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Abstract

Identifying promising research as early as possible is vital to determine which research

deserves investment. Additionally, developing a technology for automatically predicting

future research trends is necessary because of increasing digital publications and research

fragmentation. In previous studies, many researchers have performed the prediction of sci-

entific indices using specially designed features for each index. However, this does not cap-

ture real research trends. It is necessary to develop a more integrated method to capture

actual research trends from various directions. Recent deep learning technology integrates

different individual models and makes it easier to construct more general-purpose models.

The purpose of this paper is to show the possibility of integrating multiple prediction models

for scientific indices by network-based representation learning. This paper will conduct pre-

dictive analysis of multiple future scientific impacts by embedding a heterogeneous network

and showing that a network embedding method is a promising tool for capturing and

expressing scientific trends. Experimental results show that the multiple heterogeneous net-

work embedding improved 1.6 points than a single citation network embedding. Experimen-

tal results show better results than baseline for the number of indices, including the author

h-index, the journal impact factor (JIF), and the Nature Index after three years from publica-

tion. These results suggest that distributed representations of a heterogeneous network for

scientific papers are the basis for the automatic prediction of scientific trends.

1 Introduction

Companies and government agencies must identify promising research and research areas at

an early stage to formulate investment strategies for research. Attempts to capture a vast

amount of knowledge and to evaluate the direction of future technology development are vari-

ously called technology foresight, horizon scanning, technology forecasting, and impact assess-

ment. Recently, government agencies specializing in such activities have been established in

many countries. They are trying to use results and knowledge gained to support policymaking.
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Typical examples include units established within the European Parliament’s Science and

Technology Options Assessment (STOA). Methods for investigating the direction of future

technological development have so far adopted T-plan methods, Delphi methods, and SWOT

analysis based on questionnaires and workshops for experts. However, because of the rapid

increase in the number of publications in recent years and the fragmentation of specialized

knowledge, analyzing trends of academic research is difficult with only a few members. Fur-

thermore, the demand for more extensive fields and cross-disciplinary research is increasing,

making it difficult to predict technological trends that depend on the knowledge of individual

researchers. Under these circumstances, attempts have been made actively in recent years to

analyze papers and patents directly and to use them for decision making.

Many studies have analyzed the effects of science and technology, mainly expressing the

magnitude of the impact as an index. These include, for example, the number of citations in

papers, an h-index for individual researchers, impact factor for published journals (JIF), and

the Nature Index for research organizations (NI). These facilitate a simple comparison of per-

formance differences among multiple subjects merely by showing the performance of papers,

researchers, journals, and research organizations at a certain point in time as a simple index.

In recent years, there are many criticisms against an excessive emphasis on these indicators.

However, such simple indexing is easily understood by non-experts other than researchers,

and is widely accepted.

Against this background, predicting these indices has become a significant research prob-

lem. There is some research aimed at predicting these indices at an early stage for finding

promising research fields in the future. For example, reports have described the prediction of

the number of citations [1, 2] and forecast of the h-index [3]. These methods are intended to

design unique features and models for predicting each index and clarify essential elements and

trends in the target index. Specifically, Sasaki et al. showed that citing important papers (High

PageRank Paper) in an article was correlated in the number of citations in the future. So, is it

possible to make a significant impact by merely citing high PageRank papers in science? Of

course not. Because which papers an article cites is nothing to do with the actual scientific

innovation. In many cases, studies inspired by these high PageRank papers are likely to have a

significant science impact, so good papers are expected to cite top PageRank papers. In prac-

tice, good research results come from a combination of various entities (inspired research

papers, authors, research institutions, specialized fields, journals, etc.) We define a group of

such entities that show excellent research results in the future as an emerging research area.

The early detection of this emerging research area would be significant evidence for invest-

ment decisions by companies and governments.

With the rapid growth of digital publishing, we can use various digital libraries, and some

of them make available their Scholarly Big Data (SBD) such as datasets of AMiner, American

Physical Society, DBLP, and Microsoft Academic Graph for researchers [4]. Using the infor-

mation on papers, authors, institutes, venues, fields of study, and other useful entities from

SBD, some research constructs knowledge graph for academics (e.g., Microsoft Academic

Knowledge Graph [5] and AceKG [6]). Academic knowledge graph enables the development

of new systems and approaches in the field of digital libraries to discover hidden relations and

semantic-based information such as reading paper or citing paper recommendations.

On the other hand, distributed representation learning methods for the network have been

developed recently. Network embedding methods [7–9] that encode each vertex (node) in a

network with its vector representation have been studied extensively, e.g., bipartite network

[10] and heterogeneous network [11, 12]. Entity and relation network embedding methods

[13] which encode each triple (head entity h has a relation r to tail entity t) in a knowledge

graph with its vector representation also have been developed. In the context of SBD, some
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papers apply these embedding methods, e.g., citation recommendation [14, 15] and reading

paper recommendation for each user [16], and have succeeded in improving results. One of

the relevant research topics in the science of scientific study is to predict the trend of scientific

development [17]. So far, many researchers have been working on analyzing and predicting

the science trend [18]. To our best knowledge, there are few studies to predict in the future

trend applying network embedding method. The network embedding method could integrate

various individual scientific indicator prediction models and capture more reasonable scien-

tific trends. So, the purpose of this paper is to show the possibility of integrating multiple pre-

diction models for scientific indices by network-based representation learning.

In this paper, we conduct predictive analysis of multiple future scientific impacts by embed-

ding a heterogeneous network and show the network embedding method is one of the promis-

ing tools for capturing and expressing scientific trends. This paper is extended from the

conference paper which is “The Representation Extraction for Emerging Research Fields

Using an Embedding Method for Heterogeneous Networks [19].” In the conference paper, we

presented the basic framework of the method and some initial results on predicting authors’ h-

indexes. In this paper, we extend the method to predict the h-index and the number of cita-

tions to paper, the impact factor of a journal, and the Nature Index of a research institution

and present the results in a complete form.

1.1 Approach

The proposed method consists of three parts as shown in Fig 1. First, we construct a heteroge-

neous network from a scholarly dataset. In this paper, we define the heterogeneous network

that is a network with nodes of multiple types. Next, we extract a distributed representation

from a heterogeneous network. We identify emerging research areas from the acquired distrib-

uted representation, lastly.

