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Abstract: The soil water retention curve (SWRC) shows the relationship between soil water (θ) and
water potential (ψ) and provides fundamental information for quantifying and modeling soil water
entry, storage, flow, and groundwater recharge processes. While traditionally it is measured in a
laboratory through cumbersome and time-intensive methods, soil sensors measuring in-situ θ and ψ
show strong potential to estimate in-situ SWRC. The objective of this study was to estimate in-situ
SWRC at different depths under two different soil types by integrating measured θ and ψ using
two commercial sensors: time-domain reflectometer (TDR) and dielectric field water potential (e.g.,
MPS-6) principles. Parametric models were used to quantify θ—ψ relationships at various depths
and were compared to laboratory-measured SWRC. The results of the study show that combining
TDR and MPS-6 sensors can be used to estimate plant-available water and SWRC, with a mean
difference of −0.03 to 0.23 m3m−3 between the modeled data and laboratory data, which could
be caused by the sensors’ lack of site-specific calibration or possible air entrapment of field soil.
However, consistent trends (with magnitude differences) indicated the potential to use these sensors
in estimating in-situ and dynamic SWRC at depths and provided a way forward in overcoming
resource-intensive laboratory measurements.

Keywords: field capacity; matric potential; parametric models; permanent wilting; soil water content

1. Introduction

Soil water retention curve (SWRC), a relationship between soil water potential (ψ),
and soil water content (θ) is critical for various applications in soil science, hydrogeology,
and hydrology [1]. It is often estimated using basic soil properties such as texture, or
a water retention function; it is fitted to experimental data and provides an accurate
estimation of soil hydrology. The fitted functions are then used in various hydrological
models for drought and flood risks [2], green infrastructure in catchment-scale flood risk
management by enhancing understanding of hydrological processes like interception,
ponding, and evapotranspiration [3], and to calculate plant-available water and to estimate
crop water requirements to manage irrigation scheduling [4]. Irrigation scheduling is
one of the main methods to improve water use efficiency, minimize crop water stress,
maximize yields, reduce labor through less irrigation, hold surface runoff, reduce the
loss of nutrients through leaching into the groundwater, and promote water conservation
in farms and agricultural fields. While water-saving irrigation methods like sprinkler
or drip can improve applied water use efficiency, irrigation scheduling approaches are
attractive methods in agriculture due to their enormous potential to save water [5]. Field
evidence across China showed that irrigation scheduling practices can reduce irrigation
water consumption of maize by 9–21% [6,7]. In another study in the United States, simple
irrigation scheduling limited deep seepage to less than 5% and achieved 95% irrigation
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efficiency [8]. Different methods of irrigation scheduling include the hand feel method,
electrical resistance blocks, and the water budget approach [9]. However, these methods
are always associated with some drawbacks such as low accuracies of the hand feel method
and its labor-intensive fieldwork, interference of soil salinity of resistance blocks, and
periodic adjustments of the water budget approach [9]. The soil water regime approach
based on sensors’ measurements of soil water content and soil water potential shows
promise in determining irrigation schedules due to their minimal soil interference and
real-time continuous soil measurements.

Water retention and availability in soil vary with its properties. The soil pores hold
water with different degrees of tenacity, depending on the size of the pores and the amount
of water in the soil. Soil water makes up the soil solution which is important in supplying
the plants with essential nutrients [10]. Growing plants remove some of the moisture in the
soil, and the rest remains either in the tiny pores or as thin films around the soil particles [10].
Soil hydraulic properties used to characterize the SWRC may include soil water pressure
head, volumetric water content, and hydraulic conductivity [11]. With its vast importance,
the SWRC is generally determined following traditional and well-accepted laboratory
methods using hanging columns, pressure/suction table/cells, or pressure plates [12–14].
Although specific data points are occasionally used to characterize water retention curves,
parametric models are preferred to provide the estimation and to describe the hydraulic
relations for near-surface soils. The demand for these models is driven by their wide usage
in mass transport and fluid flow and the increasing availability of simulation models [15].
An array of semi-empirical or empirical models have been revised and developed to fit
discrete measured data [16,17]. Some of the models that showed feasibility for various kinds
of soils include van Genuchten, Groenevelt–Grant, Campbell, and Kosugi [15,18–22]. The
applicability of each model is restricted by its specific curve-shape and the soil texture [23].
For example, a previous study by Roy et al. showed that silt clay soil showed a poor match
to the SWRC, derived by van Genuchten model, while silt and sandy loam soils had the
best-fitted SWRCs [24]. Therefore, model comparison and selection are prerequisites to
select the most suitable SWRCs for specific soils.

