparison of asciminib, the

most recently approved drug discovered through a more

traditional FBDD approach entered clinical trials in

2014. This is even more impressive when one considers

that KRAS was, until this point, considered ‘undrug-

gable’. We believe this example illustrates how an

emerging arsenal of new FBDD technologies and intelli-

gent library design may finally lead to progress against

some of the most difficult targets in drug discovery that

have proven intractable until now.
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