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Abstract

Background: Early identification of pregnant women at risk for preterm birth (PTB), a
major cause of infant mortality and morbidity, has a significant potential to improve
prenatal care. However, we lack effective predictive models which can accurately
forecast PTB and complement these predictions with appropriate interpretations for
clinicians. In this work, we introduce a clinical prediction model (PredictPTB) which
combines variables (medical codes) readily accessible through electronic health record
(EHR) to accurately predict the risk of preterm birth at 1, 3, 6, and 9 months prior to
delivery.

Methods: The architecture of PredictPTB employs recurrent neural networks (RNNs) to
model the longitudinal patient’s EHR visits and exploits a single code-level attention
mechanism to improve the predictive performance, while providing temporal
code-level and visit-level explanations for the prediction results. We compare the
performance of different combinations of prediction time-points, data modalities, and
data windows. We also present a case-study of our model’s interpretability illustrating
how clinicians can gain some transparency into the predictions.

Results: Leveraging a large cohort of 222,436 deliveries, comprising a total of 27,100
unique clinical concepts, our model was able to predict preterm birth with an
ROC-AUC of 0.82, 0.79, 0.78, and PR-AUC of 0.40, 0.31, 0.24, at 1, 3, and 6 months prior to
delivery, respectively. Results also confirm that observational data modalities (such as
diagnoses) are more predictive for preterm birth than interventional data modalities
(e.g., medications and procedures).

Conclusions: Our results demonstrate that PredictPTB can be utilized to achieve
accurate and scalable predictions for preterm birth, complemented by explanations
that directly highlight evidence in the patient’s EHR timeline.
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Introduction
Preterm birth (PTB) is defined as a delivery that occurs before the start of the 37th week
of pregnancy, as opposed to full-term birth which occurs anytime from 37 to 42 weeks of
gestation [1].Worldwide, more than 15million babies, or about 10−15% of all alive births,
are born preterm every year [2, 3]. PTB accounts for over one third of infantmortality, and
babies born preterm are at increased risk of significant long-termmorbidity and disability,
such as cerebral palsy, neurological disorders, behavioral problems, developmental delays,
and mental health conditions [4–8]. Therefore, identifying pregnancies at risk for PTB
and accordingly providing adequate interventions can improve both short- and long-term
outcomes for babies born preterm.
The majority of existing work on PTB prediction aims to identify risk factors of PTB

through a hypothesis-testing methodology, under highly-controlled settings. A number
of risk factors have been reported to increase the risk of PTB such as: previous preterm
labor, multiple gestation (being pregnant with more than one baby), diabetes, compli-
cations with the cervix, uterus, or placenta, tobacco smoking, and infections [9–11].
However, women who have preterm delivery often have no known risk factors [12]. In
addition, some of the predictors (such as prior PTB) does not apply for first-time moth-
ers. As a result, machine learning is of great interest to better predict PTB and several
studies have attempted to predict PTB using machine learning techniques on a set of
pre-defined clinical risk factors [13–20], or leveraging diverse variables from electronic
health record (EHR) data [21]. More recently, few studies, with promising results, have
used deep learning techniques to predict PTB using ultrasound and MRI images [22, 23],
and high-dimensional EHR data [24, 25].
However, a majority of these studies reports poor to moderate predictive performance

ranging from 59% to 75% ROC-AUC, ignores the sequential or temporal trajectory of
events recorded in EHR, mostly used few human-derived features disregarding the huge
amount of information embedded in each patient’s record, and rarely evaluated the
model’s performance across multiple time points throughout the pregnancy timeline. To
date, we lack effective predictive models for PTB, with two important challenges identi-
fied for deriving a PTB predictionmodel: (1) designing an accurate and scalable predictive
model to handle the sequential high-dimensional EHR data, and being able to automat-
ically select potential predictors from hundreds (if not thousands) of variables, and (2)
complimenting these prediction models with reasonable interpretation mechanisms.
Attention mechanisms have been recently advocated to improve the accuracy as well as

the interpretability of deep learning models. It was first introduced to improve the perfor-
mance of the encoder-decoder recurrent neural networks (RNNs) on machine translation
[26]. Recently, attention mechanisms have accomplished considerable success in many
prediction tasks in healthcare [27–30]. Among these efforts, Choi et.al [27] proposed
a model known as RETAIN, which uses a two-level neural attention model to predict
heart failure using patient’s temporal EHR data. The predictive performance or RETAIN
is comparable to recurrent neural networks (RNNs), while providing explanations for the
visit-level and code-level contributions to the final prediction results.
In parallel, the expeditious growth in size and diversity of clinical data from electronic

health records (EHR) has attracted the utilization of this data to predict a wide spectrum
of clinical outcomes. However, EHR resources have been largely unexploited in the study
of pregnancy. In contrast to other clinical contexts, the clinical surveillance of pregnancy
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data and its outcomes take place in a well-defined time frame, based on gestational length.
Hence, EHRs seem to be very appropriate for modelling pregnancy complications, includ-
ing preterm birth. To this end, predictive modeling using attentionmechanisms with EHR
data is anticipated to provide accurate individualized predictions for expecting mothers
threatened with PTB.
In this work, we propose the PredictPTB model, an interpretable code-level attention-

based recurrent neural network model to predict the risk of preterm delivery using
multiple sources of temporal data from EHRs. We use a large dataset of 222,436 deliv-
eries to demonstrate the predictive performance of the proposed model on the preterm
birth prediction task compared to the original RETAINmodel. We conduct a quantitative
analysis to assess the effectiveness of the PredictPTB approach among several prediction
points, data windows, and data modalities. Finally, we qualitatively examine the inter-
pretability of the PredictPTB model by visualizing the learned attention-based weights
and against the attention-based scores learned by the RETAIN model. The contributions
of the paper can be summarized as follows:

• We propose a simplified version of the RETAIN architecture, where we employ
RNNs to model the sequential patient’s EHR visits, and exploit a single code-level
attention mechanism to improve the predictive performance while providing
temporal code-level explanations for the prediction results.