Measurements of θ and ψ, used in deriving SWRC, are traditionally determined by
laboratory methods such as applying suction by a hanging-water-column and applying
pressure above soil sample using pressure plates [25,26]. These methods involve several
days of laboratory work, can be quite costly, represent a small section of the soil profile
collected as cores [27], and require multiple repetitions of the same lengthy tests to pro-
duce comprehensive information. In contrast, an alternative method based on in-situ
sensors’ measurements through the soil profile could provide an alternative method to
derive SWRC. Developments in soil water sensor systems have allowed real-time contin-
uous soil water measurement. Sensor systems can record soil water data which can be
downloaded wirelessly within a certain radio range making the data acquisition easier for
growers [28]. Some examples of inexpensive sensors used to measure soil water content
and potential are capacitance-based sensors, resistivity-based granular matrix sensors, and
tensiometers [5,29–32]. These sensors have been used in a variety of soil applications such
as capturing soil water trends, estimating hydraulic properties in different soil textures,
and sensor characterization in irrigated soil [5,33,34].

The overall objective of this study was to examine the feasibility of using sensor-
measured soil hydraulic properties to estimate SWRC in-situ and in real-time. More specifi-
cally, this study was conducted to (i) examine the feasibility of time-domain reflectometry
(TDR) and dielectric soil water potential sensors in characterizing dynamic soil hydraulic
properties, (ii) use spreadsheet-optimized parametric models to derive SWRC from nu-
merous measurements of soil tension, (iii) verify the relationship between the laboratory
and field-measured SWRC, and (iv) estimate the plant-available water at different depths
and soil types. To do so, we have combined and integrated measurements from TDR
principle-based soil water measurement sensors (model TRIME PICO 32 from IMKO Inc.
Ettlingen, BW, Germany) and dielectric principle-based soil water potential sensors (model
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MPS-6 from METER Inc. Pullman, WA, USA) to estimate in-situ and real-time SWRC and
estimate the plant-available water. The in-situ and real-time soil water retention curves can
provide affordable and easy ways in precision water management and irrigation. Three
parametric modeling approaches were assessed in this study; van Genuchten, Kosugi,
and Campbell [15,18–21] from multiple wetting–drying events in two different soils in a
weighing lysimeter setting.

2. Materials and Methods
2.1. Sampling and Measurement Procedures

Two lysimeters that are metal cylinders with 1.50 m in depth and 1 m2 cross-sectional
area were used to collect precipitation and evapotranspiration data. Using excavators, the
lysimeters were slowly pressed down in the soil to allow for the preservation of column
structure, and soil around the lysimeters was removed (Figure 1a). Once the lysimeters
were filled, a hydraulic cutter was placed underneath them to slice through the soil at
the bottom. The lysimeters were flipped upside down and ceramic cups were installed,
to transmit water, before sealing the bottom. The lysimeters were then transmitted to
the two monitoring study sites at Elora, Ontario and Cambridge, Ontario. Time-domain
reflectometry-based soil water content sensors (model TRIME PICO 32 from IMKO, Inc.
Ettlingen, BW, Germany) and dielectric principle-based water potential sensors (model
MPS-6 from METER Inc. Pullman, WA, USA) were installed at two depths (5 and 30 cm)
on the lysimeters (Figure 1b) and finally, the lysimeters were lowered into the wells
(Figure 1c). Sensors’ data were collected at 10 min intervals during the month of October
2016 to estimate in-situ and dynamic SWRC. A total of 6 evapotranspiration events were
observed within the month of October. Evapotranspiration events were selected to avoid
the influence of hysteresis on the estimated SWRC. However, one of the events was
discarded from the analysis due to the very short time cycle. The lysimeter measured data
(ψ and θ) for each event were plotted and compared with a laboratory-derived SWRC,
measured using conventional pressure plate methods from representative soil cores taken
from the same depths as the soil sensor placement.
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Soil profiles, classification information, and analysis were reported for both lysimeters’
soils (Figure 2 and Table 1). Soil horizons were identified according to the Canadian System
of Soil Classification [35]. The soil texture analysis was performed on 3 cores for each of
the observed horizons following the guidelines of Kroetsch et al. [36] (Table 1). The two
lysimeters’ soils (extracted from Elora, Ontario and Cambridge, Ontario locations) were
categorized as silt loam (classified as grey-brown luvisol [36]) and loamy sand (classified
as brunisolic grey-brown luvisol [36]) (Table 1). Soil bulk density was identified according
to the guidelines of Hao et al. [37] using the average of 9 measurements per depth and
variation was assessed using standard deviation (Table 1).
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Figure 2. The soil profiles of (a) Elora, Ontario soil and (b) Cambridge, Ontario soil.

