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Abstract

Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. 

Patients lacking either all peroxisomal functions or a single enzyme or transporter function 

typically develop severe neurological deficits, which originate from aberrant development of the 

brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative 

processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in 

human patients and mouse models lacking all or individual peroxisomal functions, we discuss the 

importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the 

observed brain pathologies. This enables us to deconstruct the local and systemic contribution of 

individual metabolic pathways to specific brain functions. We also review the recently discovered 

variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome 

biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more 

common neurological disorders such as Alzheimer’s disease, autism and amyotrophic lateral 

sclerosis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann.
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1 Introduction

Peroxisomes are single membrane-bound organelles, which harbor a variety of biochemical 

reactions and metabolic pathways that contribute to different physiological functions in 

eukaryotic organisms. Peroxisomes are found ubiquitously, but their number, shape and 

enzymatic content appear variable and differ between organisms and tissues and even upon 

changes in the environment [1]. In this review, we restrict the discussion to peroxisomal 

functions in the mammalian nervous system, with a specific focus on human physiology and 

pathophysiology supplemented by observations made in various mouse models. In 

mammals, peroxisomes contain around 50 different proteins [2], which exert a variety of 

catabolic and anabolic reactions as, for example, the degradation of very long-chain fatty 
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acids (VLCFA)1, dicarboxylic acids, branched-chain fatty acids, or parts of the biosynthesis 

of ether phospholipids or specific polyunsaturated fatty acids [3].

The importance of peroxisomes for mammalian physiology is highlighted by the existence 

of a variety of severe inherited human diseases caused by the complete or partial loss of 

peroxisomal functions. These diseases have been subdivided into peroxisome biogenesis 
disorders (PBD), in which the formation of functional peroxisomes is disturbed, and single 
enzyme and transporter deficiencies lacking individual enzymatic activities that are 

performed by peroxisomes. Patients suffering from PBD show a broad spectrum of 

symptoms summarized as Zellweger spectrum disorders and rhizomelic chondrodysplasia 

punctata (RCDP) type 1. The genetic basis for each PBD is a mutation in one of 14 PEX 
genes, which encode proteins termed peroxins (PEX proteins or peroxisome biogenesis 

factors), which are involved in the biogenesis of the organelle (Table 1). All peroxisomal 

enzymes and membrane proteins contain a targeting signal, which is necessary and sufficient 

to mediate the interaction of the encoding protein with a receptor protein that translocates its 

cargo to peroxisomes and initiates the import. These processes are carried out by the PEX 

proteins (Fig. 1), which are either involved in the import of matrix proteins (PEX1, 2, 5, 6, 7, 

10, 12, 13, 14, 26) or of membrane proteins (PEX3, 16 and 19) [4]. Soluble proteins harbor 

such peroxisome targeting signal (PTS) sequences either at their extreme C-terminus (type 

1, PTS1) or close to their N-terminus (type 2, PTS2), whereas membrane proteins contain 

targeting signals for membrane proteins (mPTS). PTS1 is required for the interaction with 

the cytoplasmic receptor PEX5, PTS2 for the interaction with PEX7 and the mPTS for the 

interaction with PEX19. This is the reason why in Zellweger spectrum patients, on the 

cellular level, peroxisomes are either absent or empty (ghosts).

The symptoms of patients with peroxisomal single enzyme and transporter deficiencies have 

a broad heterogeneity, related to differences in the physiological role of the affected 

metabolic pathway or reaction [5]. In this group of inherited diseases, mutations have been 

identified in 13 different genes encoding peroxisomal enzymes and in two genes encoding 

peroxisomal transporter proteins (Table 1; Fig. 1).