• We compare the performance of our model across different combinations of data
modalities, prediction points, and data windows to find an optimal combination for
preterm birth prediction. We further compare these combinations of our model to
other baseline models.

• We present a case-study of our model interpretability at visit-level and code-level,
which illustrates how clinicians can gain some transparency into the predictions.

Methods
Problem formulation

Let P = {p1, . . . . . . pn} be a dataset of n patients. Each patient pj EHR is comprised of a
sequence of Tj patient visits, pj = {x1, x2, . . . , xTj}, ordered by visit date t ∈ {1,Tj}, where
the last time point Tj denotes the time on which the delivery for patient pj has occurred.
We express medical events in EHR as medical codes (e.g. diagnoses, medications, proce-
dures, and lab orders), denoted as {c1, c2, . . . , c|C|} ∈ C, where C represents the entire set
of unique medical codes. Each visit xi can be expressed as a binary vector xi ∈ {0, 1}|C|,
where the k-th element is set to 1 if the i-th visit contains the medical code ck , otherwise
it is set to 0. Let m = {m1, . . . ,mp} be the set of prediction time points. Given the EHR
history pj = {x1, x2, . . . , xT−m} of each jth patient up to time point T − m, our task is to
predict the risk of a PTB at time point T, denoted as ŷjT ∈ {0, 1}, and accurately interpret
why a patient is predicted as PTB, using the patient’s temporal EHR history. To address
this problem, we introduce a code-level attention-based RNNs to provide an interpretable
clinical risk prediction model for preterm birth.

Preliminaries on attention mechanism

Attention mechanism has been an important component in recurrent neural net-
works (RNNs) to capture long-term dependencies. It computes the dynamic weights
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representing the relative importance of the inputs in a sequence for a particular out-
put. Figure 1(a) illustrates the architecture of a standard attention model, in which the
attention mechanism summarizes the source sequence information in the encoder RNN
hidden states (i.e., hi), computes the dynamic attention scores for each visit vi as αi, and
then multiplies the weights αi with the input sequence vi to weight the sequence. A single
context vector ci for a patient up to the i-th visit can then be calculated using the sum of
the weighted vectors as:

ci =
i∑

j=1
αj � vj (1)

Reversed time attention model (RETAIN)

The RETAIN model was first introduced in [27] for the prediction of heart failure using
patient’s longitudinal EHR data. Given patient records, RETAIN can make accurate pre-
dictions, comparable to RNNs, while explaining how each medical code at each visit
contributes positively or negatively to the final prediction score. RETAIN is based on
a double-attention mechanism, which integrates two single-attention models (the visit-
level attention RNNα and the code-level attention RNNβ ) to generate the patient repre-
sentation, as illustrated in Fig. 1(b). Using the computed attention weights at visit-level α
and code-level β , the context vector ci for a patient up to the i-th visit is calculated as:

ci =
i∑

j=1
αjβj � vj (2)

Architecture of the PredictPTBmodel

The RETAIN architecture seems to have a redundant attention branch for capturing visit-
level attentions, which are inherently available in the code-level attentions. Therefore, to
construct a more precise contextual representation of each patient, we introduce the Pre-
dictPTB model. Our model simplifies the RETAIN architecture into a single code-level
attention layer RNNβ . This approach reduces the complexity of the RETAIN architecture

Fig. 1 A Standard attention model, B RETAIN model, C PredictPTB model
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while improving the accuracy of the predictions due to 1) directly promoting the code-
level information in each step of themodel, 2) payingmore attention to representative and
discriminative features than other features, and 3) limiting the number of model parame-
ters which reduces the risk of over-fitting and possible gradient flow.We use bidirectional
RNNs, specifically BiLSTMs, which enable both future and past information to be acces-
sible by the current state, providing more information about the input. This mimics the
practice of a clinician examining a patient’s EHR both forward and backward, trying to
identify a set of weights representing the relative importance of patient’s individual visits
or codes within those visits.
The predictions of our proposed PredictPTB model are made using the steps described

in Fig. 2, as follows:

• Step 1: The model embeds a patient’s visit sequence vi as:

vi = σ(Wembxi + bx) (3)

where vi ∈ R
m is the embedding of xi ∈ R

C ,Wemb ∈ R
m×C is the embedding matrix,

m is the embedding size across C medical variables , σ is a non-linear activation
function such as rectified linear unit (ReLU) or sigmoid, and bx is the bias.

• Step 2: The embeddings are fed as inputs to a recurrent neural network RNNβ ,
which computes the attention-based contribution scores of individual medical
variables and generate code-level attention weights βi. We highlight here that there
are two main differences between standard RNN with attention architecture shown
in Fig. 1(a) and PredictPTB architecture illustrated in Fig. 1(c). First, in standard
RNN with attention, the recurrence is on the hidden state vector vi, which hinders
the interpretation of the model. On the other hand, in PredictPTB, the recurrence is
on the attention generation component hi while the hidden state vi is generated by a
simpler more interpretable output. Second, in standard RNN with attention, the
scalars α1, . . . ,αi are the visit-level attention weights that control the contribution of

