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Abstract

Public concern over the environmental and public health impacts of the emerging contami-

nant class “microplastics” has recently prompted government agencies to consider mitiga-

tion efforts. Microplastics do not easily fit within traditional risk-based regulatory frameworks

because their persistence and extreme diversity (of size, shape, and chemical properties

associated with sorbed chemicals) result in high levels of uncertainty in hazard and expo-

sure estimates. Due to these serious complexities, addressing microplastics’ impacts

requires open collaboration between scientists, regulators, and policymakers. Here we

describe ongoing international mitigation efforts, with California as a case study, and draw

lessons from a similarly diverse and environmentally persistent class of emerging contami-

nants (per- and polyfluoroalkyl substances) that is already disrupting traditional regulatory

paradigms, discuss strategies to address challenges associated with developing health-pro-

tective regulations and policies related to microplastics, and suggest ways to maximize

impacts of research.

Introduction

Recent polls suggest the public is aware of and concerned about the effects of plastic pollution

on the environment and public health [1–3]. Microplastics (typically defined as plastic parti-

cles smaller than 5 mm [4]) are found virtually everywhere, including in aquatic and terrestrial

ecosystems [5,6], air [7], drinking water [8], food [9], and even remote alpine and polar set-

tings [10,11]. Adverse impacts of plastic pollution, particularly microplastics, are becoming

better understood in aquatic ecosystems [12,13], with exceedances of risk thresholds docu-

mented in several ecosystems [14]. However, uncertainties regarding impacts remain, largely

due to uncharacterized hazards and sampling bias towards larger-sized particles (which are

believed to be less toxic) [12,15]. Greater uncertainties remain in assessing impacts to humans,

which have received far less research attention than ecological receptors [16].

Generally, the public relies on the government to address environmental issues and often

promotes policy and regulatory actions through citizen’s groups and nongovernmental
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organizations [17]. Accordingly, regulators and policymakers around the world have taken

various actions to mitigate environmental and public health impacts [18]. Microplastics pres-

ent unique challenges to risk assessors and decision-makers due to their extreme diversity of

composition [19], insolubility, adsorbed and intentionally added contaminants [20], and com-

plex, heterogeneous occurrence in the environment [21].

Despite these challenges, government agencies around the world are implementing various

actions to mitigate known and unknown impacts of microplastics on public health and the

environment. These actions range from upstream measures, such as Taiwan’s ban on single-

use plastics [22], to downstream measures such as California’s discharge requirements of

macro-sized debris into waterways [23]. While local and national efforts to reduce impacts of

microplastics are valuable, international strategies and reduction targets such as the 1978 Pro-

tocol to the International Convention for the Preservation of Pollution from Ships (MARPOL)

[24] are needed to significantly mitigate impacts [25]. In addition to the need for international

cooperation in addressing impacts of microplastics, close intersector collaboration between

scientists, regulators, and policymakers is paramount to advance policy and mitigation options

available to local and national governments to reduce microplastic emissions. Such collabora-

tive efforts may be exemplified in the State of California, which recently has enacted 2 ground-

breaking pieces of legislation to address impacts of microplastics in drinking water and the

marine environment to respond to increasing public concern [26,27].

This paper highlights several aspects of microplastics, which present unprecedented chal-

lenges for mitigating impacts, thus requiring close collaboration between stakeholders; uses

California as a case study to offer insights on addressing some of these issues; and identifies

actions that regulators, policymakers, and researchers can take to advance the field and

develop effective pollution intervention strategies. Throughout this paper, we will refer to

another regulatory paradigm disruptor—per- and polyfluoroalkyl substances (PFAS)—for

insight and lessons learned when addressing microplastics.

Microplastics challenge traditional risk-based regulatory paradigms

Innovations in risk assessment frameworks and regulatory approaches may be required to pro-

tect environmental and public health from complex contaminant classes and mixtures with

vast uncertainties in their environmental fate and transport, exposure, and hazards. The tradi-

tional framework for assessing risk is by comparing exposure amounts with known hazard

thresholds [28]. Many regulatory frameworks are based on this traditional risk assessment

framework and set regulatory thresholds (e.g., maximum contaminant levels in drinking

water, effluent limits in wastewater discharge) based on estimated exposures which would the-

oretically exceed certain risk thresholds [29,30]. While this traditional risk assessment-based

regulatory framework works well for single-chemical contaminants or relatively simple mix-

tures of contaminants with known chemical structures, compositions, and biological activities

(e.g., dioxins and dioxin-like polychlorinated biphenyls (PCBs) [10]), it may be inadequate to

address risks from more complex contaminants.