The brain is the most elaborate organ of the mammalian body and consists of a variety of 

tissue-specific cell types: neurons (with hundreds of different subtypes), oligodendrocytes, 

astrocytes and microglia. These differ in structure and function but cooperate tightly to 

perform all the tasks attributed to the brain. Moreover, the structural complexity of brain 

organization requires a precisely coordinated developmental process to accomplish its 

proper formation. The central nervous system (CNS; brain and spinal cord) and the 

peripheral nervous system (PNS) use the same mechanisms for communication between 

neurons, which transmit information by chemical synapses between cells. In addition, 

1Abbreviations: Aβ, amyloid-β; ABC, ATP-binding cassette; ACAA, acetyl-CoA acyltransferase; ACOX, acyl-CoA oxidase; AD, 
Alzheimer’s disease; ADHAPS, alkyl-dihydroxyacetone phosphate synthase; ALS, amyotrophic lateral sclerosis; AMACR, 2-
methylacyl-CoA racemase; AMN, adrenomyeloneuropathy; CALD, cerebral X-ALD; CNS, central nervous system; CT, computed 
tomography; DAO, D-amino acid oxidase; DBP, D-bifunctional protein; DDO, D-aspartate oxidase; DHA, docosahexaenoic acid; 
DHAPAT, dihydroxyacetone phosphate acyltransferase; DHCA/THCA, di-/trihydroxycholestanoic acid; ER, endoplasmic reticulum; 
FAR, fatty acyl-CoA reductase; IDE, insulin-degrading enzyme; KO, knockout; MRI, magnetic resonance imaging; PBD, peroxisome 
biogenesis disorders; PEX, peroxin; PHYH, phytanoyl-CoA hydroxylase; PMP, peroxisomal membrane protein; PNS, peripheral 
nervous system; PTS, peroxisomal targeting signal, RCDP, rhizomelic chondrodysplasia punctata; ROS, reactive oxygen species; 
SCPx, sterol carrier protein X; VLCFA, very long-chain fatty acids; X-ALD, X-linked adrenoleukodystrophy.
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efficient propagation of the electrical signal (action potential) along the nerve fibers is 

facilitated by myelin ensheathment of the axons. The complexity of the nervous system and 

the tight interaction of the involved cell types render this system susceptible to disturbances. 

Accordingly, metabolic dysfunction associated with a complete loss of all peroxisomal 

functions or of individual enzymatic reactions is often linked to perturbation of brain 

formation, function or maintenance. Thus, pathological aberrations of the nervous system 

are prominent features in most peroxisomal disorders; the most severe form of PBD has 

traditionally been designated “cerebro-hepato-renal syndrome” highlighting the apparent 

brain dysfunction in these patients. The brain pathology in peroxisomal disorders can be 

grouped into three major classes: i) abnormalities in neuronal migration or differentiation, ii) 

defects in the formation or maintenance of central white matter, and iii) post-developmental 

neuronal degeneration [6].

This review summarizes the current knowledge on the contribution of the various 

peroxisomal pathways to proper brain function with particular consideration of the different 

cell types of the nervous system.

2 Metabolic functions of peroxisomes

Peroxisomes harbor a variety of enzymes, which either serve to catalyze a single chemical 

reaction or cooperate with other peroxisomal enzymes in a series of coupled reactions 

constituting a complete metabolic pathway. A selection of these enzymes, which exert 

important peroxisomal functions in the context of the brain, is schematically depicted in Fig. 

1. For further details on these metabolic pathways, the reader is referred to excellent 

previous reviews [3] [7].

A prominent example of such a metabolic pathway is the peroxisomal degradation of diverse 

fatty acids by β-oxidation (Fig. 1, lower part). Here, many different substrates are handled, 

such as straight-chain saturated VLCFA, unsaturated fatty acids, dicarboxylic acids and a 

subset of branched-chain fatty acids, but also the side chain of intermediates in bile acid 

biosynthesis (di- and trihydroxycholestanoic acid; DHCA and THCA) [7]. The β-oxidation 

cycle is a four-step reaction, executed by three enzymes: an acyl-CoA oxidase (ACOX1 or 

ACOX2), a bifunctional protein (DBP or LBP) and a thiolase (ACAA1 or SCPx), in which 

the paralogous/homologous enzymes show different extents of substrate specificity. Each 

cycle results in a shortening of the acyl-CoA backbone and the release of acetyl-CoA or 

propionyl-CoA (in case of branched-chain fatty acids). Auxiliary enzymes help to 

circumvent special properties of unsaturated or branched-chain fatty acids that would be 

incompatible with continuous β-oxidation. The substrates of β-oxidation are imported into 

peroxisomes in an activated form, as CoA-ester, via ATP-binding cassette (ABC) transporter 

proteins (ABCD1, ABCD2 and ABCD3) and the products are further processed either into 

carnitine esters by carnitine ac(et)yl-transferases (CRAT and CROT) or into free acids by 

thioesterases (ACOT4 and ACOT8) (Fig. 1, lower part). A subtype of branched-chain acyl-