Fig. 2 An overview architecture of our code-level attention model (PredictPTB)
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each visit embedding v1, . . . , vi. In PredictPTB, The vectors β1, . . . ,βi are the
code-level attention weights that focus on each coordinate of the visit embedding
v1,1, v1,2, . . . , v1,m, . . . , vi,1, vi,2, . . . , vi,m.
Also, in contrast to the RETAIN architecture shown in Fig. 1(b), PredictPTB
eliminates the RNNα layer and use a single attention layer RNNβ to generate the
weights, as follows:

hi, hi−1, . . . , h1 = RNNβ(vi, vi−1, . . . , v1)

βj = tanh(Wβhj + bβ) for j = 1, . . . , i.
(4)

where hi ∈ R
q is the hidden layer of RNNβ at time step i, q is the hidden size of

RNNβ , βj is the attention weight for individual variables,Wβ ∈ R
m×q and bβ ∈ R

m

are parameters to learn.
• Step 3: The computed attention weights are used to generate the patient

representation context vector ci as:

ci =
i∑

j=1
βj � vj (5)

where ci ∈ R
m

• Step 4: The predictions of our model can then be computed by linearly transforming
the context vectors ci using:

ŷi = Softmax(Wci + b) (6)

whereW ∈ R
m and b ∈ R are the parameters to learn.

Interpreting PredictPTBmodel

To interpret predictions made by our PredictPTB model, we follow the interpretation
approach described in [27]. Given a patient’s list of visits x1, . . . , xi, the probability of the
binary output vector yi ∈ {0, 1} can be predicted as follows:

p (yi | x1, . . . , xi) = p(yi | ci) = Softmax

⎛

⎝W

⎛

⎝
i∑

j=1
βj � vj

⎞

⎠ + b

⎞

⎠ (7)

p(yi | x1, . . . , xi) = Softmax

⎛

⎝W

⎛

⎝
i∑

j=1
βj �

C∑

k=1
xj,kWemb[ :, k]

⎞

⎠ + b

⎞

⎠ (8)

= Softmax

⎛

⎝
i∑

j=1

r∑

k=1
xj,kW

(
βj � Wemb[ :, k]

) + b

⎞

⎠ (9)

where xj,k is the k-th element of the input visit xj. In order to compute the contribution ω

of the k-th code at each visit xj at time step j ≤ i for predicting yi, we deconstruct Eqs. 9
into 10, where we exclude the index i of yi in the βj, as follows:

ω(yi, xj,k) = W
(
βj � Wemb[ :, k]

)
︸ ︷︷ ︸
Contribution coefficient

xj,k︸︷︷︸
Patient visit

(10)

In the real clinical practice, clinicians typically identify different weights on differ-
ent visits and medical codes, as part of the diagnosis process. In this sense, the above
contribution coefficient can be used to highlight important visits and medical codes.
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Preterm birth: data modalities, prediction points, and data windows

Datamodalities

For each patient, we extracted data frommultiple domains of sources in EHR to enrich the
patient representation with multiple data modalities. The modalities include diagnosis,
medications, procedures, and lab orders. The data of each modality was represented as a
concept in a set of standardized terminologies, including ICD10 and ICD9 for diagnosis,
NDC and brand names for medications, CPT and ICD9 for procedures, and LOINC for
lab orders. The numbers of uniquemedical concepts representing diagnosis, medications,
procedures, and lab orders were 14795, 1332, 7640, and 3333, respectively.

Prediction points

To further elaborate on the advantages of using the PredictPTB model, we design exper-
iments to quantify the performance across different prediction time points during the
pregnancy timeline. In similar studies which develop predictive models for preterm deliv-
ery using EHR data, the gestational age is learned from a combination of ICD codes,
gestational age extracted from discharge summaries, and gestational age calculated via
EDD (estimated due date). However, our dataset does not contain enough information
about the gestational ages of the pregnancies and the timestamps for the start of the
pregnancies are unknown. Therefore, we could not use the start of the pregnancy as
the reference point in our prediction setup. Instead, we used the ICD codes to ascer-
tain the actual delivery date and used it as our reference point. Our setup may provide
some advantages compared to using the gestational age as the prediction reference. For
example, the accuracy of the gestational age calculation, which is also used to calculate
the estimated date of delivery, is already a debatable subject in the obstetric community
[31, 32] . Previous literature reported that only 4−5% of women deliver on their due date.
Therefore, having an additional perspective for the same pregnancy timeline using the
actual delivery date as a reference instead of the gestational age, which is only an estimate,
might be able to provide more accurate predictions for clinicians. Moreover, a previous
work on preterm prediction using EHR data [25] evaluated the prediction performance
using the gestational age as a reference point compared to the prediction performance
when the reference point is the delivery date. The paper reported that both setups yielded
similar results.
In this work, we have used the delivery event as our reference point for predicting the

risk of preterm birth at 1, 3, 6, 9 months, before the delivery event. We refer to these
prediction points as P1, P2, P3, and P4, as shown in Fig. 3. For each prediction point, the
patient EHR history up to the prediction point is used for the prediction. For example, if
the prediction point is 3 months before delivery, only the EHR data up to the prediction
point is used by the model, and the data between the prediction point and the delivery
event is discarded. This represents real clinical scenarios, where the physician needs to
predict the risk of preterm delivery at different time points of the pregnancy timeline.

Data windows

We used two setups for EHR data windows; long-term (full history) data window and
short-term (pregnancy history) data window. In the long-term window setup, all EHR
data of the patient up to the prediction point X is used to train the predictive models.
In the short-term window setup, only the EHR data between the start of the pregnancy
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Fig. 3 Prediction points used in the analysis

up to the prediction point X is used, and previous history before pregnancy is discarded.
These two data windows will help us assess the influence of the events happening during
the pregnancy timeline on the predictive performance of the model, compared to the
influence of all events included in the patient EHR history before and after the start of the
pregnancy.