We conduct experiments using a scholarly dataset from Scopus. We focus on the research

area related to “Solar Cell” from 2006 to 2016. During this period, there were various innova-

tions in solar cells such as inventing perovskite solar cells [20] and the rapid growth of quan-

tum dot solar cells [21] and organic solar cells [22]. This is the reason we select this research

area to analyze. We evaluate how our proposed method identify emerging research areas. Our

experimental results outperform a baseline method on prediction tasks for identifying

Fig 1. Outline of the method.

https://doi.org/10.1371/journal.pone.0274253.g001
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emerging research areas. Also, by using a heterogeneous network, our proposed method

improve the result better than using a single network. We demonstrate that node embedding

methods are effective to find emerging research areas in scholarly data.

1.2 Contributions

The contributions of this research are summarized as the following three points.

• We show that the heterogeneous network has complementary effects in a link prediction in

scholarly datasets.

We make a heterogeneous network from the scholarly dataset and some of them are sparse,

so we confirm the effectiveness such a sparse network on the link prediction task.

• We show that mapping all entities to the same vector space using a node embedding method

is effective to predict future research indices.

• We show that our proposed method identify an emerging research area.

Our proposed method embed all entities to the same vector space and predict future

research indices. So, we can find the future promising entities as an area.

The rest of this paper is organized as follows. First, Section 1.3 describes previous literature

and clarifies the position of this study. In Section 2, we propose a distributed representation

extraction method for identifying emerging research areas using heterogeneous network

embedding methods. Section 3 describes the data used and the experimental procedure using

the proposed method. In the next section, we report details of the experimentally obtained

results. Subsequently, we discuss and examine the experimentally obtained results in Section 5.

We present conclusions in Section 6.

1.3 Previous literature

This study is intended to assess various entities listed in scholarly data in the same vector space

and to analyze the relation between extracted entities and multiple future research indices. In

this section, we firstly describe the recent rapid growth of digital publishing and various indi-

ces for measuring scientific impacts from various aspects. And we explain pros and cons of

such simplified indices and it is important to predict them. Next, we explain the method to

acquire the distributed representation for the information network and application examples

for the SBD. Finally, we clarify points of focus and the significance and novelty of this research,

which is the predictive analysis of multiple future scientific impacts by acquiring heteroge-

neous network distributed representations in the scholarly dataset.

Recently, we can use various digital libraries and some of them make available their SBD

such as datasets of AMiner, American Physical Society, DBLP and Microsoft Academic Graph

for researchers [4] with the rapid growth of digital publishing. Some research constructs

knowledge graph for academic (e.g., Microsoft Academic Knowledge Graph [5] and AceKG

[6]) using various information of research papers such as authors, institutes, venues, fields of

study and other useful entities from SBD. Academic knowledge graph enables development of

new systems and approaches in the field of digital libraries to discover hidden relations and

semantic based information such as reading paper or citing paper recommendation.

Thus, research indicators are promising because they have the potential to evaluate the

impact of science and technology objectively. On the other hand, several reports point to the

abuse of indicators [23, 24]. In particular, universities and government agencies make hiring

decisions or give grants based solely on the researchers’ h-index or journal impact factor. How-

ever, journal impact factors have different citation numbers among research fields, and it is
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wrong to evaluate all research by this indicator. Therefore, normalized impact factors [25] and

other indicators that remove bias have been proposed [26]. There is also an active movement

to introduce social evaluation, including the Altmetrics [27]. In this paper, we predict only

four representative indicators, however we would not ignore these trends in research indica-

tors development.

Research investigating the impact of science and technology has specifically examined the

development of indicators and future predictions. The development of indicators is mainly

aimed at quantifying the influence of individual objects: if the subject is a paper, then the num-

ber of citations might be used; the author is evaluated by the h-index [28]; journals are evalu-

ated by the journal impact factor (JIF) [29]; research institutes are assessed according to the

Nature index (NI). Of course, various indicators other than these have been developed, but

most of them were for papers and authors.

Research to predict these indices has also been reported. Many studies have already been

conducted to predict future h-index values [30–33]. Acuna et al. calculated an equation for

predicting h-index. They showed that five main parameters are fundamentally important for

prediction [33]: the number of publications, the current h-index value, the number of years

since the first publication, the number of types of journals published to date, and the number

of papers in top journals. This result demonstrates that the h-index is linked with various enti-

ties that compose scholarly data, such as papers and submitted journals. Therefore, analyzing

scholarly data including multiple entities is important. We address that very task as described

in this paper.

Some studies have been undertaken to predict the number of future citations of papers [1,

2, 34, 35]. Among them, Stegehuis et al. and Cao et al. predict the number of citations in the

far future considering the number of citations during 1–3 years after publication. In contrast,

Sasaki et al. predict the number of citations after three years from publication directly. The

task evaluated in this study also predicts the number of citations three years after publication,

just as Sasaki et al. did.

Second, since 2014, many researchers have attempted to map networks directly into vector

space [7–9]. This trial is still being actively researched and developed in various ways. A typical

attempt to deepen is called Graph Convolutional Neural Network (GCN) [36]. However, at

present, many reports have described that the scale of the network is about 100,000 nodes. The

hierarchy of the neural network is about two layers. Therefore, many difficulties remain in

relation to enlargement and deepening. In this paper, we propose a random walk-based node

representation extraction method that can be readily scaled up and extended to a heteroge-

neous network that are constructed based on a scalarly data. A random walk-based node repre-

sentation extraction method, including nodes of multiple types, has already been studied. The

BINE is a technique for obtaining a distributed node representation of a bipartite network

[10]. First, for a network with nodes of two types, U and V, we create a network with only a set

of U and a network with only a set of V considering the secondary proximity between the

nodes. It is a technique to execute a random walk on each network and to obtain a distributed

representation of nodes. However, because this method maps each node set U and V onto dif-

ferent vector spaces. Analyzing the proximity of nodes between U and V in the space is

difficult.