Table 1. Soil identification information.

Soil Type
Soil Property Elora, Ontario Soil Cambridge, Ontario Soil

Mineral soil horizons Ap Bt Ck Ap Btj Ck
Horizon depth (cm) 0–32 * 32–61 # 61+ 0–28 § 28–55 ú 55 +

Horizon thickness (cm) 20–34 * 20–30 # - 20–31 § 15–90 ú -
Sand (%) 38.0 ¶ 44.7 ¶ 49.4 ¶ 79.2 ‡ 82.0 ‡ 88.8 ‡

Silt (%) 54.5 ¶ 40.3 ¶ 38.1 ¶ 17.5 ‡ 13 ‡ 8.7 ‡

Clay (%) 7.5 ¶ 15.0 ¶ 12.5 ¶ 3.3 ‡ 5.0 ‡ 2.5 ‡

Textural class silt loam loam loam loamy sand loamy sand sand
Bulk density (g cm−3) 1.53 ± 0.12 1.71 ± 0.08 1.78 ± 0.11 1.71 ± 0.11 1.68 ± 0.09 1.64 ± 0.07

* horizon boundary distinctness Ap/Bt is clear (2–5 cm) and form is smooth; # horizon boundary distinctness B/Ck is gradual (5–15 cm)
and the form is smooth; ¶ average particle size distribution of 3 control sections; ‡ average particle size distribution of 2 control sections; §

horizon boundary distinctness Ap/B is clear (2–5 cm) and form is smooth; ú horizon boundary distinctness B/Ck is abrupt (<2 cm) and the
form is irregular (depth greater than width).

2.2. Soil Water Characteristic Functions

Three models were selected to describe the relationship between ψ and θ. Among
the most commonly used SWRC models is the parametric model of van Genuchten [18,19]
which can be written as:

θ = θr + (θs − θr)
(
1 + (− ∝ ·ψ)n) 1

n−1 (1)
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where θr is the residual water content, θs is the saturated water content, ∝ (L−1) is a
parameter (∝ > 0) to scale the matric head, ψ is the matric head, and n is a dimensionless
parameter [38]. The van Genuchten model can be differentiated twice with respect to
ψ to obtain the matric head at the inflection point (ψi) given by Equation (2). Inverting
this equation with respect to ∝ yields another expression for the SWRC called Kosugi
model [15] which is given in Equation (3):

ψi = m
1−m

∝ (2)

θ = θr + (θs − θr)(1 + m·Ψ
n

Ψi
)

1
n−1

(3)

The other retention model used in this study was derived by Campbell [20]; it assumes
θr is equal to zero and can be written as:

θ = θs −
(
ψma
ψ

)λ

(4)

where λ is a dimensionless parameter that characterizes the pore-size distribution, and
ψma is the air-entry potential.

2.3. Methodology for Fitting Water Retention Parametric Models

Equations (1), (3), and (4) were fitted to the θ and ψ data gathered from the TDR and
MPS-6 sensors, respectively, with a non-linear least-square fitting method. The models
were entered into a spreadsheet (Microsoft Office 365 Excel) with the measured ψ being a
constant. The sum of the squared difference between the measured and modeled θ was
determined and the spreadsheet extension solver was used to minimize this value by
changing the model parameters. Through this method, the models were optimized and
values for θr, θs, and all other parameters in each model were determined. The retention
curves for each model of the 5 events in each lysimeter were plotted together and then the
model parameters for the 5 events for each lysimeter were averaged and used to extrapolate
the data to determine the field capacity (FC) and the permanent wilting point (PWP) in
the soil.

2.4. Plant-Available Water Calculations

The van Genuchten model was used to calculate plant-available water (PAW). This
was calculated as the difference between FC and PWP (at soil matric potential of −0.33 bar
and −15 bars, respectively), multiplied by the soil depth (5 cm and 30 cm), Equation (5).

PAW = (FC − PWP) × soil depth (5)

2.5. Descriptive Statistics

The mean, minimum, maximum, and standard deviation (σ) of θ and ψ data for the
two soil types at two depths were reported for 5 events. The fitting performance of each
SWRC model was assessed based on root mean square error (RMSE) and the coefficient of
determination (R2).