Experiments and results
Dataset

To validate the predictive performance of the proposedmodel, we conducted experiments
on a retrospective and longitudinal cohort of full-term and preterm deliveries obtained
from the Cerner Health Facts database. The extracted dataset includes more than 222,000
deliveries from about 300 healthcare centers in the United States between 2000-2017.
Gestational ages of the pregnancies were not available in the data. Therefore, we relied
on ICD-9 diagnosis codes to identify preterm and full-term pregnancies and labeled the
data accordingly. Preterm deliveries were identified using ICD-9 codes under 644.2x. Full-
term deliveries were identified using ICD-9 codes 645.xx, 649.8, 650 and 652.5. Tables 1
and 2 describe the statistics of the two cohort setups: long-term window and short-term
window, respectively.
The medical record of each patient encompasses the following data modalities: diag-

noses, procedures, medications, and lab orders. We use a statistical classification system,
presented by several types of coding systems specific to data modalities, to represent the
features of each patient in the dataset. Diagnostic codes are used to describe diseases,
disorders and symptoms. We use the International Statistical Classification of Diseases

Table 1 Summary statistics for long-term window cohort

Cohort: Full History Total #pregnancies Counts for each class Mean age Average #visits

P1 (1month) 222436 Fullterm 204700 28.03 12.19

Preterm 17736 28.76 13.37

P2 (3months) 202930 Fullterm 187073 27.81 10.96

Preterm 15857 28.42 12.26

P3 (6months) 177253 Fullterm 163641 27.45 10.1

Preterm 13612 27.84 11.51

P4 (9months) 150904 Fullterm 138468 26.91 9.92

Preterm 12436 27.43 11.24
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Table 2 Summary statistics for short-term window cohort

Cohort Pregnancy History Total #pregnancies Counts for each class Mean age Average #visits

P1 (1month) 168932 Fullterm 155647 28.15 6.96

Preterm 13285 29.08 7.07

P2 (3months) 133704 Fullterm 123968 28.04 5.16

Preterm 9736 28.87 5.27

P3 (6months) 77779 Fullterm 73477 27.95 3.33

Preterm 4302 28.56 3.28

and Related Health Problems (known as ICD) for diagnosis codes, specifically, the ICD-
9-CM and ICD-10-CM systems. Procedural codes are numbers or alphanumeric codes
used to identify specific health interventions taken by medical professionals. We use two
coding systems for procedural codes: the Current Procedural Terminology (CPT) and
ICD-10-PCS (Procedure Classification System). Pharmaceutical codes are used to identify
medications. We use the National Drug Code (NDC) system, which is a unique 10-digit
or 11-digit, 3-segment number, used as a universal product identifier for human drugs.
For laboratory test orders and results, we use Logical Observation Identifiers Names and
Codes (LOINC).
The temporal models used in this work requires patient-level time-ordered data that

has been collected over time. Therefore, we chose to present our EHR dataset in the form
of list of lists of lists. The outermost list corresponds to patients, the intermediate list
corresponds to the time-ordered visit sequence each patient made, and the innermost list
corresponds to the medical codes that were documented within each visit. Furthermore,
to ensure that the RNN models have sufficient number of visits to train on, only patients
who have at least two visits in their EHR were included.

Baselines

Our PredictPTB model was evaluated against two baselines: the Multi-Layer Perceptron
(MLP) and the RETAINmodels. For theMLPmodel, we combine features extracted from
all the visits for a patient into a single feature vector. To do this, we use the counts for each
medical code in the patient’s list of visits. The resulting vector was used to train an MLP
model.

Experimental Setup

Models were trained on a DGX-1 server equipped with 8 NVIDIA Tesla V100 GPU accel-
erators. Models were trained for the task of predicting whether the expecting mother will
deliver a full-term or a preterm baby.We implemented PredictPTB using Tensorflow 2.0+
framework. For all models, patients were randomly split into training (70%), validation
(10%), and test (20%) sets. The same proportion of preterm and full-term deliveries was
maintained among the training, validation, and test sets. The following parameter values
were used for the PredictPTB and RETAIN models: embedding size= 200, RNN hidden
size= 200, batch size= 32. To help conserve GPU RAM, we set the maximum number of
visits for a patient to 200 visits. For patients with more than 200 visits, the most recent
200 visits will be used. The performance of the models is reported on the test set, and the
following evaluation metrics were used: ROC-AUC (Area Under the Receiver Operating
Characteristic Curve), PR-AUC (Area Under the Precision-Recall Curve), sensitivity, and
specificity. The PR-AUC curves are well-suited for imbalanced settings, where the focus
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of the PR curve on the minority class makes it an effective diagnostic for imbalanced
binary classification models [33].

Results

We present the results of preterm birth prediction on the EHR dataset by both the base-
lines and our PredictPTB model. All models were trained at four prediction time points 1
month (P1), 3 months (P2), 6 months (P3), and 9 months (P4) before the delivery, and on
two data history setups: long-term and short-term windows.