Examples of approaches for distributed representation extraction for a heterogeneous net-

work with two or more types of nodes are PTE [12] and metapath2vec [11]. The first, PTE, is a

method to acquire three distributed representations on the same vector space for a heteroge-

neous network connected by three bipartite networks. By contrast, metapath2vec defines the

type of random walk across heterogeneous nodes as meta-path(P). It obtains a distributed

representation by repeatedly sampling vertices according to every kind of node according to
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this P. Because metapath2vec performs a random walk along the defined meta-path P, the

proximity between specific nodes can be analyzed more appropriately. Actually PTE presents

the benefit that each bipartite network is independent, such that another network with some

nodes in stock can be added or deleted. This study specifically considers the benefits of PTE

and extends it for a scholarly data. Moreover, it examines a proposed method for mapping all

nodes onto a vector space from a heterogeneous network defined by multiple bipartite net-

works. We then evaluate whether the obtained distributed representation is useful for identify-

ing an emerging research area.

On the other hand, some works apply the network embedding methods to SBD. Entity and

relation network embedding methods [13] which encode each triple (head entity h has a rela-

tion r to tail entity t) in a knowledge graph with its own vector representation also have been

developed. In the context of SBD, some papers apply these embedding methods, e.g., citation

recommendation [14, 15] and reading paper recommendation for each user [16], and have

succeeded in improving result.

One of the important research topics in the science of science study is to predict the trend

of scientific development [17]. So far many researchers have been working on analyzing and

predicting the science trend [18]. To our best knowledge, there are few studies to analyze the

future trend applying network embedding method to the SBD.

2 Method

This section describes a proposed method for distributed representation extraction to identify

emerging research areas using paper data. The proposed method consists of three parts. One

part creates a heterogeneous network from a scholarly dataset, a part that extracts distributed

representations from a heterogeneous network, and a part that identifies an emerging research

area using the extracted distributed representations. Therefore, we first clarify the role played

by each part by explaining the outline of the entire method. Subsequently, we explain details of

each part according to the procedure.

2.1 Overview of the proposal method

We outline the proposed method in Fig 1. As the figure shows, the proposed method consists

of three parts. It consists of creating a heterogeneous network from a scholarly dataset, extract-

ing a distributed representation from a heterogeneous network, and finally executing a task to

identify emerging research areas from the acquired distributed representation. Here, we first

explain how to create a heterogeneous network from a scholarly dataset; then we describe how

to map each node of the created a heterogeneous network to a single vector representation

space. Finally, we describe how to apply the core distributed representations to various tasks to

identify emerging research areas.

2.2 Creation of a heterogeneous network using a scholarly datasets

Here we describe how to create a heterogeneous network using a scholarly dataset. Fig 2 out-

lines the heterogeneous network we create. Our method extracts five types of entities which

are papers from reference list in the paper, keywords from author provided keyword list, the

published journal, authors who write the paper, and institutions where each author belong to.

We make edges between each entities as a heterogeneous network and calculate for all papers

this extraction method. Each network shares some nodes with other networks. No network

shares them all. These various entities described in the paper are reconfigured as a network

around the paper. First, the “Citation network” is a network of citation relations among

papers. Next, the “Paper–Author network” connects the paper and the author with an edge.
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However, no edge exists between co-authors. Some connection must be made between the

paper and the author. The “Author–Institute network” is an edge connection between the

author and the institute to which the author is affiliated. Furthermore, we call the Paper–

Keyword network a keyword that is connected with the paper. Finally, we add a “Paper–

Journal network” that links the paper to the journal which published it.

Many of these networks are bipartite networks composed of nodes of different types, not

homogeneous networks consisting of only a single type of node, such as only papers or

authors.

2.3 Node embedding method on a heterogeneous network

We describe how to map nodes on a heterogeneous network into the same vector space. First,

we represent a set of multiple bipartite networks G as shown below, where G represents a net-

work, V denotes a node set, and E stands for an edge set.

G≔ fGl ¼ ðVl;ElÞj1 � l � jGjg ð1Þ

Fig 2. Outline of a heterogeneous network to be created.

https://doi.org/10.1371/journal.pone.0274253.g002
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Each Gl is a bipartite network such as the “Author–Institute network” or “Citation network” as

shown in Fig 2. Also, |G| is the number of bipartite networks. Each network is an undirected

network Gl≔ (Vl, El) composed of nodes and edges. Although no shared edge exists in each

network, some nodes are shared with other networks. We consider a method of mapping a

certain node vi 2 V on a heterogeneous network set G to a particular vector ~ui 2 U in a vector

space. Here, V represents all nodes Vl on each bipartite network Gl.

First, we calculate the edge weight wij = P(vj|vi) to the node vj adjacent to the node vi on a

particular network. In this paper, all bipartite networks are undirected graphs, and all edge

weights have the same value. We calculate this value by the mapped distributed representation

and the following formula. For simplicity, we omitted subscripts l for specific networks.

P̂ðvjjviÞ ¼
expð~u0j

T � ~uiÞ
P

k2jVjexpð~u0kT � ~uiÞ
ð2Þ

Therein, |V| is the number of nodes on the network, ~ui is the node mapping vector, and ~u0j is

the context vector from node vi. We use only this context vector for calculation. In this study,

we are interested in finding the node mapping vector. Then, using this equation, we can for-

mulate the difference from the edge weight on the original network. Letting P(�|vi) be the dis-

tribution of edge weights from node vi to all nodes (assuming that nodes with no edges are

connected with weight 0), then we calculate the distance between the edge weight distribution

derived from the vector representation and that on the original network using function d.

Using this function d, we sum over all vertices by the equation O ¼
PjVj

i¼1
lidðPð � jviÞ; P̂ð �

jviÞÞ and calculate the difference between the distribution on the original network and the dis-

tribution from the vector representation obtained. For example, we adopt the KL pseudo-dis-

tance for the distance function d and the coefficient li ¼
PjVj

j¼1
wij. We specifically examine the

variable part of P̂ð � jviÞ. We can approximate O as follows.

O � �
X

ði;jÞ2E

wij log P̂ðvjjviÞ ð3Þ

We compute the sum of distances Ol from the vector set Ul≔ f~ul
i j1 � i � jVljg which maps

the node set Vl in this particular network Gl to the vector space for all networks in G.