RMSE =

√√√√ i

∑
n=1

(θi − θi,f)
2

n
(6)

R2 = 1 − ∑i
n=1 (θi − θi,f)

2

∑i
n=1

(
θi − θavg

)2 (7)

where n is the number of soil water retention data points collected in each event, θi and θi,f
are the measured and the fitted soil water content, and θavg is the mean of measured soil
water content.
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The best fit model was the one with the least RMSE and the highest R2 and closest to
unity. To test the sensor’s performance, laboratory-derived soil water volumetric content
(θL) from representative soil cores at 5 cm and 30 cm soil depths were compared to the
field sensors θ at the same soil depths. The correlation coefficient (rL) and the overall
error (RMSEL) between θL and the parametric models fitted soil water content (θf) were
evaluated. The intercept (b) and slope (m) of the linear regression equations were also
reported. The mean difference (Md) was used to evaluate the difference between the
averaged field measured water content, θavg, and the averaged laboratory-derived soil
water volumetric content, θL,avg. The relative standard deviation (RSD) of the average van
Genuchten, Kosugi, and Campell model parameters for 5 distinct periods of evapotranspi-
ration was used to evaluate the variation of the parameters in silt loam and loamy sand
soils at two soil depths.

θf = mθL + b (8)

RMSEL =

√√√√ i

∑
n=1

(θL − θi,f)
2

n
(9)

Md = θavg − θL,avg, (10)

RSD =
σParameter Ev1−Ev6

Average parameterEv1−Ev6
× 100, (11)

3. Results and Discussion
3.1. Field Data SWRC at Multiple Evapotranspiration Events

The θ data measured by the TDR sensors in Elora and Cambridge soils are presented
in Figures 3 and 4, which indicate that the sensors captured all of the evapotranspiration
events (Ev1–Ev6) occurring in October. Ev5 was discarded from the analysis due to the
very short time cycle. Loamy sand (Figures 3 and 4, red) showed remarkably lower θ at
all rainfall and subsequent evapotranspiration events. This can be explained by the effect
of soil texture in holding less water. The large surface area of the soil’s smaller particles,
such as silt, allows the soil to hold more water [10]. Hence, silt loam soil exhibited higher θ
values at both depths (Figures 3 and 4, black) than loamy sand soils (Figures 3 and 4, red).
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Figure 4. Soil volumetric water content measured by TDR sensors in October for Elora silt loam soil (black) and Cambridge
loamy sand soil (red) at 30 cm depth, reflecting the rainfall and evapotranspiration events (Ev1–6).

Both soils showed different and in most cases less variable θ values at deeper soil
depths (Figure 4) than at shallower soil depths (Figure 3). Deeper soil layers often showed
more consistent θ values due to the damping effects of the overlying soil. However, there
was a marked jump in θ measured in the Cambridge soil at 30-cm, but only during the
evapotranspiration event on October 16.

A comparison among field-measured, laboratory-measured, and model-fitted θ is
presented in Figures 5 and 6 for five evapotranspiration events of silt loam and loamy sand
soils at 5 and 30 cm depths. The highly precise and frequent measurement intervals of
the TDR and MPS sensors enabled a greater number of data points to be used than were
used for the laboratory data (Figures 5 and 6). The field data for silt loam soil appear to
show consistently greater θ than laboratory data at both depths, whereas, the differences
between lab and field data for loamy sand soil are less consistent. The fitted models had
slightly different parameters for each event, showing real-time trends of drying events and
the dynamic nature of these models (Table 2). A similar study was conducted by Steenpass
et al. to provide real-time continuous soil water data by integrating TDR measurements
with surface soil temperature measurements [27]. Steenpass et al. measured the changes
in surface soil temperature and used them to derive the soil moisture content. In their
method, a layered soil profile was used to derive soil hydraulic properties from the real
data, which consequently resulted in many uncertainties. Their experiment used TDR
probe measurements to establish initial soil water conditions as well as using the derivation
from the surface soil temperature data. The estimated SWRCs were found to be quite
similar to the laboratory results of their deep soil cores, but the retention curves from the
surface varied strongly from the lab data [27].
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Ev2 0.05 0.15 0.06 1.07 0.05 0.48 0.05 1.19 0.10 0.26 0.05
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The averaged model parameters for loamy sand soil showed high RSD values (Table 3).
This indicated the high variations within the parameters at different evapotranspiration
events. On the other hand, silt loam soils showed lower RSD values indicating the low
variations within the model parameters at different evapotranspiration events. Loamy
sand soils can be recharged with soil moisture at a faster rate than soils with finer texture
such as silt loam [10]. However, they are less capable of holding as much water as silt
loam [39]. The high recharging and drainage ability of loamy sand soils could explain why
they have a highly dynamic nature as expressed by the high variations of the RSD values
of the model parameters.
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Table 3. Summary of averaged van Genuchten, Kosugi, and Campell model parameters for 5 distinct
periods of evapotranspiration in silt loam and loamy sand soils at 5 and 30 cm depths.