Prediction performance across prediction time points and data windows

The objective of this experiment is to compare how models trained using combined data
modalities perform in different scenarios, represented by four prediction time points and
two data history setups. Figure 4 shows that our PredictPTB model consistently provides
more accurate predictions, as compared to the RETAIN andMLPmodels, across the four
prediction points. Models achieve the best performance at 1 month before delivery, using
the short-term window history, where our PredictPTBmodel performed better than both
baselines. For this best performance scenario, PredictPTB achieved a PR-AUC and ROC-
AUC of 40.4% and 82.2%, compared to 35.5% and 79.5% for RETAIN, and 33.5% and 79.0%

Fig. 4 Predictive performance of the implemented models across the four prediction points using all data
modalities for long-term and short-term data windows
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for MLP. In addition, results show that models improved in performance as the predic-
tion point got closer to the delivery date. For example, using the long-term window setup,
our PredictPTB model was able to predict the risk of preterm birth at P1 (1 month before
delivery) with a PR-AUC and ROC-AUC of 34.7% and 78.8%, compared to 26.1% and
74.4% at P2 (3 months), 21.0% and 72.6% at P3 (6 months), and 17.3% and 65.2% at P4 (9
months). Moreover, the proposed PredictPTB uses a single attention mechanism to cap-
ture both visit and code-level contribution. Therefore the model size is smaller compared
to RETAIN and less prone to over-fitting.
Moreover, our analysis confirm that EHR features collected after the start of the preg-

nancy can better identify preterm births, compared to combining features collected
before and after the start of the pregnancy. For example, using the short-term data win-
dow, PredictPTB achieved a PR-AUC of 40.4%, compared to 34.7% for long-term window
at P1. This finding confirms the general intuition that the short-term condition of a
patient is usually the most determinant of health outcome.

Prediction performance using single datamodality vs. combined datamodalities

The objective of this experiment is to evaluate the prediction performance of models
trained on each individual data modality compared to models trained on all modalities
combined together. Results presented in Figs. 5 and 6 show that combining all modalities
together provides the best predictive performance, compared to using individual modal-
ities. As for individual data modalities, diagnosis data achieved the highest performance
across all prediction points and data windows. Diagnosis codes represents the most con-
densed information about patient status and history. While the main purpose of these
codes are for billing purposes, it has been widely shown that they are highly predictive of
patient health outcome [34]. At P1, diagnosis data was able to predict preterm delivery
with PR-AUC and ROC-AUC of 36.7% and 80.1% for short-term window, and 31.6% and
76.5% for long-term window. As for data modalities, results demonstrated that combin-
ing all modalities together (diagnosis, medication, procedures, and lab results) improved
the PR-AUC by 10% compared to using the diagnosis modality alone. The performance of
other modalities varied among different data windows and prediction points. For exam-
ple, procedures data was the least predictive modality for long-term window across all
prediction time points. For these results, we note that observational modalities (diagnosis
and lab orders) are more predictive than intervention modalities (medication and pro-
cedure). Since interventions can be subject to doctor opinion and understanding of the
patient history and condition, it might explain the reason why it is less predictive than
the observational data. Another explanation is that the data frequency for interventional
data in EHR is lower than observational data. Hence model training is more reliable based
on diagnosis and lab order modalities. On the other hand, for short-term window, pro-
cedures modality performed better than medications for the three prediction points P1,
P2, and P3, and better than lab results for P1 and P3. This highlights that procedures per-
formed after the start of the pregnancy (short-term window), are better predictors for
preterm birth, compared to medications and lab results ordered during pregnancy.

Model interpretation for preterm birth prediction

We present a use case to demonstrate the ability of our PredictPTB model to explain
individual prediction results, at visit-level and code-level, for preterm birth prediction.
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Fig. 5 Predictive performance of models trained on single modality and integrated modalities of data, across
the four prediction points using long-term data window

In addition, we compare the visit-level contributions generated by the PredictPTB and
RETAIN models. For PredictPTB, code-level contributions are computed as described
in Eq. 10, and visit-level contributions are computed by aggregating the contributions of
individual codes included within a visit.

Code-level and visit-level interpretations

In Fig. 7, we show an example for a patient from the test set, predicted as preterm delivery
using the PredictPTB model. The blue square (in Oct 2017) indicates the delivery date.
The attention weights show strong contribution of a previous visit, about two years prior
to delivery. Looking closer at the medical codes included in this visit (Fig. 8), we can see
that a previous single live birth delivery at 30-34 weeks of gestation (preterm) occurred on
that day, due to severe preeclampsia. These findings are in line with published literature
reporting that a history of prior preterm birth and preeclampsia in a previous pregnancy
are major risk factors for preterm delivery in subsequent pregnancies [35, 36]. In addition,
the codes included in this visit indicate a long-term and current use of aspirin during
the previous pregnancy, probably to prevent preterm preeclampsia. Moreover, the codes
on this visit report that this patient had a previous cesarean delivery, which might also
increase the risk of preterm birth in later pregnancies [37, 38]. This patient is a great
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Fig. 6 Predictive performance of models trained on single modality and integrated modalities of data, across
the three prediction points using short-term data window

example demonstrating the ability of the attention mechanism to go beyond recent events
and model long-range dependencies among medical events to the predicted outcome.

Comparison of visit-level attributions of PredictPTB and RETAINmodels

Here, we show an example for a use-case, where PredictPTB was able to produce more
clinically-relevant explanations for preterm prediction than RETAIN, using data available
up to one month before the delivery event. In Fig. 9, we can observe that PredictPTB
highlights a few visits, a month before the delivery, with high contributions in February
2016, while RETAIN highlights some older visits with high contribution between August
2013 and December 2014. The visits which were highlighted by the PredictPTB model
includes the following codes: F41.9: Anxiety disorder, J02.9: Acute pharyngitis, J06.9:
Acute upper respiratory infection, and 18481-2: Culture Throat and Group A Beta Strep
AG Rapid Screen Qualitative, while visits highlighted by the RETAIN model includes the
these codes: Z32.01: Encounter for pregnancy test result positive, Z30.9: Encounter for
contraceptive management, and N76.0: Acute vaginitis. For this patient, PredictPTB visit
attributions seem to be more clinically-relevant than RETAIN attributions, since having
an acute upper respiratory infection such as acute pharyngitis was found to be positively
correlated with preterm birth [39, 40]. In addition, anxiety has been reported in several
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Fig. 7 Temporal visualization of visit-level contributions over a patient’s EHR timeline, using PredictPTB
model trained to predict preterm birth