The term “microplastics” encompasses a vast universe of particles that present unique chal-

lenges in estimating risks due to their extreme diversity (e.g., size, shape, solubility, polymer

composition, sorbed chemicals and biota, etc.) [19]. Even defining the contaminant class has

been a matter of lengthy debate [4,31]. In order to estimate risks and regulate microplastics

using traditional frameworks, recent innovative efforts have tried to reduce complexities asso-

ciated with the high number of variables used to classify microplastics (i.e., size, shape, poly-

mer types) [32]. However, such simplification efforts are unlikely to satisfactorily capture the

full variability of shapes of microplastics, leading to underestimates of risk [32].
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A recent study on wild-caught, commercially important fish found that microplastics

ingested by the fish likely transferred bisphenol A (BPA) and related analogues into their tissue

at high enough quantities to exceed risk thresholds in adults and children at mean ingestion

rates of the fish [33]. Notably, the study would not have estimated an exceedance of risk

threshold if the authors had used the United States Environmental Protection Agency’s (US

EPA) risk value for BPA [34], which is 12.5 times higher than the European Food Safety

Authority’s value [35]. This study highlights both the importance of characterizing plastic-

associated chemicals in microplastics (a key hazard trait) [36–39] and assessing hazards of

endocrine-disrupting chemicals (e.g., BPA, di-2-ethylhexyl-phthalate) commonly added to

plastics [37,40]. Assessing hazards for some endocrine-disrupting chemicals may be compli-

cated due their exhibiting nonmonotonic dose–response effects (i.e., effects observed at low

concentrations are not predicted by and/or observed at higher concentrations) [41–43]. When

such nonmonotonic effects are considered, such compounds may be considered substantially

more toxic [44].

Another critical challenge in assessing risks of plastic-associated chemicals is that most plas-

tic additives (approximately 80%) have their identities hidden from researchers, regulators,

and the public, protected as “confidential business information” (CBI), or lack adequate docu-

mentation in public databases (see more on unknown chemicals in Box 1) [45,46]. Addition-

ally, complex mixtures of chemicals on microplastics may exhibit mixture toxicity effects (i.e.,

additive, synergistic, antagonistic) [47], making their identification complicated [20].

Box 1. Unknown chemicals present never-ending challenges for risk
assessors

There is an increasing worldwide trend of approving unknown chemicals and mixtures

for use in commerce, thus providing scientists and regulators with a Sisyphean task in

estimating risks for over 70,000 such chemicals/mixtures (>37,000 of which are poly-

mers) [46]. This increasing trend is in spite of regulations that apparently intend to pre-

vent the introduction of “regrettable substitutions” into the environment, such as the

2016-revised Toxic Substances Control Act (TSCA) in the United States (US) [48] and

the European Union’s more aggressive Registration, Evaluation, Authorisation, and

Restriction of Chemicals [49]. Yet chemicals/mixtures protected as CBI lack information

regarding chemical structure, composition and biological activities, and access to analyt-

ical standards [47], requiring innovative methods to determine hazardous chemical fea-

tures within an unknown plastic chemical mixture, such as bioassay-guided chemical

fractionation coupled with nontargeted analytical chemistry [20,45]. Such techniques

are costly, however, and it remains unlikely that risks could ever be characterized with a

high degree of certainty until full chemical compositions are known. Voluntary coopera-

tion between industry and researchers in revealing the identity of some of these CBI

chemicals provides a possible avenue for reducing such uncertainties [50].

In addition to complicating the assessment of risk for chemicals and mixtures already

present in the environment, protections provided by CBI may lead to the continued

introduction of potentially hazardous chemicals into the environment [51]. For example,

in 2018, the identities, quantities produced, location of production facilities, and other

data for 396 new PFAS was withheld by manufacturers on the basis that such informa-

tion is CBI [52]. Such confidential compounds may eventually be characterized years

later using nontargeted analytical chemistry, as demonstrated by the recent discovery of

a new class of chlorinated PFAS (apparently used as a substitute for other banned PFAS
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[53])—chloroperfluoropolyether carboxylate compounds (ClPFPECAs) [54]. Most con-

cerning, ClPFPECAs are considered to be safe for use in polymerized nonstick cookware

by the European Food Safety Authority [55]—despite their similarities to other PFAS,

and a complete lack of publicly available toxicity information [56]. ClPFPECAs are

unregistered in both the US EPA’s and the European Chemical Agency’s inventories

[56]. It’s possible that ClPFPECAs passed EPA’s review without much, or any toxicity

testing, as under TSCA (pre-2016 amendment), EPA was required to produce evidence

for potential risk in order to investigate a chemical further [48,49]—a catch-22 that

allowed 90% of chemicals entering commerce between 1979 and 2016 to evade restric-

tions or testing orders [56].