CoA (especially phytanic acid) first has to be oxidatively decarboxylated via the α-oxidation 

pathway [7]. This process involves hydroxylation of the carbon next to the carboxylate ester 

(by PHYH) and a subsequent oxidative cleavage to split off the carboxyl group by 2-

hydroxyacyl-CoA lyase (2-HACL) releasing an acyl-aldehyde. The subsequent steps involve 

Berger et al. Page 3

Biochim Biophys Acta. Author manuscript; available in PMC 2016 May 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



an oxidation of the aldehyde (fatty aldehyde dehydrogenase; FALDH) and an activation of 

the generated fatty acid by a still unknown acyl-CoA synthetase.

Furthermore, the early steps of ether phospholipid biosynthesis are exerted by peroxisomal 

enzymes (Fig. 1, upper part), which reside either inside (DHAPAT, ADHAPS) peroxisomes 

or at the outer side (FAR1, AADHAPR) [3]. This metabolic pathway consists of a series of 

reactions; the first, carried out by dihydroxyacetone phosphate acyltransferase (DHAPAT) 

combines dihydroxyacetone phosphate (DHAP) with a fatty acid, which is then exchanged 

for an long-chain alcohol by alkyl-DHAP synthase (ADHAPS). This long-chain alcohol is 

generated from another fatty acid by a fatty acyl-CoA reductase (FAR1) at the outer side of 

peroxisomes. Finally, the carbonyl group of the original dihydroxyacetone phosphate is 

reduced by alkyl/acyl-dihydroxyacetone phosphate reductase (AADHAPR) to enable further 

processing at the endoplasmic reticulum (ER).

Other peroxisomal enzymes can exert their function more independently (Fig. 1, upper part) 

such as the enzymes of the reactive oxygen species (ROS) detoxification system 

(peroxiredoxin 1/5, PRDX1/5; superoxide dismutase 1, SOD1; epoxide hydrolase, EPXH2; 

glutathione-S-transferase kappa 1, GSTK1 and catalase, CAT), which together prevent the 

accumulation of reactive compounds, as reviewed in [8]. Also several enzymes acting on 

amino acids and their derivatives (pipecolic acid oxidase, PIPOX; D-aspartate oxidase, 

DDO; D-amino acid oxidase, DAO; alanine:glyoxylate aminotransferase, AGXT) or other 

oxidative enzymes like polyamine oxidase (PAO) act in isolation [3]. Furthermore, several 

proteins with a protease domain have been found in peroxisomes (lon peptidase 2, LONP2; 

insulin-degrading enzyme, IDE; trypsin domain-containing 1, TYSND1) and some 

membrane proteins (peroxisomal membrane protein of 22 kDa, PMP22; and peroxisomal 

membrane protein of 34 kDa, PMP34), which transport a variety of smaller organic 

compounds such as nicotinamide-adenine-dinucleotides (NAD), CoA, or ATP [9].

The enzymes known to be dysfunctional in patients suffering from inherited peroxisomal 

disorders are distributed across these pathways (Fig. 1, gray ovals). However, the relative 

physiological contribution of each enzyme may differ drastically. Consequently, the 

pathological consequences of their functional loss range from very severe diseases, like D-

bifunctional protein (DBP) deficiency (see chapter 5.2.2.), to diseases that affect selective 

tissues but not the brain, like AGXT deficiency causing primary hyperoxaluria type 1, which 

involves the kidneys [10].

3 Brain peroxisomes and how they differ from peroxisomes in other 

tissues

Although peroxisomes are present in all mammalian cell types, except for red blood cells, 

they contribute to the function of the CNS in specific ways. On the one hand, peroxisomes 

generate building blocks (intermediates) for the biosynthesis of complex lipids such as ether 

phospholipids, which are important components of myelin, the membrane processes of 

oligodendrocytes that ensheath and isolate axons. Moreover, peroxisomes exert the last step 

in the biosynthesis of the very long-chain polyunsaturated fatty acid docosahexaenoic acid 

(DHA; C22:6 n-3), which has important roles in the nervous system [11]. This fatty acid is 
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enriched in phospholipids including ether phospholipids and, either directly or after 

enzymatic conversion to a variety of bioactive derivatives, plays an important role in 

signaling [12]. On the other hand, peroxisomes degrade toxic compounds that can either 

interfere with proper brain formation or damage brain structures (e.g., phytanic acid). 