studies as a risk factor for preterm birth [41, 42]. The visits highlighted by the RETAIN
model, are about three years prior to the delivery, which makes them less relevant, espe-
cially not reporting potential risk factors for preterm delivery, except for acute vaginitis,
which might have only affected the previous pregnancy and not the current one [43].
There is currently no literature reporting that acute vaginitis in a pregnancy increases the
risk of preterm birth in subsequent pregnancies.
This use-case demonstrates the ability of the PredictPTBmodel to utilize the computed

contributions of individual medical codes to explain code-level and visit-level contribu-
tions to the model’s prediction for a particular patient. In addition, PredictPTB may be
able to provide more precise interpretations than RETAIN for preterm birth predictions.
The use of a single attention layer for both code-level and visit-level attributions seems to
provide a more consistent interpretations compared to two separate attention layers as in
RETAIN.

Discussion
We introduced the PredictPTB model to predict the risk of preterm birth, using patient
EHR longitudinal data. The core component of our model is a code-level attention-based

Fig. 8 Interpretation of prediction results over a patient’s EHR timeline. The code-level attribution in each
visit is shown along the x-axis (i.e. time) with the y-axis representing the magnitude of individual codes
contributions to preterm birth in each visit
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Fig. 9 Comparison of visit-level attributions between PredictPTB and RETAIN models

RNN, which can embed relevant contextual information into each medical code to gen-
erate code-level attention weights. We demonstrated the prediction performance of our
model on the task of predicting the risk of preterm birth, up to 9 months earlier than its
occurrence, using data routinely collected in EHR.
Results showed that our PredictPTB model performed better than the RETAIN model,

across all prediction points, data windows, and data modalities. The PredictPTB model
achieved the best predictive performance at 30 days before delivery, with an ROC-AUC
of 82.2% and PR-AUC of 40.4%, when using combined data modalities and pregnancy
history setup. As for data modalities, results demonstrated that combining all modalities
together (diagnosis, medication, procedures, and lab results) improved the PR-AUC by
10% compared to using the diagnosis modality alone and improved the ROC-AUC for
about 4%. This suggests that combination of all datamodalities have the potential to quan-
tify PTB risk better than using the diagnosis data alone, due to enrichment of individual
patient representation with multiple data sources. Moreover, results showed that the use
of models trained on data collected after the start of the pregnancy improved the perfor-
mance by up to 5% on ROC-AUC, compared to models trained on the full patient EHR
history, which includes both data before and after the start of the pregnancy. This sup-
ports previous findings in [44–46], which indicates that the most important risk factors
are associated with events happening during the pregnancy timeline.
The PredictPTB model has a number of architectural advantages over previous meth-

ods for modelling EHR data for prediction of clinical outcomes. Firstly, the attention-
based approachwe implemented ismore interpretable than other black-box deep learning
methods, which often lack the capability of identifying features driving predictions. This
property enables clinician to better understand risk factors associated with the pre-
dicted clinical outcomes. Second, our flexible architecture enables capturing additional
modalities of EHR data (e.g. surgeries, clinical notes, etc.), by simply adding a fifth or
sixth (or more) list of concepts to our embedding layer. Third, PredictPTB is based
on a relatively simple architecture compared to previous methods such as RETAIN,



AlSaad et al. BioDataMining            (2022) 15:6 Page 16 of 23

and GRAM [28]. PredictPTB reduces the complexity of the RETAIN architecture while
improving the accuracy of the predictions. Simple models are known to provide three
main advantages over complex models: prevent overfitting, improve interpretability, and
increase computational efficiency [47]. This is especially important when using EHR
high-dimensional datasets like our pregnancy dataset (> 27, 000 variables) because hav-
ing a large number of variables may lead to overfitting. In addition, having too many
variables can be hard to interpret, especially when variables are correlated with each other.
Moreover, the training of the PredictPTB model requires less computational time than
RETAIN.
Compared to published work on preterm birth prediction, our approach has a num-

ber of advantages. First, to the best of our knowledge, this work is one of the first to
consider such a large number of patients (222,436 deliveries), collected from more than
300 healthcare centers in the U.S. This large dataset enabled our model to learn for
diverse patient conditions and be able to capture common as well as relatively uncom-
mon risk factors (examples are available in Appendix Figures 13 and 14). Second, given
the unbalanced classification problem where preterm deliveries are much less than full-
term deliveries, our model has a high predictive performance with an ROC-AUC of
82.2% and PR-AUC of 40.4% using data available up to one month before delivery. Pre-
vious work on predicting preterm reported poor to moderate predictive performance
with an ROC-AUC ranging from 59% to 74% [17, 48, 49]. Third, compared to previous
work, our model is capable of leveraging the sequential and temporal trajectory of events
recorded in EHR, which included large amount of information embedded in each patient’s
record.
A recent work [25], which predicts preterm birth using gradient boosted decision trees

on EHR data, have achieved an a ROC-AUC of 0.75 and PR-AUC of 0.40 at 28 weeks of
gestation (which is approximately twomonths before delivery). Compared to PredictPTB,
this model provides predictions starting from two months before delivery and up to 10
days before delivery, and no information was provided about the model’s performance at
earlier stages of the pregnancy timeline. In addition, this work is limited to diagnosis data
and doesn’t consider other data modalities. On the other hand, PredictPTB combines four
data modalities (diagnosis, medications, lab orders, and procedures). This combination
enables PredictPTB to learn a better representation that can capture a patient’s EHR in as
much detail as possible.
Furthermore, our interpretability visualization highlighted several known risk factors

for preterm birth, which establishes further confidence in our approach.
Our PredictPTB model supports the idea of personalized clinical decision support, by

deriving relative importance of an individual medical code based on the context of the
entire EHR history of a patient. A possible clinical application scenario would use our
model to scan the medical history of an expecting mother, compute the risk score for
preterm birth, and provide a visualization for healthcare providers to help them identify
patients at high-risk of preterm delivery and arrange early follow-ups that could prevent
complications and additional burden for the healthcare system and patients.