The extremely diverse nature of microplastics is unparalleled; however, another emerg-

ing contaminant class may come relatively close and may provide insights for risk man-

agement. PFAS, like microplastics, are persistent, toxic, and largely unregistered in

regulatory inventories [46,57,58]. The push to regulate PFAS in a timely manner has

prompted some scientists and regulators to develop alternative methods to estimate

their exposure and determine their hazards to estimate risk. A recent study estimated

that there are over 4,700 PFAS chemicals distributed in the global market [59]—a multi-

plicity that makes developing analytical methods and determining toxicological effects

for all constituents unachievable within reasonable timeframes. Novel, proxy-based

approaches have been developed to estimate exposure (e.g., total fluorine [60,61]), and

21st century approaches are being applied to characterize hazards of PFAS (e.g., read-

across [62]). Some of these approaches have proven, in some cases, to be health protec-

tive and simple, and are being considered for adoption by regulatory agencies [63–65].

While PFAS provide lessons for addressing extremely diverse and unique contaminant

classes, microplastics are likely more complex and challenging (Box 2).

Box 2. Microplastics are a more complex contaminant class than
PFAS

While many similarities exist between PFAS and microplastics (e.g., persistence, diver-

sity, unknown composition, bioaccumulative potential, toxicity), there are principal dif-

ferences between these contaminant classes which make understanding risks of

microplastics arguably more challenging. The principal difference is that PFAS (with the

exception of polymers and anions) are generally soluble [66], while microplastics are

(generally) insoluble [67]—thus having distinct physicochemical properties that may

drive toxicological behavior as well as fate and transport characteristics—all of which are

foundational in assessing exposure and risks. For other “conventional contaminants”

(e.g., petroleum hydrocarbons), fate and transport characteristics are well studied [68].

Due to the diversity of the PFAS class and their unique characteristics (hydrophobic,

lipophilic, and surfactant properties), traditional fate and transport models have proven

inadequate in modeling their behavior—particularly in groundwater [68,69]. Even less

understood are the environmental fate and transport behavior of microplastic particles,

in which key determining factors are unique to insoluble particles (relatively less studied

than soluble contaminants) and, in some cases, unique to synthetic polymers, such as:

formation and emissions of microplastic particles; particle–particle interactions (e.g.,

aggregation and agglomeration); biological uptake and bioaccumulation; and transport
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Plastics and PFAS are forever

In an effort to prevent irreversible damage from persistent chemicals with poorly known

effects, some regulatory agencies in Europe and the US have departed from their traditional

risk-based frameworks. They are doing so by taking a more precautionary approach, classify-

ing certain chemicals as “nonthreshold contaminants” (i.e., “any release to the environment

and environmental monitoring data regarded as a proxy for an unacceptable risk”) [75,76]. A

critical driver behind considerations of such precautionary management approaches is a

chemical’s ability to resist degradation in the environment (persistence) [77]—a trait which is

shared by both microplastics and PFAS [55,75]. The combination of global environmental

contamination, persistence, and uncertainties regarding effects on vital earth system processes

satisfy the conditions for both PFAS and microplastics to be classified as “planetary boundary

threats”—defined as factors that may irreversibly threaten the earth systems that allow human-

ity to thrive [78,79]. Indeed, PFAS are often referred to as “Forever Chemicals”—implying that

their persistence should be worrying [80].

In 2019, Denmark banned all PFAS (known and unknown) in paper and cardboard food

contact materials [81]. This broad, class-based restriction was aimed at preventing widespread,

irreversible environmental contamination of persistent, bioaccumulative, toxic chemicals

within the PFAS class [57]. In managing PFAS, the concept of “essential use” is integral to

drafting sensible, risk-based restriction regulations [82]—an approach which has been consid-

ered by the European Chemicals Agency in restricting the use of intentionally added micro-

plastics [75], and may also be useful in considering restrictions of single-use plastic products

in a circular economy.

Like PFAS, microplastics are ubiquitous in the environment [83], and some particle types

are known to be toxic and bioaccumulative [9,58], thus concerns over environmental persis-

tence [84] are warranted [85,86]. With the continuous production and release of persistent

chemicals, risk thresholds are likely to be exceeded over time, regardless of the chemical’s

properties [77]. This high likelihood of eventually exceeding risk thresholds renders traditional

risk assessments inadequate, as they typically do not consider long-term impacts to future gen-

erations, or system-level effects at regional (or even global) scales.

The San Francisco Bay Regional Monitoring Program, which ranks contaminants of emerg-

ing concern monitored in water, sediment, and biota into tiered, risk-based categories (based

on occurrence and hazard ratios) [76], initially classified microplastics as a constituent class of

“Possible Concern” based on uncertainties regarding toxicity, but later elevated microplastics

to “Moderate Concern,” despite a noted lack of certainty regarding hazard thresholds [87].