O ¼
XjGj

l¼1

Ol ð4Þ

We define O as a loss function and minimize in this expression 4. The mapping vector and the

context vector are optimized using the stochastic gradient descent method (SGD.) Therefore,

we update for the gradient direction(@O
@~u ,@O

@~u0
) of each vector. Each vector learns according to the

algorithm in Table 1. Here, T stands for the number of times of learning, K signifies the num-

ber of times of negative sampling, and D denotes the number of dimensions of the vector

space to be mapped. Additionally, we set the learning coefficient to rt ¼ r0
1� t
T and set ρ0 as ini-

tial parameters as in the LINE model [8].

2.4 Identify emerging research areas

The purpose of this paper is extraction of a distributed representation that enables the identifi-

cation of emerging research areas. Therefore, we set up a task to predict whether an index indi-

cating the results of the research will be in the top x% in the future. In this way, we verify the

usefulness of distributed representations extracted from a heterogeneous network for
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predicting future research trends. In this task, we need distributed representations at two

points which are current vector space to predict future indices and past vector space to learn

each feature weight. When extracting two distributed representation separately, it’s known

that each vector space is completely different because each vector is randomly initialized [37].

So, we need to align two vector spaces for weights consistency between current and past vector

spaces. To align two vector spaces, our method samples representative entities which can be

consistent for a long time. For example, top journals which have high journal impact factors

remain top class for a long time. Our method assumes that thus entities is consistent for a long

time and adopt the distance between an entity and thus consistent entities as features. Specifi-

cally, the following logistic regression predicts some index IID,Y+n of a target (ID) after n years

from a particular year(Y).

Î ID;Yþn ¼ sðwIID;Y þ ~wT � ðUT

s;Y �~uID;YÞÞ ð5Þ

In this equation, w and ~w is the weight value and the weight vector to be optimized, Us rep-

resents a matrix of vectors of the sampled group s that appropriately samples from entities,

and~uID;Y is the vector learned by the heterogeneous network of a specific entity which ID is ID
in a particular year Y. One can predict whether index I is in the top x% by learning the weight

w and ~w using the distance between a specific target ID and the sampled group as a feature.

Additionally, it is necessary to learn w and ~w at a point in the past (m years ago) before year Y.

Therefore, at the time of training, we use index IY−m+n for Y −m year to learn. Then, we use

the optimized w and ~w to predict the index IY+n and evaluate it.

3 Materials

This section describes scholarly dataset to use and the experiment included the settings for dis-

tributed representation extraction. We also explain the link prediction conditions that evaluate

the characteristics of the extracted distributed representations, and the conditions of the pre-

diction task to identify the emerging research area. Prediction involves four tasks: citation

count prediction, author h-index prediction, journal impact factor prediction, and research

institute’s nature index prediction. Here, we will explain the definition and calculation method

of each prediction task and the experimental conditions.

3.1 Scholarly dataset

We acquired the dataset from Scopus [38]. We entered “(TITLE-ABS-KEY(nano AND car-

bon) OR TITLE-ABS-KEY(gan) OR TITLE-ABS-KEY(solar AND cell) OR TITLE-ABS-KEY

Table 1. Learning algorithm.

Learning algorithm

1: Input: G, T, ρ0, K, D.

2: Output: U.

3: Initialize the mapping vector (U) and the context vector (U0) in dimension D.

4: for t = 1 to T
5: rt ¼ r0 1 � t

T

� �

6: for l = 1 to |G|

7: Sampling an edge(elij) from the network (Gl).

8: Read the mapping vector ~ut and the context vector ~u0t corresponding to the node vli and vlj from U, U0.
9: Update the mapping vector as ~utþ1 ¼ ~ut �

rt
wl
@O
@~u

10: Update the context vector: ~u0tþ1 ¼ ~u0t � rt
wl

@O
@~u0

11: END

https://doi.org/10.1371/journal.pone.0274253.t001
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(complex AND networks)) and PUBYEAR AFT 2006” as a search query and use the relevant

literature as a dataset. We call this dataset with “Solar Cell” datset. Though this search query

contains words other than solar and cell, the reason is we want to find scientific linkages

between other technology fields. We present details of the dataset in Table 2. This dataset

includes data on academic literature about Nano Carbon, GaN, complex networks, and solar

cells, including those reports published during 2006–2016. There were 342,785 papers pub-

lished during this period, 5,249,635 papers cited as references, 743,140 authors, 63,485 research

institutes, 30,764 journals, and 529,979 keywords. These are all distinct numbers without

duplication.

3.2 Conditions in distributed representation extraction

We implement the distributed representation extraction method proposed in Section 2.3 for a

heterogeneous network created from scholarly datasets. We set the number of dimensions of

the distributed representation to be extracted to D = 300, the number of negative examples per

sampling to K = 5, and the total number of learning to T = 108. We also set the initial learning

rate to ρ0 = 0.05.

3.3 Conditions for link prediction to evaluate extracted distributed

representations

As described in this section, we measure the link prediction between nodes quantitatively to

evaluate whether the extracted distributed representation can learn the network structure. In

other words, our method learns whether a link exists between a pair of nodes that are ran-

domly selected from the network. We test whether it can sufficiently achieve prediction based

on the test data. Our method determines the presence or absence of a link using the formula

êij ¼ sðw~uT
i �~ujÞ. It is determined that an edge exists between the two nodes if êij � Pth. For

training, our method samples a total of 40M pairs of nodes with edges as positive examples

and nodes without edges as negative ones from the network. Actually, 10% of all data are test

data. We make ten test datasets by this procedure. We predict the presence or absence of an

edge between a pair of test data using w optimized using training data, and evaluate its accu-

racy. As a method of comparison, we apply a method of randomly selecting the presence or

absence of an edge between nodes at 0.5 probability.

3.4 Predictive tasks for identifying emerging research areas

In the prediction task for identifying emerging research areas described in Section 2.4, the

logistic regression coefficient ~w learned m years ago is applied to vector representation Us,Y

and~uID;Y as of year Y. We predict the index Î ID;Yþn after n years. We set Y = 2013, n = 3, m = 4,

and show in Fig 3 the relationship between training duration and training labels versus test

Table 2. Dataset overview.