Soil Type (Depth) Model Parameters

van Genuchuten
θr

(m3m−3)
RSD
(%)

θs
(m3m−3)

RSD
(%)

∝
(cm−1)

RSD
(%) n RSD

(%)
Silt loam (5 cm) 0.04 0.00 0.33 3.93 0.16 5.45 1.09 2.55

Loamy sand (5 cm) 0.06 64.08 0.58 68.88 0.12 164.79 3.74 89.34
Silt loam (30 cm) 0.04 0.00 0.33 6.21 0.16 5.45 1.01 1.33

Loamy sand (30 cm) 0.07 65.27 0.35 58.94 0.15 165.35 3.30 98.50
Kosugi

θr
(m3m−3)

RSD
(%)

θs
(m3m−3)

RSD
(%)

Ψi
(mbar)

RSD
(%) n RSD

(%)
Silt loam (5 cm) 0.14 15.25 0.41 3.66 0.48 52.46 1.19 3.88

Loamy sand (5 cm) 0.06 63.82 0.62 56.47 27.27 121.27 3.04 67.31
Silt loam (30 cm) 0.14 17.50 0.40 2.50 0.48 52.41 1.08 2.41

Loamy sand (30 cm) 0.07 62.42 0.59 57.04 26.76 152.47 3.40 95.78
Campbell

ψma
(mbar)

RSD
(%)

θs
(m3m−3)

RSD
(%) λ

RSD
(%)

Silt loam (5 cm) 0.03 15.97 0.52 7.07 0.08 8.84
Loamy sand (5 cm) 2.77 195.12 0.64 58.18 0.35 88.15

Silt loam (30 cm) 0.03 15.97 0.57 6.20 0.04 0.00
Loamy sand (30 cm) 0.08 89.01 0.47 67.00 0.08 78.72

The variation of θ and ψ values in Table 4 shows the dynamic behavior of the multiple
wetting and drying events (Ev1–Ev6). Considering the variation of θ and ψ values within
the 5 events (Table 4), Ev1–Ev2 were noticeably drier events than Ev3–Ev6. Soil texture
also affected the θ and ψ values, with silt loam soils having higher θ values. Loamy sand
soils have a higher bulk density than silt soils at 0–30 cm soil depth (Table 1). This makes
silt soils have more pore space and a higher capacity to hold water. Deeper soil samples
(30 cm) showed higher θ values than shallower soil samples (5 cm) (Table 4) due to the
higher porosity of deeper soil layers [10].

Table 4. Descriptive statistics of sensors ψ and θ data at 5 and 30 cm depths for silt loam and loamy sand soils, describing
the variations of θ and ψ values within 5 evapotranspiration events.

Event# ψMean
(mbar)

ψMax
(mbar)

ψMin
(mbar) σ * (mbar) θMean

(m3m−3)
θMax

(m3m−3)
θMin

(m3m−3)
σ *

(m3m−3)

Silt loam (5 cm)
Ev1 410 918 127 202 0.233 0.256 0.211 0.010
Ev2 403 847 51.0 180 0.234 0.259 0.221 0.009
Ev3 161 247 91 42.9 0.254 0.269 0.243 0.007
Ev4 144 360 82 63.9 0.273 0.298 0.250 0.012
Ev6 111 160 86 15.4 0.274 0.286 0.265 0.004

Loamy sand (5 cm)
Ev1 1487 4845 162 1360 0.070 0.092 0.055 0.010
Ev2 1123 3000 157 859 0.070 0.088 0.059 0.007
Ev3 188 291 107 61.7 0.106 0.168 0.087 0.019
Ev4 120 171 100 20.2 0.142 0.184 0.110 0.020
Ev6 111 121 105 3.81 0.146 0.179 0.133 0.011

Silt loam (30 cm)
Ev1 782 877 722 39.9 0.321 0.323 0.319 0.001
Ev2 739 815 102 52.4 0.319 0.322 0.249 0.005
Ev3 661 715 102 41.3 0.320 0.322 0.249 0.004
Ev4 107 111 10.0 4.22 0.335 0.338 0.249 0.004
Ev6 120 124 102 2.16 0.335 0.338 0.249 0.004

Loamy sand (30 cm)
Ev1 6296 7424 4862 672 0.116 0.118 0.115 0.002
Ev2 6414 7107 5500 333 0.114 0.117 0.112 0.001
Ev3 6219 6704 5750 241 0.112 0.115 0.111 0.001
Ev4 112 113 111 0.799 0.215 0.336 0.207 0.006
Ev6 115 115 114 0.281 0.199 0.202 0.197 0.001