Conclusion
We have developed and evaluated a well-performing deep learning model for preterm
birth prediction, using code-level attention-based recurrent neural networks.Our work
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demonstrated that temporal deep learning models can predict preterm delivery up to
ninemonths earlier than its occurrence, using routinely collected data in electronic health
records. In addition, predictions of our model are complemented by explanations that
directly highlight evidence in the patient’s EHR timeline. Future work may utilize our
model to provide patient-specific predictions and interpretations for more pregnancy
complications (e.g. hypertension, gestational diabetes, preeclampsia, infections, and iron-
deficiency anemia) and pregnancy outcomes (e.g. mode of delivery, stillbirth, miscarriage,
and neonatal death).

Appendix
Additional results

In this section, we show more results for PredictPTB performance using sensitivity and
specificity metrics. Figure 10 compares PredictPTB to MLP and RETAIN across the four
prediction points, using all data modalities, for long-term and short-term data windows.
Figures 11 and 12 compare models trained on single modality and combined modalities
of data for long-term and short-term data windows, respectively.

Fig. 10 Predictive performance of the implemented models across the four prediction points using all data
modalities for long-term and short-term data windows
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Fig. 11 Predictive performance of models trained on single modality and combined modalities of data,
across the four prediction points using long-term data window (sensitivity and specificity)
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Fig. 12 Predictive performance of models trained on single modality and integrated modalities of data,
across the three prediction points using short-term data window (sensitivity and specificity)
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Fig. 13 Example for a patient where PredictPTB was able to learn rare complications as risk factors for
preterm birth. This patient was diagnosed with twin-to-twin transfusion syndrome (TTTS), a rare disorder
which affects 10 − 15% of monochorionic, diamniotic twin pregnancies [50]. This observation is in line with
literature reporting that pregnancies with TTTS complication are at increased risk for PTB [51]

Fig. 14 Example for a patient where PredictPTB captures common risk factors and assigns a high importance
score to the visit in which these codes are documented. The highlighted visit has two important risk factors:
infection of urinary tract in pregnancy and pre-existing diabetes mellitus in pregnancy



AlSaad et al. BioDataMining            (2022) 15:6 Page 21 of 23

Abbreviations
PTB: Preterm Birth; RETAIN: REverse Time AttentIoN; RNNs: Recurrent Neural Networks; ROC: Receiver Operating
Characteristic; ROC-AUC: Area Under the ROC Curve; PR-AUC: Area Under the Precision-Recall Curve

Acknowledgements
The authors acknowledge Sidra Medicine for the support provided to access the data, through a Data Use Agreement
with Cerner.

Authors’ contributions
RA conducted the work under supervision of SB and QM. All authors have read and approved the final manuscript.

Funding
Not applicable.

Availability of data andmaterials
The Cerner Health Facts Database (currently referred to as the Cerner Real World Data) is not publicly available. It is
available to research affiliates at contributing hospitals, upon a request made directly to Cerner Corporation.

Declarations

Ethics approval and consent to participate
This research was approved by the Institutional Review Board at Sidra Medicine (protocol number 1807026901).
Informed consent was exempted because of the retrospective nature of this research. Patient data were anonymized
and de-identified by the data provider (Cerner Corporation).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1College of Engineering, Qatar University, Doha, Qatar. 2Qatar Computing Research Institute, Hamad Bin Khalifa
University, Doha, Qatar.

Received: 27 September 2021 Accepted: 23 January 2022

References
1. Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. The Lancet.

2008;371(9608):261–9. https://doi.org/10.1016/s0140-6736(08)60136-1.
2. Tielsch JM. Global incidence of preterm birth. In: Nestlé Nutrition Institute Workshop Series. Basel: Karger; 2015. p.

9–15. https://doi.org/10.1159/000365798.
3. Barros FC, Papageorghiou AT, Victora CG, Noble JA, Pang R, Iams J, Ismail LC, Goldenberg RL, Lambert A, Kramer

MS, Carvalho M, Conde-Agudelo A, Jaffer YA, Bertino E, Gravett MG, Altman DG, Ohuma EO, Purwar M, Frederick
IO, Bhutta ZA, Kennedy SH, Villar J. The distribution of clinical phenotypes of preterm birth syndrome. JAMA
Pediatr. 2015;169(3):220. https://doi.org/10.1001/jamapediatrics.2014.3040.

4. Marlow N, Wolke D, Bracewell MA, Samara M. Neurologic and developmental disability at six years of age after
extremely preterm birth. N Engl J Med. 2005;352(1):9–19. https://doi.org/10.1056/nejmoa041367.

5. Taylor HG, Klein N, Minich NM, Hack M. Middle-school-age outcomes in children with very low birthweight. Child
Dev. 2000;71(6):1495–511. https://doi.org/10.1111/1467-8624.00242.

6. Cooke RWI. Health, lifestyle, and quality of life for young adults born very preterm. Arch Dis Child. 2004;89(3):201–6.
https://doi.org/10.1136/adc.2003.030197.