Term 2006–2016

Number of Papers 342,785

Number of Citations 5,249,635

Number of Authors 743,140

Number of Institutes 63,485

Number of Journals 30,764

Number of Keywords 529,979

https://doi.org/10.1371/journal.pone.0274253.t002
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duration and test labels. We obtained a heterogeneous network distributed representation

extracted using the same settings as those described in Section 3.2. That is, we obtain U2009

and U2013, learn ~w using index I2012 as the correct label, and predict Î2016. We assign the index

I value of each node corresponding to the task to 0, 1. We give 1 for nodes that are in the top

10% (x = 0.1) of a particular year’s score, and 0 for nodes that are not. Control group s is a

node group with the top 10% score in the Y −m year of the task.

3.4.1 Future citation count prediction. The number of citations is the number of times

the paper has been cited in other papers. The fact that authors of many papers cite the paper

indicates that the ideas in the paper have attracted attention and that the paper is important

for the field. The number of citations Citation(Paper, N) after N years for a paper Paper pub-

lished in a year Y can be calculated as shown below.

CitationðPaper;NÞ ¼
XN

n¼0

XDYþn

d

Referenceðd; PaperÞ ð6Þ

Actually, DY represents the group of papers published that year; d represents each paper.

Reference(d, Paper) is a function that returns 1 if paper d references paper Paper, and 0 other-

wise. The number of citations Citation(Paper, N) is the sum of Reference(d, Paper) applied to

all papers published within N years after the paper was published. By predicting how many

times this citation will increase after publication, one can ascertain whether a research paper is

fundamentally important immediately after publication. One can identify new studies based

on research papers if one can accurately predict future citation counts. Table 3 presents the

number of citations in the scholarly dataset published in 2013, in descending order of 2016

citations calculated using this formula. The distribution of citations is very biased. Most papers

have few citations. The first paper A in the 2016 ranking was published in 2013, describing

production of stable perovskite solar cells and improving energy conversion efficiency by

about 15%. In addition, the number of Scopus citations as of 2019 was 6,687. Other papers also

show numerous citations on Scopus. The citation ranking of papers on solar cells is almost

identical to the actual ranking.

3.4.2 Author h-index prediction. The author h-index is an index devised by physicist

George E. Hirsch based on “Times Cited” of Web of Science [28]. It represents the relative con-

tributions of the respective scientists. As described in this paper, we calculate h-index(hAuthor,
Y) for a particular author Author at year Y as the following formula.

hAuthor;Y ¼ minðmaxðCitationsðAuthor;Y; iÞ; iÞÞ ð7Þ

Fig 3. Relation between training period and test period in each index prediction.

https://doi.org/10.1371/journal.pone.0274253.g003
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Here, Citations(Author, Y, i) is a function that returns the number of citations of the paper

with the i-th largest number of citations by a particular year Y written by the Author. In other

words, h-index hAuthor,Y means that there are at least hAuthor,Y papers with more than hAuthor,Y
citations.

Table 4 shows the results obtained from calculating the h-index index using this formula in

the dataset. Michael-Graätzel, a first-ranked inventor, was the inventor of dye-sensitized solar

cells. His work achieved an energy conversion efficiency of 15%, the highest record in dye-sen-

sitized solar cells in 2016. He ranked 253 in h-index on Google Scholar in January 2019. Other

researchers also showed a large h-index. The ranking of h-index for solar cell researchers is

almost consistent with the actual ranking presented by Google Scholar.

3.4.3 Journal impact factor prediction. The JIF index measures the impact and citation

frequency of academic journals in the fields of natural science and social science. We calculate

Table 3. Ranking of citations for papers published in 2013 in the dataset.

Ranking

@2016

Authors Title Journal No. Cited Ref.

Dec.

2014

Dec.

2016

1 J. Burschka,

et al.
Sequential deposition as a route to high-performance perovskite-sensitized

solar cells.

Nature 573 2,320 [39]

2 M. Liu, et al. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 401 1,860 [40]

3 S. D. Stranks,

et al.
Electron-hole diffusion lengths exceeding 1 micrometer in an organometal

trihalide perovskite absorber.

Science 248 1,423 [41]

4 J. You, et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications 619 1,415 [42],

5 G. Xing, et al. Long-range balanced electron-and hole-transport lengths in organic-

inorganic CH3NH3PbI3.

Science 219 1,161 [43],

6 J. H. Noh,

et al.
Chemical management for colorful, efficient, and stable inorganic-organic

hybrid nanostructured solar cells.

Nano Letters 212 848 [44],

7 J. H. Heo, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing

perovskite compound and polymeric hole conductors.

Nature Photonics 215 768 [42],

8 J. M. Ball, et al. Low-temperature processed meso-superstructured to thin-film perovskite

solar cells.

Energy&Environmanetal

Science

186 616 [45],

9 H. J. Snaith,

et al.
Perovskites: The emergence of a new era for low-cost, high-efficiency solar

cells.

J. Phys. Chem. Lett. 151 596 [46],

10 P. Docampo,

et al.
Efficient organometal trihalide perovskite planar-heterojunction solar cells

on flexible polymer substrates.

Nature Communications 96 518 [47],

https://doi.org/10.1371/journal.pone.0274253.t003

Table 4. h-index ranking in the dataset.

Ranking @2016 Author h-index

2009 2013 2016

1 Michael Graätzel 23 72 116

2 Mohammad K.haja Nazeeruddin 13 45 80

3 Anders Hagfeldt 13 50 74

4 Shaik M.ohammed Zakeeruddin 15 47 64

5 Henry J. Snaith 7 29 63

6 Li Cheng Sun 13 44 60

7 Yong-fang Li 7 34 57

8 Christoph J. Brabec 12 33 57

9 Alan J. Heeger 8 32 55

10 Frederik Christian Krebs 12 41 55

https://doi.org/10.1371/journal.pone.0274253.t004
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JIF JIF(Journal, Y) for year Y in the journal Journal, using the following formula.