The San Francisco Bay Regional Monitoring Program justified this departure from their estab-

lished risk-based framework based on the EU’s decision to classify microplastics as a nonthres-

hold contaminant for risk assessment purposes [75]; uncertainties regarding toxicities [87]; an

via air and oceanic circulation [70]. Significant challenges for testing the toxicity of dis-

persed particles in aqueous systems remain [71], and extrapolating effects of exposure at

high concentrations to lower, environmentally relevant concentrations may not be

appropriate [70]. Further challenges in assessing microplastics toxicity are the lack of

standardized, environmentally realistic mixture samples, and the selection of natural

particles as controls [72]. Finally, determining the drivers of microplastics toxicity (e.g.,

physical, chemical) is difficult [73], as exemplified by the association of PFAS with plastic

[74].
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upward trend in both plastic production and environmental detection [88–90]; and persis-

tence [75,87]. These decisions are in congruence with conclusions made by the Science Advice

for Policy by European Academies, which state that while risk thresholds are exceeded at some

locations (i.e., predicted or measured concentrations are greater than predicted no-effect lev-

els), it is unlikely that exceedances of risk thresholds are geographically widespread [12]; how-

ever with expected increases in exposure to microplastics [91], widespread ecological risk may

arise within the next century [12]. In other words, while traditional regulatory frameworks typ-

ically focus on short-term risks from chemicals with known hazards, highly complex, persis-

tent contaminants with unknown hazards are being recognized as potential irreversible global

scale threats and are being precautionarily evaluated by regulators and scientists.

A case study for intersector collaboration: California legislation as a

regulation, policy, and science driver

California Senate Bills (SB) 1422 and SB 1263 outline initial steps to address microplastics in

drinking water and the ambient marine environment, respectively [26,27]. In response to ini-

tial findings of widespread contamination of drinking water with microplastics [86] and con-

siderable uncertainties regarding their health risks to humans at the time [92], the California

Legislature passed SB 1422 in 2018, which requires the State Water Resources Control Board

(State Water Board) to adopt a definition for “microplastics in drinking water” by July 1, 2020

(see Box 3 for more), and to adopt a standard methodology for detecting microplastics in

Box 3. Lessons learned from PFAS in developing a regulatory
definition for microplastics

After the discovery of some fluorinated chemicals in food contact materials (e.g., per-

fluoropolyether dicarboxylic acid) that were not formally recognized as PFAS under

their definition at the time (-CnF2n+1-) [59,99], the Organisation for Economic Co-oper-

ation and Development (OECD) expanded their definition (-CnF2n-) [59]. Meanwhile,

other organizations (e.g., Interstate Technology Regulatory Council) more narrowly

define perfluoroalkyl substances as having two or more fully fluorinated carbons

(-CnF2n+1-), and polyfluoroalkyl substances as having a nonfluorine atom (typically

hydrogen or oxygen) attached to at least one, but not all, carbon atoms, with at least two

or more fully fluorinated carbons (-CnF2n+1-), with a further explicit exclusion of aro-

matic carbon ring substances [66]. In the case of extremely environmentally persistent

chemicals like PFAS, the exclusion of certain chemicals from the contaminant class has

resulted in a systematic lack of focus on their existence—resulting in sparse monitoring

data (e.g., aromatic carbon ring PFAS) [100].

This debacle demonstrates the importance of starting with a broad definition as a com-

mon departure point for further definitions for microplastics and other emerging con-

taminant classes with significant uncertainties. Failure to start with a broad definition

and consider all constituents within the class has resulted in the likely human exposure

to short- (4 to 7 carbons) and ultrashort-chain (2 to 3 carbons) PFAS through food pack-

aging in the US (e.g., 1,1,1,2-tetrafluoroethane, which is “generally recognized as safe” by

the nation’s Food and Drug Administration) [101]. With regulatory agencies focused on

long-chain PFAS (8+ carbons), industry has increased production of short and ultra-

short alternatives [102], even though they were included in the once commonly accepted

definition of PFAS (-CnF2n+1-). Learning from mistakes made with PFAS, if regulatory

definitions of microplastics are too narrow, risks may be underestimated due to their
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drinking water by July 1, 2021 (Fig 1). Additionally, the bill requires 4 years of testing and

reporting of microplastics in drinking water, public disclosure of the results, and possible issu-

ance of a health-based guidance level to interpret results [26]. SB 1263 requires the California

Ocean Protection Council to adopt a statewide microplastics strategy (Strategy) [27]. The

Strategy shall include the development of standardized methods for sampling, detecting, and

characterizing microplastics, development of a risk assessment framework for microplastics,

and the use of that risk assessment framework to identify data gaps, and effective policy

changes to reduce risks due to microplastic pollution in the ambient marine environment (Fig

1) [27].

To meet unprecedented challenges in addressing perhaps the most complex, diverse, and

publicly visibly contaminant suite (plastics pollution; including microplastics), California is

partnering with an international network of researchers, local, state, and federal agencies, non-

governmental organizations, water purveyors, and engaged citizens. For example, the California

State Water Board has a long history of working with citizen scientists regarding characterizing

trash and microplastics in water, reporting some of the earliest findings of persistent organic

pollutants on preproduction plastics pellets along California’s beaches in 2005 [93]. Starting in

2018, the California State Water Board began hosting annual, multiday, immersive “Trash Data

Dives” where researchers (data scientists and trash/microplastic experts) work alongside munic-

ipalities, policy writers, regulators, nongovernmental organization leaders, community leaders,

and others to develop a, “trash management picture informed by open and accessible data, to

identify and understand trends, data gaps, and priorities” [94]. Similarly, the California Ocean

Protection Council (which has made policy recommendations to reduce plastic pollution since

2007 [95]) partnered with the National Oceanic and Atmospheric Administration in 2018 to

incomplete characterization and lack of consideration for the vast possibilities within the

contaminant class.