* σ is the standard deviation of sensors’ data for each event.
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3.2. Fitting Performance of van Genuchten, Kosugi, and Campbell Parametric Models

The three models delivered high R2, close to unity, and small RMSE for Ev1–Ev4 for
both soils at 5 cm depth (Table 5). The models generally provided a better fit for the silt
loam data than the loamy sand (Table 5). However, Ev6 at 5 cm depth and Ev1–Ev6 at
30 cm depth for both soil types registered low R2 (Table 5). This can be explained by the
high proximity of the data points at these events (Figure 5 Ev6 and Figure 6 Ev1–Ev6)
which affected the fitting performance of SWRCs models.

Table 5. Fitting performance of van Genuchten, Kosugi, and Campbell SWRT models using sensors
ψ and θ data at 5 and 30 cm depths for silt loam and loamy sand soils.

Van Genuchten Kosugi Campbell

Event# RMSE
(%) R2 RMSE

(%) R2 RMSE
(%) R2

Silt loam (5 cm)
Ev1 0.19 0.97 0.18 0.97 0.19 0.97
Ev2 0.15 0.98 0.15 0.98 0.15 0.98
Ev3 0.12 0.97 0.11 0.97 0.12 0.97
Ev4 0.33 0.94 0.33 0.94 0.33 0.95
Ev6 0.21 0.68 3.01 0.68 0.21 0.68

Loamy sand (5 cm)
Ev1 0.13 0.98 0.13 0.98 0.17 0.97
Ev2 0.11 0.97 0.11 0.98 0.17 0.95
Ev3 0.11 0.50 0.47 0.93 0.80 0.81
Ev4 0.95 0.84 1.02 0.82 1.10 0.74
Ev6 2.26 0.22 1.16 0.23 1.22 0.09

Silt loam (30 cm)
Ev1 0.06 0.02 0.08 0.03 0.03 0.03
Ev2 0.61 0.42 0.71 0.42 0.75 0.43
Ev3 0.56 0.60 0.65 0.61 0.72 0.61
Ev4 0.45 0.00 0.45 0.00 0.45 0.00
Ev6 0.45 0.10 0.46 0.10 0.47 0.10

Loamy sand (30 cm)
Ev1 0.10 0.21 0.15 0.35 0.14 0.34
Ev2 0.11 0.12 0.11 0.19 0.10 0.19
Ev3 0.07 0.98 0.07 0.98 0.15 0.99
Ev4 0.16 0.95 0.16 0.95 0.41 0.53
Ev6 0.14 0.11 0.28 0.11 0.52 0.11

3.3. Sensor Performance

The averaged parametric models (Figure 7) were used to determine the relationship
between θ (sensors data) and θL (laboratory driven data) to assess the overall performance
of sensors at different conditions. At shallow soil depth (5 cm), the difference between
θ and θL decreased as ψ increased (Figure 7). The large differences at lower ψ could be
because of air entrapment in field soils as data was collected under dynamic as opposed
to static conditions for the laboratory data. The water infiltration rate, the speed at which
water enters the soil, is always controlled by the rate of air outflow. Water movement in the
vadose zone takes place because of immiscible displacement between air and water [40]. As
ψ increases, the soil will have less θ i.e., more air outflow is possible and less entrapped air.

The estimated water content of the field data and parametric models were not very
close to the data collected in the laboratory and overestimated the soil water content at
different depths, which is reflected by the positive Md values exhibited by most of the
SWRC models (Table 6). Silt loam soil registered higher rL than loamy sand soil (Table 6).
Loamy sand has a higher permeability than silt loam (2x more) [41]. More permeability
results in more water inflow and more displacement between air and water within the
soil, which could affect the sensors’ readings, causing a consistent variation between the
dynamic field modeled data and the static laboratory data at various depths and soil
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tensions (Figures 5–7), which results in smaller rL relative to silt loam (Table 6). The silt
loam soil exhibited lower RMSEL and Md values at lower depth (5 cm) than at higher
depths (30 cm). With high air pressure at higher depths (30 cm) in the silt loam soil, high
air outflow will take place in the soil, making a larger variation between the laboratory
data and the modeled data, which is reflected by the Md and RMSEL values (Table 6). The
slope (m) and intercept (b) values of the linear regression equations (Table 6) showed that
site-specific calibration could enhance the sensors’ precision greatly. In a similar study,
tensiometer and electrical resistance sensors were used to measure ψ and θ, respectively,
in a pecan field in Texas, USA [5]. Both sensors underestimated the soil water content at
different depths but registered a high coefficient of determination (R2 = 0.71) between the
sensor water content and the soil gravimetric water under field conditions. Overall the
sensors managed to capture the general trends of soil water content; however, soil sensors,
with factory calibration only, had levels that were lower than the ideal level [5].
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3.4. Plant-Available Water