JIFðJournal;YÞ ¼

CitationsðJournal;Y � 2;YÞ þ CitationsðJournal;Y � 1;YÞ
PublicationsðJournal;Y � 2Þ þ PublicationsðJournal;Y � 1Þ

ð8Þ

As shown in that formula, Citations(Journal, Y − n, Y) is the total number of citations at

year Y for papers published from journal Journal in year Y − n. Publications(Journal, Y − n)

represents the number of papers published by Journal Journal in Y − n year. In other words,

this is the average number of citations at year Y for papers published in the past two years

from year Y.

Table 5 presents the results of calculating JIF using this formula in the dataset. Nature Pho-

tonics, number one, is an international journal published by the Nature Publishing Group. It

is widely recognized as the top journal among journals specializing in photonics and optoelec-

tronics. The JIF in 2018 is 31.6. Other journals also show large journal impact factor values.

The ranking of journal impact factor values in the research field related to solar cells is consis-

tent with the recognition of experts in this research field.

3.4.4 Nature Index (AC/FC) prediction. The NI is a measure of the influence of research

institutes published every year by Nature Publishing Group. It is a general index for measuring

the impact of research institutes. Actually, NI has AC, FC, and AC / FC. Then we calculate the

following.

ACðInstitute;YÞ ¼
XDðInstitute;YÞ

d

XAuthorsðdÞ

a

Affiliationða; InstituteÞ

FCðInstitute;YÞ ¼
XDðInstitute;YÞ

d

XAuthorsðdÞ

a

Affiliationða; InstituteÞ
NðAuthorsðdÞÞ

ACFCðInstitute;YÞ ¼
ACðInstitute;YÞ
FCðInstitute;YÞ

As shown therein, D(Institute, Y) represents the set of papers published by the research

institute Institute in year Y. Authors(d) denotes the set of authors of a paper d. Affiliation(a,

Institute) is a function that returns 1 if an author a is affiliated with the research institute Insti-
tute, and 0 otherwise. N(Authors(d)) represents the number of authors of a paper. In other

Table 5. Journal Impact Factor (JIF) ranking in the dataset.

Ranking @2016 Journal Imapact Factor

2009 2013 2016

1 Nature Photonics 3.4 65.15 98.0

2 Science 8.7 33.6 65.0

3 Nature Chemistry – 10.5 51.6

4 Nature Materials 19.4 19.6 49.7

5 Chemical Reviews 23.5 3.4 41.8

6 Nature Nanotechnology 1.0 29.1 41.5

7 Physics Reports – 8.0 30.7

8 Energy and Environmental Science 3.0 11.14 27.3

9 Nature 4.5 8.4 24.1

10 Journal of the American Chemical Society 5.8 14.1 23.1

https://doi.org/10.1371/journal.pone.0274253.t005
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words, AC is an acronym representing the Article(Paper) Count, which assigns 1 point to each

institute with which all authors are affiliated. FC is an acronym representing the Fractional

Count. Each paper gives the percentage of authors affiliated with a specific institute among all

authors. For example, if all authors of a paper are affiliated with the same research institute,

then one point is added to that research institute. Actually, ACFC is AC divided by FC. The

larger this value becomes, the greater the number of publications are involved, indicating that

it is co-authored with authors affiliated with other institutes, indicating greater diversity of the

research institute.

Table 6 presents the results of calculating NI AC/FC using this formula in the dataset. The

actual NI is calculated only for journals published in the Nature Publishing Group, but we

compute NI using all journals included in the dataset. We can calculate NI at various granular-

ities, such as countries, universities, and faculties. Because of the characteristics of the dataset,

we calculate NI at the granularity of the university faculty.

For the multiple tasks described up to this piont, we calculate the index from within the

dataset using the equations defined in this section. Furthermore, we evaluate how well the

obtained distributed representation can predict these indices.

4 Results

This section presents a description of the results. First, we describe the heterogeneous network

that has been created. Next, we explain the results of the extracted distributed representation

and the consequences of link prediction, which is an evaluation of its characteristics. Finally,

we describe the experimentally obtained results of the prediction task to identify new research.

Performance of four prediction tasks is assessed: future citation count prediction, author h-

index prediction, journal impact factor prediction, and Nature index prediction. We explain

each result.

4.1 Heterogeneous network

The created heterogeneous network has five bipartite networks which are the “Citation Net-

work,”, the “Paper–Journal Network,” the “Paper–Keyword Network,” the “Paper–Author

Table 6. Nature Index AC/FC ranking in the dataset.

Ranking

@2016

Institute Nature Index AC/

FC

2009 2013 2016

1 Department of Mathematics and Statistics, University of Massachusetts at Amherst 1.09 1.95 4.83

2 Catalan Institution for Research and Advanced Studies (ICREA) 4.27 4.34 4.62

3 Divisions of Human Biology and Public Health Sciences, Howard Hughes Medical Institute,Fred Hutchinson Cancer Research

Center

1.70 2.57 4.23

4 National Research University of Information Technologies, Mechanics, and Optics (ITMO), International Laboratory of

Metamaterials

– – 4.14

5 Joint Center for Artificial Photosynthesis and Materials Sciences Division, Lawrence Berkeley National Laboratory 2.75 3.25 4.13

6 Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory 2.04 3.09 4.05

7 Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Frontier Institute of Science and

Technology, Xi’an Jiaotong University

1.59 1.76 3.85

8 CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for

Nanoscience and Technology

1.71 2.37 3.82

9 Department of Chemistry and Nano Science, Ewha Womans University 1.14 2.55 3.82

10 Laboratory of Resources Environment and Geographic Information System, Capital Normal University – 1.67 3.80

https://doi.org/10.1371/journal.pone.0274253.t006
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Network,” and “Author–Institute Network.” We show the summary of each bipartite networks

in Table 7. In this table, the “Citation Network” has the maximum number of nodes. Also, the

“Paper–Journal Network” has the minimum number of nodes. “Paper–Keyword Network”

has the highest average node degree. The largest number of nodes in the largest connected

component in a network is the “Paper–Paper network.” The smallest one is the “Paper–Journal

network.” This demonstrates that the keywords representing the paper content are shared and

linked in various articles, but the journal publishes various topics from a single journal.