A challenge in implementing California’s legislative requirements to address microplas-

tics in drinking water (SB 1422) was the apparent lack of a consensus definition for

“microplastics.” Despite calls for a unified, internationally agreed-upon definition for

“microplastics” [103], it seems that no such definition had emerged due (in part) to the

lack of both standardized methods and regulations. Due to the regulatory impacts (i.e.,

monitoring and reporting and communicating health effects to consumers) associated

with adopting a definition of microplastics in the context of drinking water, California’s

State Water Board recognized that the definition they adopted in June 2020 would likely

be used for nondrinking water purposes and by other government agencies and scien-

tific bodies [104]. In drafting an initial regulatory definition for microplastics (which

have extreme uncertainties in regards to exposure and hazards for humans [105]), a

principal consideration was to use terms that broadly encompass particle sizes (1 nm to

5 mm), types (e.g., theoretically soluble plastics), and polymers (e.g., including biode-

gradable polymers, for which limited toxicity information is available [106]) to avoid

inappropriately restricting risk assessments based on regulatory definitions [70], as well

as research, monitoring, and collection of data—at least until the adoption of a more

narrow definition can be justified [31]. Drawing lessons learned from PFAS, subcatego-

ries of microplastics may be grouped for strategic purposes for monitoring and regula-

tions [107], however should be distinguished from a broader class-based definition, with

exclusions and limitations acknowledged wherever possible [108].
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develop the California Ocean Litter Prevention Strategy, which outlines actions that California

and interested stakeholders can take to address ocean litter through 2024 [96]. The Ocean Litter

Prevention Strategy laid out critical needs in microplastics research, such as standardized meth-

ods, which were later included in SB 1263 [96].

In implementing SB 1422 and SB 1263, the California Ocean Protection Council and Cali-

fornia State Water Board are collaborating with a wide range of stakeholders to accomplish the

ambitious objectives required by the bills. The public research and development agency, the

Southern California Coastal Water Research Project (SCCWRP) plays a pivotal role in the

State’s microplastics-related projects, coordinating more than 35 laboratories based in 7 differ-

ent countries to standardize microplastics monitoring methods in aquatic environments, and

serving as facilitator for the development of a consensus statement on the human health effects

of microplastics in drinking water [97]. Additionally, the Ocean Protection Council is collabo-

rating with an independent science-based nonprofit, The Ocean Science Trust, to convene an

internationally recognized expert panel to develop a microplastics risk assessment framework

as part of their Strategy [98]. Intersector working groups, such as the Pacific Northwest Con-

sortium on Plastics and San Francisco Estuary Institute Microplastics Working Group, play

key roles in coordinating local and regional research efforts that directly inform decision mak-

ers, and serve as exemplary models for constructive interactions between policymakers, scien-

tists, regulators, and industry representatives.

Fig 1. Timelines for implementation of California Senate Bills 1422 and 1263. Requirements and timeline for

implementation of recently passed California legislation aimed at advancing understandings of microplastics in drinking water

(Senate Bill 1422) and in marine ecosystems (Senate Bill 1263). The California Ocean Protection Council, in collaboration with

the State Water Resources Control Board, must implement requirements of Senate Bill 1263. The State Water Resources

Control Board will implement requirements of Senate Bill 1422.

https://doi.org/10.1371/journal.pbio.3000932.g001
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Making microplastics research “actionable”: Standardized methods and

beyond

Scientific organizations have long called for the standardization of microplastic analysis meth-

ods [109,110]; the legislative requirements for California to adopt standard methodologies to

monitor microplastics provides an impetus and requisite funding to develop such methods

[26,27]. Standardization of microplastic monitoring methods will allow for direct comparisons

between studies, may reduce uncertainties in assessments of risk, and reliably inform manage-

ment strategies. It is important to keep in mind that unintended consequences may result if

practical considerations of enacting regulations inhibit broader research investigations. For

example, standardized methodologies may miss certain components (e.g. < approximately

10 μm particles, black particles) due to technical and economic barriers—a phenomenon that

has caused a significant mismatch in the size ranges of particles used in toxicological assess-

ments and monitored in the environment [15]. Therefore, as regulatory agencies adopt stan-

dardized methods for analyzing microplastics, the academic community should continue to

improve detection methodologies [111], and regulatory agencies should consider regularly

updating their standardized methods.