PWP and FC are two important hydraulic features in soil that determine the moisture
content at which the plant cannot absorb water and the point at which water moves slowly
after irrigation, respectively [42]. FC and PWP are widely used for scheduling irrigation
and assessing the plants’ water requirements. From Figures 5 and 6, FC and PWP can
be estimated at a soil matric potential of −0.33 bar and −15 bars respectively [42], and
the difference in θ between these two points was used to calculate PAW [43]. The van
Genuchten model was used to calculate PAW since it is the most used model in water
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retention studies, and it registered small RMSE values between θ and θL (Table 6). The
variations in PAW values for Ev1–Ev6 for both soils (Table 7) reflect again the dynamic
nature of these data. The PAW estimated for silt loam soil at 5-cm depth were the most
consistent between evapotranspiration events. The SWRC models, adjusted to averaged
field data, were used to calculate PAW values for the silt loam at 5 and 30 cm depth,
which were equal to 0.292 and 0.288 cm, respectively. The SWRC models, adjusted to
averaged field data, of loamy sand showed comparatively very low PAW at both depths;
0.10 × 10−4 cm (5 cm depth) and 0.10 × 10−2 cm (30 cm depth) which can be explained by
the high permeability of loamy sand which decreases the amount of available water to the
plant [44].

Table 7. Summary of plant-available water (PAW) values derived using the van Genuchten model.

PAW (cm)
Event# Silt Loam (5 cm) Loamy Sand (5 cm) Silt Loam (30 cm) Loamy Sand (30 cm)

Ev1 0.32 0.14 0.15 NA
Ev2 0.27 0.11 0.03 0.51
Ev3 0.34 0.28 × 10−2 0.66 0.39 × 10−2

Ev4 0.43 1.73 × 10−5 0.18 0.10 × 10−2

Ev6 0.33 0.18 0.75 2.75

4. Conclusions

In conclusion, integrating TDR and MPS-6 sensors introduces a relevant method to
describe the in-situ conditions of the soil. Simple water content may not provide a lot of
information, however, TDR and MPS data can be used to estimate plant-available water in-
situ and in real-time. The resulting averaged models showed a strong correlation between
the laboratory-measured data and the modeled data with the van Genuchten parametric
model being the closest to the laboratory data and Campbell parametric model showing
the best fitting performance towards the field measured data. However, the reported
positive Md values between θ and θL indicate the overestimation of the soil water content.
A possible explanation of the differences between the laboratory-measured data and the
field-modeled data could be air entrapment or air outflow/inflow in the field soil collected
under dynamic conditions, differences in lab and field samples bulk density, or the sensors’
lack of site-specific calibration. The soil texture or other soil properties such as available air
at different depths, pH, conductivity, and nutrient concentrations could affect the sensors’
performance. Calibrating the soil water sensors against these properties is a recommended
enhancement towards more accurate sensor results. Incorporating soil properties that have
temporal changes on soil could also be a helpful solution to improve the sensors’ reliability.
Future research on the improved soil properties on SWRC estimation using TDR and MPS-6
sensors is recommended, especially using different soil textures and a wider range of soil
water content conditions. Using real-time soil tension data with spreadsheet optimized
parametric models to derive SWRCs is a promising technique that can be used to reflect
the dynamic nature of the soil drying events to deduce the plant available water, providing
better irrigation management for different soil types. Measurements of soil–water status
are crucial in irrigation scheduling, especially in soils with a narrow PAW range and low
soil-water holding capacity such as loamy sand.
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27. Steenpass, C.; Vanderborghta, J.; Herbsta, M.; Šimůnekb, J.; Vereeckena, H. Estimating Soil Hydraulic Properties from Infrared

measurements of Soil Surface Temperatures and TDR Data. Vadoze Zone J. 2010, 9, 910–924. [CrossRef]
28. Vellidis, G.; Tucker, M.; Perry, C.; Kvien, C.; Bednarz, C. A real-time wireless smart sensor array for scheduling irrigation.

Comput. Electron. Agric. 2008, 61, 44–50. [CrossRef]
29. Parvin, N.; Degré, A. Soil-specific calibration of capacitance sensors considering clay content and bulk density. Soil Res. 2016,

54, 111–119. [CrossRef]
30. Archer, N.; Rawlins, B.; Marchant, B.; Mackay, J.; Meldrum, P. Approaches to calibrate in-situ capacitance soil moisture sensors

and some of their implications. Soil Discuss 2016. [CrossRef]
31. Fares, A.; Awal, R.; Bayabil, H.K. Soil water content sensor response to organic matter content under laboratory conditions.