4.2 Extracted distributed representation

Fig 4 presents results of visualization of the extracted distributed representation. The figure

shows reduction to two dimensions using the UMAP method [48]. This method makes it pos-

sible to reduce the acquired high-dimensional distributed representation to a lower dimension

quickly. We can visualize the distributed representation extracted from a large heterogeneous

network better using this method. Each point in the diagram represents a node in each hetero-

geneous network. The text shown in the figure is the label of the entity represented by each

node, indicating the names of researchers, research institutes, journals, and research keywords.

First, we qualitatively evaluate the validity of this figure. For example, Tsutomu Miyasaka of

Toin University of Yokohama invented a perovskite solar cell. Furthermore, he is located near

the keyword perovskite in the figure. The obtained distributed expression was appropriate as

the distribution of research fields and entities related to solar cells.

Next, we quantitatively evaluate the validity of the extracted distributed representation. In

Table 8, we show the experimentally obtained results of link prediction between nodes con-

ducted under the conditions described in section 3.3. First, we compare the “Random Net-

work” with others to underscore the effectiveness of the distributed network representation.

The “Random Network” has an F value of 0.702 ± 0.004; the next smallest value is

0.934 ± 0.004, found for the “Citation Network”. The difference between these two networks

has the statistical significance result from the t-test. In other words, the obtained distributed

representation has the property by which, in the link prediction, smaller distances between

nodes are associated with greater numbers of mutual links. Next, to underscore the effective-

ness of using the heterogeneous network, we compare “Citation Network” with “Hetero Net-

work.” We compare the F values, which reveals 0.934 ± 0.004 for the “Citation Network” and

0.953 ± 0.003 for the “Hetero Network.” The difference between these two networks has the

statistical significance result from the t-test. These results indicate that distributed expression

extraction using the heterogeneous network is more effective in link prediction than distrib-

uted expression extraction using a single network.

4.3 Predictive tasks for identifying emerging research areas

4.3.1 Future citation count prediction. We present the AUC of the prediction result in

Table 9 and Precision, Recall, and F values in Table 10. First, we explain Table 9. Actually,

Table 7. Summary of the created heterogeneous network.

Bipartite Network nodes edges largest connected component average node degree

Citation Network 2,884,616 5,777,364 2,828,458 4.048

Paper–Journal Network 204,264 183,363 3,225 1.999

Paper–Keyword Network 496,034 1,830,474 495,891 7.382

Paper–Author Network 583,225 802,275 318,386 3.527

Author–Institute Network 428,488 475,363 375,400 2.335

https://doi.org/10.1371/journal.pone.0274253.t007
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“Baseline” is a random prediction of whether the number of citations falls in the top 0.1%; it is

0.497 in citation number prediction. By contrast, “Proposed” is 0.739. In prediction of the

number of citations, “Proposed” exceeded the baseline by about 0.2 points. Next, we explain

the Precision, Recall, and F value results presented in Table 10. First, in “baseline”, the F value

is 0.428. Next, at “proposed@Pth = 0.42”, the F value is 0.456. This Pth = 0.42 is the point show-

ing the highest F value.

4.3.2 Author h-index prediction. We show the AUC of the prediction result in Table 9

and the actual Precision, Recall, and F values in Table 11. First, we explain Table 9. There,

“Baseline” predicts whether h-index is in the top 0.1% based on whether it is in 2013 or not. It

is 0.852 for h-index prediction. Here, “Proposed” is 0.969. The results for h-index prediction

show that it is about 0.11 points above the “baseline.” Next, we explain the Precision, Recall,

and F values shown in Table 11. According to h-index in 2013, the F value is 0.748. Next, for

Fig 4. UMAP visualization of acquired distributed representation (color-coded results obtained using K-means method).

https://doi.org/10.1371/journal.pone.0274253.g004
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“proposed@Pth = 0.50”, the F value is 0.748. This “Pth = 0.50” is the point that shows the highest

F value.

4.3.3 JIF prediction. We show the AUC of the prediction results in Table 9 and the Preci-

sion, Recall, and F values in Table 12. First, we explain Table 9. “Baseline” predicts whether the

journal impact factor is in the top 0.1% by 2013 or not; it is 0.735 in the JIF prediction. “Pro-

posed” is 0.746. In JIF prediction, it is about 0.011 points above the “baseline.” Next, we explain

the actual Precision, Recall, and F values presented in Table 12. At 2013 JIF, the F value is

0.554. Next, at “proposed@Pth = 0.17”, the F value is 0.286. This “Pth = 0.17” is the point show-

ing the highest F value.

4.3.4 Nature Index (AC/FC) prediction. We show the AUC of the prediction results in

Table 9, in addition to the Precision, Recall, and F values in Table 13. First, we explain Table 9.

Actually, “baseline” predicts whether the Nature Index is in the top 0.1% by 2013 or not; it is

0.599 in the Nature Index prediction. “Proposed” is 0.659. In NI AC/FC prediction, it is about

Table 8. Comparison results of link prediction by distributed representation obtained from first-order connection.

Method Precision ±σ Recall ±σ F value ±σ
Random Network 0.540 ±0.005 1.000 ±0.000 0.702 ±0.004

Citation Network 0.973� ±0.012 0.898� ±0.007 0.934� ±0.004

Hetero Network 0.977 � ±0.006 0.931 � † ±0.006 0.953 � † ±0.003

� means t-test(P< 0.01) compared to “Random Network”.
† means t-test(P< 0.01) compared to “Citation Network”.

https://doi.org/10.1371/journal.pone.0274253.t008

Table 9. Results of emerging research area identification (AUC).

Method Number of Citation h-index JIF NI(ACFC)

Proposed 0.739 0.969 0.746 0.659

baseline 0.497 0.852 0.735 0.599

https://doi.org/10.1371/journal.pone.0274253.t009

Table 10. Results of future citation prediction.

Method Pth Precision Recall F value

proposed 0.42 0.434 0.480 0.456

proposed 0.80 0.766 0.034 0.066

random 0.50 0.533 0.358 0.428

https://doi.org/10.1371/journal.pone.0274253.t010

Table 11. Results of future h-index prediction.

Method Pth Precision Recall F value

Proposed 0.50 0.757 0.739 0.748

h-index@2013 0.50 0.757 0.739 0.748

https://doi.org/10.1371/journal.pone.0274253.t011

Table 12. Results of future JIF prediction.