7. Henderson J, Carson C, Redshaw M. Impact of preterm birth on maternal well-being and women’s perceptions of
their baby: a population-based survey. BMJ Open. 2016;6(10):012676. https://doi.org/10.1136/bmjopen-2016-
012676.

8. Pierrat V, Marchand-Martin L, Arnaud C, Kaminski M, Resche-Rigon M, Lebeaux C, Bodeau-Livinec F, Morgan AS,
Goffinet F, Marret S, and P-YA. Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34
weeks’ gestation in France in 2011: EPIPAGE-2 cohort study. BMJ. 20173448. https://doi.org/10.1136/bmj.j3448.

9. Cobo T, Kacerovsky M, Jacobsson B. Risk factors for spontaneous preterm delivery. nt J Gynecol Obstet. 2020;150(1):
17–23. https://doi.org/10.1002/ijgo.13184.

10. Ren H, Du M. Role of maternal periodontitis in preterm birth. Front Immunol. 2017;8:139. https://doi.org/10.3389/
fimmu.2017.00139.

11. Kaplan ZAO, Ozgu-Erdinc AS. Prediction of preterm birth: Maternal characteristics, ultrasound markers, and
biomarkers: An updated overview. J Pregnancy. 2018;2018:1–8. https://doi.org/10.1155/2018/8367571.

12. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, Adler A, Garcia CV, Rohde S, Say L, Lawn
JE. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990
for selected countries: a systematic analysis and implications. The Lancet. 2012;379(9832):2162–72. https://doi.org/
10.1016/s0140-6736(12)60820-4.

https://doi.org/10.1016/s0140-6736(08)60136-1
https://doi.org/10.1159/000365798
https://doi.org/10.1001/jamapediatrics.2014.3040
https://doi.org/10.1056/nejmoa041367
https://doi.org/10.1111/1467-8624.00242
https://doi.org/10.1136/adc.2003.030197
https://doi.org/10.1136/bmjopen-2016-012676
https://doi.org/10.1136/bmjopen-2016-012676
https://doi.org/10.1136/bmj.j3448
https://doi.org/10.1002/ijgo.13184
https://doi.org/10.3389/fimmu.2017.00139
https://doi.org/10.3389/fimmu.2017.00139
https://doi.org/10.1155/2018/8367571
https://doi.org/10.1016/s0140-6736(12)60820-4
https://doi.org/10.1016/s0140-6736(12)60820-4


AlSaad et al. BioDataMining            (2022) 15:6 Page 22 of 23

13. Baer RJ, McLemore MR, Adler N, Oltman SP, Chambers BD, Kuppermann M, Pantell MS, Rogers EE, Ryckman KK,
Sirota M, Rand L, Jelliffe-Pawlowski LL. Pre-pregnancy or first-trimester risk scoring to identify women at high risk of
preterm birth. Eur J Obstetr Gynecol Reprod Biol. 2018;231:235–40. https://doi.org/10.1016/j.ejogrb.2018.11.004.

14. Goodwin LK, Iannacchione MA, Hammond WE, Crockett P, Maher S, Schlitz K. Data mining methods find
demographic predictors of preterm birth. Nurs Res. 2001;50(6):340–5. https://doi.org/10.1097/00006199-
200111000-00003.

15. Jesse DE, Seaver W, Wallace DC. Maternal psychosocial risks predict preterm birth in a group of women from
appalachia. Midwifery. 2003;19(3):191–202. https://doi.org/10.1016/s0266-6138(03)00031-7.

16. Woolery LK, Grzymala-Busse J. Machine learning for an expert system to predict preterm birth risk. J Am Med Inform
Assoc. 1994;1(6):439–46. https://doi.org/10.1136/jamia.1994.95153433.

17. Weber A, Darmstadt GL, Gruber S, Foeller ME, Carmichael SL, Stevenson DK, Shaw GM. Application of
machine-learning to predict early spontaneous preterm birth among nulliparous non-hispanic black and white
women. Ann Epidemiol. 2018;28(11):783–9. https://doi.org/10.1016/j.annepidem.2018.08.008.

18. Rawashdeh H, Awawdeh S, Shannag F, Henawi E, Faris H, Obeid N, Hyett J. Intelligent system based on data
mining techniques for prediction of preterm birth for women with cervical cerclage. Comput Biol Chem. 2020;85:
107233. https://doi.org/10.1016/j.compbiolchem.2020.107233.

19. Nodelman E, Molitoris J, Holbert M. 543: Using artificial intelligence to predict spontaneous preterm delivery. Am J
Obstet Gynecol. 2020;222(1):350. https://doi.org/10.1016/j.ajog.2019.11.559.

20. Rocha TAH, de Thomaz EBAF, de Almeida DG, da Silva NC, de Sousa Queiroz RC, Andrade L, Facchini LA, Sartori
MLL, Costa DB, Campos MAG, da Silva AAM, Staton C, Vissoci JRN. Data-driven risktraification for preterm birth in
brazil: a population-based study to develop of a machine learning risk assessment approach. Lancet Reg Health Am.
2021100053. https://doi.org/10.1016/j.lana.2021.100053.

21. Safi Z, Venugopal N, Ali H, Makhlouf M, Boughorbel S. Analysis of risk factors progression of preterm delivery using
electronic health records. 2020. https://doi.org/10.21203/rs.3.rs-78033/v1.

22. Wlodarczyk T, Plotka S, Rokita P, Sochacki-W’ojcicka N, W’ojcicki J, Lipa M, Trzci’nski T. Spontaneous preterm birth
prediction using convolutional neural networks. In: ASMUS/PIPPI@MICCAI; 2020.
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