In addition to developing standardized methods for monitoring microplastics in the envi-

ronment, food, and water, further research is necessary to develop evidence-based policies and

regulations. The policy and regulatory communities need actionable research that focuses on

(a) addressing gaps in the understanding of the ecological and human health hazards and

exposure of microplastics; (b) identifying and prioritizing sources (e.g., packaging, tire wear,

textiles) and pathways (e.g., washing machines, stormwater, wastewater, biosolid agriculture

application) that may be candidates for regulatory intervention; and (c) developing cost-effec-

tive technologies to reduce economic impacts of policy and regulatory interventions (e.g., anal-

ysis methods, water treatment, reusable or truly biodegradable materials). Moreover,

quantitative toxicological risk assessments may be necessary under certain regulatory para-

digms to effectively regulate microplastics as a water quality contaminant [112]. A useful strat-

egy to accurately assess and convey risks associated with plastic without downplaying the

potential of uncertain risks is to focus on known particle- and species-specific effect mecha-

nisms (e.g., adverse outcome pathways) [112]. These adverse outcome pathways allow for the

separation of hazards of plastic-associated chemicals with the physical particles themselves

[112], allowing for a more simplistic understanding and communication of risks and develop-

ment of risk-based regulations and policies. Most regulatory paradigms will prioritize high-

risk microplastic morphologies—thus research should focus on reducing toxicological dimen-

sions of complex mixtures to simplify sampling and monitoring plans [32]. Finally, research

findings should be written so that they can be easily summarized and distilled into fact sheets

and talking points, which are useful for both general media inquiries and policy briefings.

Conclusion

Microplastics as a contaminant class are unmatched in their magnitude of complexity, diver-

sity, and persistence (with PFAS likely being the closest in all 3 categories), presenting signifi-

cant challenges for scientists in developing analytical methods, fate and transport models,

characterization of exposure pathways, and assessment of toxicological hazards. Considering

unprecedented uncertainties associated with risks to humans and ecosystems, governmental

organizations are reconsidering the appropriateness of applying traditional frameworks in

mitigating risks of microplastics (and PFAS), opting in some cases for more precautionary

approaches that give additional weight to uncertainties and environmental persistence. To
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address such challenging and complex emerging contaminant classes, governments should

coordinate closely with researchers, citizens, industry representatives, and commercial moni-

toring laboratories, and should actively promote transparency, data accessibility, and civic

engagement. California’s pioneering efforts in addressing microplastics in drinking water and

aquatic ecosystems serves as a model for developing open collaborations between diverse

sectors.
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38. Almeida S, Raposo A, Almeida-González M, Carrascosa C. Bisphenol A: Food Exposure and Impact

on Human Health: Bisphenol A and human health effect. . .. Compr Rev Food Sci Food Saf. 2018; 17:

1503–1517. https://doi.org/10.1111/1541-4337.12388 PMID: 33350146

39. Coffin S, Dudley S, Taylor A, Wolf D, Wang J, Lee I, et al. Comparisons of analytical chemistry and bio-

logical activities of extracts from North Pacific gyre plastics with UV-treated and untreated plastics

using in vitro and in vivo models. Environ Int. 2018; 121: 942–954. https://doi.org/10.1016/j.envint.

2018.10.012 PMID: 30352377

40. Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD. Most plastic products release estrogenic chem-

icals: a potential health problem that can be solved. Environ Health Perspect. 2011; 119: 989–996.

https://doi.org/10.1289/ehp.1003220 PMID: 21367689

41. Do RP, Stahlhut RW, Ponzi D, vom Saal FS, Taylor JA. Non-monotonic dose effects of in utero expo-

sure to di (2-ethylhexyl) phthalate (DEHP) on testicular and serum testosterone and anogenital dis-

tance in male mouse fetuses. Reprod Toxicol. 2012; 34: 614–621. https://doi.org/10.1016/j.reprotox.

2012.09.006 PMID: 23041310

42. National Toxicology Program. NTP research report on the CLARITY-BPA core study: a perinatal and

chronic extended-dose-range study of bisphenol A in rats. 2018.

43. Hill CE, Myers JP, Vandenberg LN. Nonmonotonic Dose–Response Curves Occur in Dose Ranges

That Are Relevant to Regulatory Decision-Making. Dose-Response. 2018; 16: 155932581879828.

https://doi.org/10.1177/1559325818798282 PMID: 30228814

44. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee D-H, et al. Hormones and Endo-

crine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocr Rev.