Method Pth Precision Recall F value

proposed 0.17 0.586 0.189 0.286

proposed 0.80 0.684 0.060 0.110

JIF@2013 0.486 0.645 0.554

https://doi.org/10.1371/journal.pone.0274253.t012
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0.06 points above the baseline. Next, we explain the Precision, Recall, and F values shown in

Table 13. First, at 2013 NI, the F value is 0.426. Next, for “proposed@Pth = 0.13”, the F value is

0.461. This “Pth = 0.13” is the point representing the highest F value.

5 Discussion

Here we discuss the results presented in Section 4. First, we consider the distributed represen-

tation obtained using the proposed method applied to the created heterogeneous network. For

example, in the Paper–Journal network, the ratio of the maximum number of connected

nodes is about 1.5% of the actual number of nodes. In such a sparse network, it is difficult to

compare the relation with unconnected nodes using only a single network. However, using the

proposed method, it is possible to compare the relation with nodes that are not connected in a

sparse network through multiple heterogeneous networks. An illustrative comparison is that

of “Journal of Physical Chemistry C” and “Journal of Biological Chemistry” in Fig 4, which can

be used to clarify the distributed representations that were obtained. First, it can be confirmed

that “Journal of Physical Chemistry C” and “Journal of Biological Chemistry” are located far

apart. In addition, “Journal of Physical Chemistry C” has many keywords related to materials

such as perovskite and TiO2, whereas “Journal of Biological Chemistry” has biochemistry such

as cancer and skin. These keywords represent the contents that are specific to each journal.

Using the proposed method in this way, we can extract relations between nodes that cannot be

compared using an extremely sparse Journal–Paper network alone. The comparison results for

link prediction in Table 8 confirm the possibility of obtaining a suitable node distributed

representation using distributed representation extraction with heterogeneous networks rather

than using a single network.

From the results presented above, the heterogeneous network distributed representation

extracted by the proposed method appropriately represents the positional relation between

nodes.

Next, we discuss prediction tasks for identifying emerging research areas. As a prediction

task for identifying an emerging research area, this paper calculates the future citation count of

the paper, the author’s future h-index prediction, the future journal impact factor prediction,

and the future nature index prediction. Four tasks were performed. A great difference exists

between the number of cited papers and other tasks. That is, when the paper is published, the

paper content is fixed. Still, the information of the author, journal, and research institute is

updated variously depending on the year. In this respect, the citation count prediction of

papers and other tasks differ. Therefore, we used random prediction as a comparison target

for citation count prediction of the paper. However, for other tasks, we selected the value of

each index as of 2013. Furthermore, in these three prediction tasks, the value of the target

index at the past time is added as a feature value. In Table 9, which summarizes the results of

each task, the proposed method achieves better results in all cases.

From the above, it is apparent that the heterogeneous network distributed representation

extracted using the proposed method is a feature that functions effectively to identify new

research fields. The degree of the effect depends on the task characteristics. In the citation

Table 13. Results of future NI AC/FC prediction.

Method Pth Precision Recall F value

proposed 0.13 0.314 0.865 0.461

proposed 0.80 0.786 0.059 0.111

NI AC/FC@2013 0.410 0.443 0.426

https://doi.org/10.1371/journal.pone.0274253.t013
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count prediction, the proposed method improvement is 0.24 points, but in other tasks, the

AUC is improved from 0.06 points to 0.11 points. This difference indicates the following.

Although the proposed method can map the status at a specific point in time (citation predic-

tion task), it does not allow mapping that incorporates changes from the past point in time (h-

index prediction, journal impact factor prediction, nature index prediction). It will be neces-

sary to embed some consideration of network dynamics to discover an emerging research area

more effectively. As described in this paper, we conducted experiments using a dataset related

to “solar cell.” This dataset is related to a small number of academic fields of a massive amount

of scholarly data. Future studies will be undertaken to broaden the scope of the academic field

of interest. Also in Section 2.4, our method predicts a future index prediction by calculating

the similarity between sampled nodes’ vector and the target node. This is because the trained

vector space is inconsistent in the time direction. We need to develop an end-to-end training

method to considering a vector space consistency in time direction and identifying emerging

research areas.

In this paper, we predicted four research indicators, which are the citation count, the author

h-index, the journal impact factor, and the nature index. We select the most popular research

indicators related to each research object such as citation, author, journal, and affiliation.

However, it is noted that the research indicators we used in this study are abused and they are

not the only optimal research indicators [23, 24, 26]. The main argument is that these research

indicators does not measure the quality of a given research. On the other hand, there are efforts

to resolve the problems that research indicators have [49]. For example, Pudovkin et.al. pro-

posed a normalized journal impact factor that corrects for differences in citation numbers

between research fields [25]. Our proposed method is applicable to thus improved research

indicators and reduce the risk of reliance on specific indicators.

Our methodology also makes certain critical studies challenging to find. These are studies

of endemic diseases in specific regions and studies of sociology in non-English-speaking coun-

tries. Because developing medicines in poor regions usually does not get many citations or are

published in top cited journals.

6 Conclusion

In this paper, we conducted predictive analysis of multiple future scientific impacts by embed-

ding a heterogeneous network. First, we demonstrated that by constructing a heterogeneous

network and extracting distributed representations, one could obtain higher accuracy in link

prediction between nodes than in a single network in Table 8. Furthermore, we demonstrated

that mapping all entities to the same vector space using a node embedding method can predict

future research indices in Table 9. Also, we found the top entities in the visualization result in

Fig 4. From the above, we conclude that the network embedding method is one of the promis-

ing tools for capturing and expressing scientific trends because this method can integrate mul-

tiple prediction models for scientific indices.

In future work, we need to develop methods that can predict more diverse aspects of

research importance. As mentioned in the discussion section, the proposed method cannot

predict the importance of some studies, such as endemic studies, from our heterogeneous net-

work. In order to deal with them correctly, we need to develop a method integrated with natu-

ral language processing to consider of the content of the paper, however the specific method is

still unknown. We will add social networks to the proposed heterogeneous network and poten-

tially add funding information to evaluate social impacts of a paper. We also have the potential

to improve the uniformity aspect of research indicator predictions by removing bias effect or

by adding indicators that assess social impact, such as Altmetrics.
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