Furthermore, peroxisomal enzymes degrade D-amino acids such as D-aspartate and D-

serine, which modulate synaptic signaling by altering the efficiency of synaptic transmission 

(Fig. 3A, left panel).

In the brain, peroxisomes appear as electron-dense single membrane-bound organelles that 

have been detected in all neural cell types, namely in neurons [13], oligodendrocytes [14,15] 

and astrocytes [13] and microglia and endothelial cells [16]. Brain peroxisomes in general, 

and neuronal peroxisomes in particular, are smaller than peroxisomes from other tissues and, 

thus, were termed microperoxisomes [17]. However, for the sake of simplicity, we use the 

term peroxisomes for all structures within this review. In cultured cells from rat brain, 

punctate peroxisomal immunoreactivity was found in mixed glial cells and established 

oligodendrocyte cultures [18], as well as in astrocytes and neurons [19].

The distribution of peroxisomes in the brain has been investigated by different techniques 

such as cytochemical detection of enzymatic activities restricted to peroxisomes including 3-

aminotriazol-sensitive precipitation of diamino-benzidine for catalase, conversion of D-

proline for detection of DAO or of D-aspartate for DDO [20]. Moreover, 

immunohistochemistry, immunofluorescence microscopy and electron microscopy have 

been used. However, it is important to keep in mind that many studies examined the 

presence and abundance of a single peroxisomal protein, thus possibly detecting only a 

subset of peroxisome-positive cells. Therefore, it is necessary to combine the different 

investigations to obtain an insight into the accurate distribution and abundance of all 

peroxisomes in the brain. Comparison of DAO and catalase activity revealed that in the locus 

coeruleus of the rat brain, peroxisomes that stained positive for catalase activity were found 

in various cell types, whereas DAO activity-positive peroxisomes were restricted to 

astrocytes [13]. Similar results were obtained in the cerebrum and in the PNS [13]. In the 

cerebellum, punctate catalase immunoreactivity (characteristic of a peroxisomal 

localization) was predominantly observed in Bergmann glia (astrocytes), whereas in 

Purkinje cells, catalase appeared evenly distributed. This finding was recapitulated in 

explanted cells from the cerebellum, in which catalase appeared cytosolic (not enriched in 

peroxisomes) in calbindin-positive Purkinje cells but punctate in astrocytes, whereas the 

peroxisomal membrane protein PEX14 was found punctate in all cell types [21]. Moreover, 

the abundance of brain peroxisomes differs between brain areas. Although single membrane-

bound structures – detectable with different methods to stain peroxisomes – can be found in 

most regions, some brain areas were reported to contain only modest numbers of 

peroxisomes [22]. However, peroxisome abundance also changes during development. In the 

human brain, catalase-positive neurons emerged early in evolutionary old structures such as 

the basal ganglia, the thalamus and the cerebellum (about 27–28 weeks of gestation), 

whereas in the frontal cortex, they appeared later (around 35 weeks of gestation) [15]. 

Similar observations were obtained when investigating the distribution of ACOX1 or 

thiolase (ACAA1) immunoreactivity [23]. In the deep white matter, catalase-positive glia 

appeared at 31–32 weeks of gestation, their appearance shifting from the deep to the 

Berger et al. Page 5

Biochim Biophys Acta. Author manuscript; available in PMC 2016 May 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



superficial white matter with increasing age [15]. Interestingly, during rat brain 

development, peroxisomal activity (as represented by catalase activity) remained constant in 

the cerebral cortex (a typical gray matter region), whereas in the white matter, the activity 

changed over time with a clear peak accompanying the phase of myelination (during 

postnatal days 17–31) [24]. A similar increase in catalase activity was found in extracts from 

murine cerebellum and brain stem [25], whereas a systematic comparison by western blot 

analysis and catalase activity measurements found the maximum level two days after birth 

and at later timepoints, 15 and 49 days postnatally, the levels of peroxisomal enzymes 

remained comparable [19].