Sensors 2016, 16, 1239. [CrossRef] [PubMed]
32. Mittelbach, H.; Lehner, I.; Seneviratne, S.I. Comparison of four soil moisture sensor types under field conditions in Switzerland.

J. Hydrol. 2012, 430, 39–49. [CrossRef]
33. Rudnick, D.R.; Djaman, K.; Irmak, S. Performance analysis of capacitance and electrical resistance-type soil moisture sensors in a

silt loam soil. Trans. Asabe 2015, 58, 649–665.
34. Rende, A.; Biage, M. Characterization of capacitive sensors for measurements of the moisture in irrigated soils. J. Braz. Soc.

Mech. Sci. 2002, 24, 226–233. [CrossRef]
35. Canadian Agricultural Services Coordinating Committee. The Canadian System of Soil Classification; NRC Research Press: Ottawa,

ON, Canada, 1998.
36. Kroetsch, D.; Wang, C. Particle Size Distribution. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.,

Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 713–726.
37. Hao, X.; Ball, B.; Culley, J.; Carter, M.; Parkin, G. Soil Density and Porosity. In Soil Sampling and Methods of Analysis, 2nd ed.;

Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 743–760.
38. Genuchten, M.V.; Nielse, D. On describing and predicting the hydraulic properties of unsaturated soils. Ann. Geophys. 1985,

3, 615–628.
39. Adamu, G.; Aliyu, A. Determination of the influence of texture and organic matter on soil water holding capacity in and around

Tomas Irrigation Scheme, Dambatta Local Government Kano State. Res. J. Environ. Earth Sci. 2012, 4, 1038–1044.
40. Wang, Z.; Feyen, J.; van Genuchten, M.T.; Nielsen, D.R. Air entrapment effects on infiltration rate and flow instability. Water Re-

sour. Res. 1998, 34, 213–222. [CrossRef]
41. FAO. Food and Agriculture Organization of the United Nations: Soil Permeability. Available online: http://www.fao.org/

fishery/static/FAO_Training/FAO_Training/General/x6706e/x6706e09.htm (accessed on 24 April 2020).
42. Kirkham, M.B. Chapter 10: Field Capacity, Wilting Point, Available Water, and the Nonlimiting Water Range. In Principles of Soil

and Plant Water Relations; Kirkham, M.B., Ed.; Elsevier Inc.: Boston, MA, USA, 2014; pp. 153–170.
43. Zotarelli, L.; Dukes, M.D.; Morgan, K.T. Interpretation of Soil Moisture Content to Determine Soil Field Capacity and Avoid Over-

Irrigating Sandy Soils Using Soil Moisture Sensors; University of Florida Cooperation Extension Services Document No. AE 460;
University of Florida: Gainesville, FL, USA, 2010.

44. Corey, A.T. Measurement of water and air permeability in unsaturated soil. Soil Sci. Soc. Am. J. 1957, 21, 7–10. [CrossRef]

http://doi.org/10.2136/sssaj2017.09.0324
http://doi.org/10.4141/cjss80-066
http://doi.org/10.2136/vzj2009.0176
http://doi.org/10.1016/j.compag.2007.05.009
http://doi.org/10.1071/SR15036
http://doi.org/10.5194/soil-2016-40
http://doi.org/10.3390/s16081239
http://www.ncbi.nlm.nih.gov/pubmed/27527185
http://doi.org/10.1016/j.jhydrol.2012.01.041
http://doi.org/10.1590/S0100-73862002000300012
http://doi.org/10.1029/97WR02804
http://www.fao.org/fishery/static/FAO_Training/FAO_Training/General/x6706e/x6706e09.htm
http://www.fao.org/fishery/static/FAO_Training/FAO_Training/General/x6706e/x6706e09.htm
http://doi.org/10.2136/sssaj1957.03615995002100010003x

	Introduction 
	Materials and Methods 
	Sampling and Measurement Procedures 
	Soil Water Characteristic Functions 
	Methodology for Fitting Water Retention Parametric Models 
	Plant-Available Water Calculations 
	Descriptive Statistics 

	Results and Discussion 
	Field Data SWRC at Multiple Evapotranspiration Events 
	Fitting Performance of van Genuchten, Kosugi, and Campbell Parametric Models 
	Sensor Performance 
	Plant-Available Water 

	Conclusions 
	References