2012; 33: 378–455. https://doi.org/10.1210/er.2011-1050 PMID: 22419778

45. Zimmermann L, Dierkes G, Ternes TA, Völker C, Wagner M. Benchmarking the in Vitro Toxicity and

Chemical Composition of Plastic Consumer Products. Environ Sci Technol. 2019; 53: 11467–11477.

https://doi.org/10.1021/acs.est.9b02293 PMID: 31380625

46. Wang Z, Walker GW, Muir DCG, Nagatani-Yoshida K. Toward a Global Understanding of Chemical

Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. Environ Sci

Technol. 2020; 54: 2575–2584. https://doi.org/10.1021/acs.est.9b06379 PMID: 31968937

47. Muncke J, Backhaus T, Geueke B, Maffini MV, Martin OV, Myers JP, et al. Scientific challenges in the

risk assessment of food contact materials. Environ Health Perspect. 2017; 125: 095001. https://doi.

org/10.1289/EHP644 PMID: 28893723

48. Watnick VJ. The Lautenberg Chemical Safety Act of 2016: Cancer, Industry Pressure, and a Proactive

Approach. Harv Envtl L Rev. 2019; 43: 373.

49. Applegate JS. Synthesizing TSCA and REACH: practical principles for chemical regulation reform.

Ecol Law Q. 2008; 35: 721.

50. Frond HL, Sebille E, Parnis JM, Diamond ML, Mallos N, Kingsbury T, et al. Estimating the Mass of

Chemicals Associated with Ocean Plastic Pollution to Inform Mitigation Efforts. Integr Environ Assess

Manag. 2019; 15: 596–606. https://doi.org/10.1002/ieam.4147 PMID: 30900806

51. Sheriff I, Debela SA, Kabia OA, Ntoutoume CE, Turay MJ. The phase out of and restrictions on per-

and polyfluoroalkyl substances: Time for a rethink. Chemosphere. 2020; 251: 126313. https://doi.org/

10.1016/j.chemosphere.2020.126313 PMID: 32143075

52. Lerner S. EPA continues to approve toxic PFAS chemicals despite widespread contamination. The

Intercept. 201825. Available from: https://theintercept.com/2018/10/25/epa-pfoa-pfas-pfos-chemicals/

.

53. US EPA. EPA docket on PFOA voluntary stewardship program, docket number EPA-HQ-OPPT-

2006-0621; 2006. Available from: https://www.regulations.gov/document?D=EPA-HQOPPT-2006-

0621-0005.

54. Washington JW, Rosal CG, McCord JP, Strynar MJ, Lindstrom AB, Bergman EL, et al. Nontargeted

mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils. Science. 2020;

368: 1103–1107. https://doi.org/10.1126/science.aba7127 PMID: 32499438

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000932 March 30, 2021 12 / 15

https://doi.org/10.1016/j.envpol.2013.12.013
http://www.ncbi.nlm.nih.gov/pubmed/24440692
https://doi.org/10.1021/acs.est.8b07140
http://www.ncbi.nlm.nih.gov/pubmed/30905144
https://doi.org/10.1111/1541-4337.12388
http://www.ncbi.nlm.nih.gov/pubmed/33350146
https://doi.org/10.1016/j.envint.2018.10.012
https://doi.org/10.1016/j.envint.2018.10.012
http://www.ncbi.nlm.nih.gov/pubmed/30352377
https://doi.org/10.1289/ehp.1003220
http://www.ncbi.nlm.nih.gov/pubmed/21367689
https://doi.org/10.1016/j.reprotox.2012.09.006
https://doi.org/10.1016/j.reprotox.2012.09.006
http://www.ncbi.nlm.nih.gov/pubmed/23041310
https://doi.org/10.1177/1559325818798282
http://www.ncbi.nlm.nih.gov/pubmed/30228814
https://doi.org/10.1210/er.2011-1050
http://www.ncbi.nlm.nih.gov/pubmed/22419778
https://doi.org/10.1021/acs.est.9b02293
http://www.ncbi.nlm.nih.gov/pubmed/31380625
https://doi.org/10.1021/acs.est.9b06379
http://www.ncbi.nlm.nih.gov/pubmed/31968937
https://doi.org/10.1289/EHP644
https://doi.org/10.1289/EHP644
http://www.ncbi.nlm.nih.gov/pubmed/28893723
https://doi.org/10.1002/ieam.4147
http://www.ncbi.nlm.nih.gov/pubmed/30900806
https://doi.org/10.1016/j.chemosphere.2020.126313
https://doi.org/10.1016/j.chemosphere.2020.126313
http://www.ncbi.nlm.nih.gov/pubmed/32143075
https://theintercept.com/2018/10/25/epa-pfoa-pfas-pfos-chemicals/
https://www.regulations.gov/document?D=EPA-HQOPPT-2006-0621-0005
https://www.regulations.gov/document?D=EPA-HQOPPT-2006-0621-0005
https://doi.org/10.1126/science.aba7127
http://www.ncbi.nlm.nih.gov/pubmed/32499438
https://doi.org/10.1371/journal.pbio.3000932


55. EFSA Panel on food contact materials enzymes flavourings and processing aids (CEF). Scientific

Opinion on the safety evaluation of the substance perfluoro acetic acid, α-substituted with the copoly-

mer of perfluoro-1, 2-propylene glycol and perfluoro-1, 1-ethylene glycol, terminated with chlorohexa-

fluoropropyloxy groups, CAS No. 329238–24–6 for use in food contact materials. EFSA J. 2010; 8:

1519.