This change in protein abundance is reflected at the mRNA level, where the expression of 

genes coding for enzymes involved in the same metabolic pathways showed similar 

temporal profiles. In the murine brain, the mRNA levels of the peroxisomal β-oxidation 

enzymes (ACOX1, DBP, ACAA1a), the ABC transporters ABCD2 and ABCD3, and the 

enzymes involved in ether phospholipid biosynthesis increased after birth, reached a 

maximum during the first weeks and then declined. In contrast, the mRNAs for the enzymes 

involved in α-oxidation were not detected during the first postnatal weeks; and the ABCD1 
mRNA was most highly expressed in the embryonic brain [26–28]. This change in enzyme 

expression was confirmed in a systematic biochemical investigation of the abundance of 

peroxisomal enzymes and their activity during mouse brain development. In this study, it 

was found that peroxisomal activities decreased during postnatal development (P2, P15, 

P49), irrespective of whether the activity was normalized to the whole brain or to different 

brain regions (cerebellum, hippocampus, cortex) [19]. This is in agreement with previous 

findings in rat brain demonstrating that during the first two postnatal weeks, peroxisomes are 

more abundant than at later time points [22]. However, this general trend contrasts with the 

reported amount of DAO activity in astrocytes of rat cerebellum, which was only observed in 

adult rats, whereas no staining was observed in young animals (P3, P13, P16) [13]. This 

might indicate a more specific contribution of DAO in the adult brain, which could be linked 

to its function in the modulation of neuronal synaptic transmission (see chapter 6.1.).

In the rat PNS, peroxisomes were described in Schwann cells, which represent the 

myelinating cells of the PNS, as well as in dorsal root ganglion satellite cells and, less 

abundantly, in neuronal somata [29]. In neurons of human dorsal root ganglia, peroxisomes 

were readily detected based on immunohistochemistry for ABCD1 [30]. During early stages 

of murine peripheral nerve (sciatic nerve) myelination, peroxisomes appear to be diffusely 

distributed in the myelin sheath of Schwann cells, whereas at later stages, peroxisomes were 

found to be enriched in the myelin loops of the paranodal region [14]. These axon-glia 

contact sites flank the nodes of Ranvier, substructures of myelinated neurons, in which 

highly abundant sodium channels in the axonal membrane enable depolarization and 

reinitiation of the action potential and thus permit the rapid saltatory propagation of the 

electrical signal across long distances (Fig. 2A, left panel) [14].

4 Peroxisomes, brain and oxidative stress

Oxidative stress is a cellular state characterized by a high level of ROS such as hydrogen 

peroxide (H2O2) or superoxide anions (O2·–), which are considered to be mediators of the 
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toxic effects associated with oxidative stress. This state often arises as side effect of cellular 

disturbances and has been amply described in connection with general peroxisomal 

dysfunction, but also upon specific loss of an individual peroxisomal function [31]. An 

increase in the concentration of ROS can originate either from overproduction by one or 

more cellular producers (individual enzymes or whole organelles), a reduction of the 

detoxifying activity exerted by protective proteins (catalase, glutathione peroxidase, 

superoxide dismutase, peroxiredoxin) or a shortage of scavenging molecules that normally 

buffer the emerging ROS molecules (e.g., glutathione, vitamin C and E) [32].

Peroxisomes are known to house a variety of oxidases generating H2O2 and ROS, but they 

also enclose various ROS-detoxifying enzymes such as catalase, GSTK1, PRDX5 and SOD1 

to limit the detrimental effects of local production [8]. However, this detoxification system 

can be overloaded. Artificial local production of ROS inside peroxisomes can induce 

apoptosis, which can be rescued by ectopic overexpression of peroxisomal detoxifying 

enzymes [33]. Exogenously added palmitate can stimulate H2O2 production in peroxisomes 

of insulin-producing cells [34] and exogenous application of VLCFA to a neuronal cell line 

induces oxidative stress and mitochondrial damage [35]. Prolonged hyperactivity of 

peroxisomes has also been linked to the overproduction of H2O2 in the liver of acyl-CoA 

oxidase-deficient mice [36]. Surprisingly, in patients suffering from acatalasemia, an 

inherited peroxisomal disorder caused by the loss of functional catalase, no neurological 

involvement or brain abnormalities have been described, although this enzyme plays such a 

prominent role in oxygen metabolism [37,38].

Moreover, peroxisomes are involved in the biosynthesis of plasmalogens, which have been 

suggested as scavenger molecules for H2O2 and ROS [39]. However, this effect is partially 

disputed, because plasmalogen-deficient mice do not show signs of increased oxidative 

stress [40]. This issue has been extensively covered in previous reviews [41,42]. 

Furthermore, the absence of one or more peroxisomal functions can indirectly increase the 

level of intracellular ROS, because under such conditions, the accumulation of particular 

compounds such as VLCFAs could be linked to disturbances in mitochondrial integrity, 

which secondarily increases the production rate of ROS [43,44].

5 Brain dysfunctions in inherited peroxisomal disorders

5.1 Brain pathology under conditions of generalized peroxisome deficiency in man and 
mice

This section focuses on the brain pathology in disorders of peroxisome biogenesis or 

assembly, collectively known as peroxisome biogenesis disorders (PBD). In these disorders, 

peroxisomes are not formed normally, typically leading to deficiency of the entire spectrum 

of peroxisomal functions. Thus, the observed pathology cannot be attributed to individual 

peroxisomal metabolic pathways but rather reflects the importance of the entire organelle for 

brain development and maintenance. In addition, genetically engineered mouse models with 

tissue- or cell type-specific inactivation of peroxisome biogenesis demonstrate the 

importance of peroxisomes for the different brain cell types, as well as the significance of 

peroxisomal functions in peripheral tissues for proper brain development.
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5.1.1 Brain pathology in human patients with PBD—The PBD are divided into 

two types, i) Zellweger spectrum disorders and ii) rhizomelic chondrodysplasia punctata 

(RCDP) type 1. In our current understanding, the clinical syndromes constituting the 

Zellweger spectrum (MIM #601539)2 are the Zellweger syndrome, neonatal 

adrenoleukodystrophy, and infantile Refsum disease, which describe a clinical spectrum of 

decreasing severity [45]. These were originally described as independent disorders, long 

before the biochemical and molecular bases of these disorders were understood [45]. In 

1992, the first gene defect associated with a PBD was identified [46]. By now, mutations in 

13 different peroxin (PEX) genes (PEX1, PEX2, PEX3, PEX5, PEX6, PEX10, PEX11b, 
PEX12, PEX13, PEX14, PEX16, PEX19, PEX26) have been described in patients of the 

Zellweger spectrum [45]. Patients with mutations in PEX7 are grouped into PBD because 

more than one peroxisomal pathway is affected, although the peroxisomal structure remains 

intact. However, these patients have different clinical symptoms than Zellweger spectrum 

patients and are clinically not distinguishable from patients suffering from isolated disorders 

of ether phospholipid synthesis; hence, the associated brain pathology will be discussed in 

Section 5.5.

The identification of PBD complementation groups and their genetic basis has revealed that 

there are no clear boundaries between Zellweger syndrome, neonatal adrenoleukodystrophy 

and infantile Refsum disease, as they can all be caused by mutations in the same gene. 

However, a genotype-phenotype correlation has been described for PEX gene mutations 

[45]. The nature and location of the mutations determine whether the mutated peroxin can 

still contribute to the import machinery and allows residual metabolic functions of the 

peroxisomes in these patients. In recent years, increasing numbers of patients have been 

described with a later onset of the disease [47]. In accordance, also the neurological 

manifestations vary from primarily neurodevelopmental alterations in the most severe 

phenotypes to mainly degenerative abnormalities in the milder cases [48].

In patients with Zellweger syndrome, the most prominent feature of the brain pathology is a 

malformation of the cortex, which has been attributed to neuronal migration defects. The 

abnormalities in the cytoarchitecture of the cerebral cortex are usually bilateral and 

approximately symmetrical [49,50]. In these patients, often a local thickening of small 

convolutions (gyri) on the surface of the brain occurs around the central sulcus 

(centrosylvian pachygyria), causing a reduced depth of the fissions/involutions. Moreover, in 

these areas, an excess of local convolutions on the surface of the brain is observed 

(polymicrogyria). The cytoarchitectonic pattern of the cerebral cortex is disturbed in the 

microgyric and pachygyric areas (Fig. 2A). These abnormalities were characterized in terms 

of the relative positions of specific neuronal subsets and the patterns of neuronal 

arrangements into radial groups (Fig. 2A) [50]. In the polymicrogyric cortex, typically a 

fusion of the molecular layers is associated with a modified distribution of medium to large 

pyramidal cells originating from the deep cortex. This causes a decrease in the numbers of 

neurons in the outer layers (layer II and layer III) of the cortex; instead, these neurons are 

located in the deep cortex and within heterotopias of subcortical white matter (Fig. 2A) [6]. 