56. Gold SC, Wagner WE. Filling gaps in science exposes gaps in chemical regulation. Science. 2020;

368: 1066–1068. https://doi.org/10.1126/science.abc1250 PMID: 32499431

57. Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways

of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of

health effects. J Expo Sci Environ Epidemiol. 2019; 29: 131–147. https://doi.org/10.1038/s41370-018-

0094-1 PMID: 30470793

58. Goswami P, Vinithkumar NV, Dharani G. First evidence of microplastics bioaccumulation by marine

organisms in the Port Blair Bay, Andaman Islands. Mar Pollut Bull. 2020; 155: 111163. https://doi.org/

10.1016/j.marpolbul.2020.111163 PMID: 32469778

59. Organisation for Economic Co-operation and Development. Towards a New Comprehensive Global

Database of Per-and Polyfluoroalkyl substances (PFASs): Summary Report on Updating the OECD

2007 List of Per- and Polyfluoroalkyl substances (PFASs). Series on Risk Management No. 39. 2018.

Available from: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV-JM-

MONO(2018)7&doclanguage=en.

60. Ritter EE, Dickinson ME, Harron JP, Lunderberg DM, DeYoung PA, Robel AE, et al. PIGE as a screen-

ing tool for Per- and polyfluorinated substances in papers and textiles. Nucl Instrum Methods Phys

Res B. 2017; 407: 47–54. https://doi.org/10.1016/j.nimb.2017.05.052

61. McDonough CA, Guelfo JL, Higgins CP. Measuring total PFASs in water: The tradeoff between selec-

tivity and inclusivity. Curr Opin Environ Sci Health. 2019; 7: 13–18. https://doi.org/10.1016/j.coesh.

2018.08.005 PMID: 33103012

62. Patlewicz G, Richard AM, Williams AJ, Grulke CM, Sams R, Lambert J, et al. A Chemical Category-

Based Prioritization Approach for Selecting 75 Per- and Polyfluoroalkyl Substances (PFAS) for Tiered

Toxicity and Toxicokinetic Testing. Environ Health Perspect. 2019; 127: 014501. https://doi.org/10.

1289/EHP4555 PMID: 30632786

63. Sustainable Packaging for the State of California Act (Proposed Regulations). Public Resources

Code. Sect. 42370 2018. Available from: https://www2.calrecycle.ca.gov/PublicNotices/Documents/

11542.

64. Michigan Science Advisory Workgroup. Health Based Drinking Water Value Recommendations for

PFAS in Michigan. Report developed for the Michigan PFAS Action Response Team, Lansing, Michi-

gan. June 27, 2019. 2019.

65. Patlewicz G. PFAS Prioritisation for Targeted Testing. Presented at Office of Environmental Health

Hazard Assessment (OEHHA) of Cal EPA Workshop on Read-Across, Oakland, CA, May 02–03,

2019. 2019. Available from: https://doi.org/10.23645/epacomptox.8127137.

66. ITRC. Naming Conventions and Physical and Chemical Properties of Per- and Polyfluoroalkyl Sub-

stances (PFAS). 2020. Available from: https://pfas-1.itrcweb.org/fact_sheets_page/PFAS_Fact_

Sheet_Naming_Conventions_April2020.pdf.

67. Arp HPH, Knutsen H. Could We Spare a Moment of the Spotlight for Persistent, Water-Soluble Poly-

mers? Environ Sci Technol. 2019; acs.est.9b07089. https://doi.org/10.1021/acs.est.9b07089 PMID:

31845804

68. Naidu R, Nadebaum P, Fang C, Cousins I, Pennell K, Conder J, et al. Per- and poly-fluoroalkyl sub-

stances (PFAS): Current status and research needs. Environ Technol Innov. 2020; 19: 100915.

https://doi.org/10.1016/j.eti.2020.100915

69. Newell CJ, Adamson DT, Kulkarni PR, Nzeribe BN, Stroo H. Comparing PFAS to other groundwater

contaminants: Implications for remediation. Remed J. 2020; 30: 7–26.

70. Gouin T, Becker RA, Collot A, Davis JW, Howard B, Inawaka K, et al. Toward the Development and

Application of an Environmental Risk Assessment Framework for Microplastic. Environ Toxicol Chem.

2019; 38: 2087–2100. https://doi.org/10.1002/etc.4529 PMID: 31233238

71. ECETOC. An evaluation of the challenges and limitations associated with aquatic toxicity and bioaccu-

mulation studies for sparingly soluble and manufactured particulate substances. Technical Report no

132. 2019.

72. Backhaus T, Wagner M. Microplastics in the Environment: Much Ado about Nothing? A Debate. Glob

Chall. 2019; 1900022. https://doi.org/10.1002/gch2.201900022 PMID: 32685194
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