2When MIM numbers are indicated within this manuscript, we always refer to phenotype MIM numbers (online source: 
www.omim.org) characterizing the respective disorder.
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Less severe cerebral migratory abnormalities were reported in neonatal 

adrenoleukodystrophy [51]. To date, no migration defects have been described in infantile 

Refsum disease, the least severe form of the Zellweger spectrum. Another striking 

morphological aberration linked to neuronal migration defects is the heterotopic localization 

of Purkinje cells in the cerebellar white matter (Fig. 2B) [6,49,50].

In addition to these migration defects, within their first year of life, all patients with 

Zellweger syndrome display white matter abnormalities in the CNS, which have been 

observed by histological analyses and brain magnetic resonance tomography (MRT) studies 

[52–55]. Because myelination is still ongoing during this early period, it cannot be clearly 

established, whether the lack of peroxisomal functions causes abnormal myelination, early 

demyelination or both processes simultaneously [56]. Neuropathological examination of 

brains obtained from three cases of neonatal adrenoleukodystrophy revealed a severe 

degeneration of the white matter involving both hemispheres of cerebrum and cerebellum, 

while the axons were preserved [57]. In the cerebellum of one case, overabundance of 

reactive astrocytes in the white matter was associated with perivascular cuffs of mononuclear 

cells [57]. Heterotopic Purkinje cells were found to be aggregated in irregular clumps in the 

subcortical areas of the cerebellar cortex in two of the three cases [57]. In some cases, mild 

initial symptoms are later followed by severe CNS demyelination and death of the patient 

[53,55,56]. In the mildest forms of the Zellweger spectrum, patients can survive into 

adulthood [47,58,59]. In a study of 19 patients (16–35 years old) with such a mild Zellweger 

spectrum disorder, magnetic resonance imaging (MRI) revealed white matter abnormalities 

in nine of the patients. These abnormalities were restricted to the cerebellar hilus of the 

dentate nucleus and/or the peridentate region [47]. During infancy, four of these patients 

suffered from hypotonia, five from failure to thrive, 12 had a visual handicap due to retinal 

degeneration and eight presented with hearing impairment. During childhood, all 19 patients 

had a moderate to severe developmental delay as well as a reduction/loss of visual and 

hearing abilities and seven did not achieve structured speech. The predominant neurological 

symptom in the adult patients was a gait disorder, caused by different combinations of 

cerebellar syndrome, pyramidal tract dysfunction and peripheral neuropathy. Interestingly, at 

the time of diagnosis, 17 of these patients had a blood metabolite profile typical of a 

peroxisomal disorder; but at later time points the concentration of many originally 

accumulating metabolites had declined and, in some patients, even a complete normalization 

was observed. In particular, the levels of intermediates of bile acid biosynthesis (DHCA, 

THCA) and of pipecolic acid declined during the observed time period in many patients, 

whereas VLCFA and plasmalogen levels normalized only in some. This implies that, based 

on plasma metabolites linked to peroxisomal function, some of these patients would have 

escaped the diagnosis of a Zellweger spectrum disorder. Other studies reported normal 

VLCFA levels in plasma of late-onset patients with a PEX2 mutation [59] or normal 

plasmalogen levels in plasma of patients with PEX16 mutations [58]. Accordingly, for the 

Zellweger spectrum, separate MIM numbers have been assigned according to the severity of 

phenotypes (Table 1). These findings indicate that the level of peroxisome-related 

metabolites in plasma may not necessarily reflect the level of accumulation in tissues. This 

is of great relevance for the interpretation of alterations of plasmalogen levels in plasma of 

patients with more common neurological diseases (see Section 6.4.).
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5.1.2 Brain pathology in mouse models of the Zellweger spectrum disorders
—Currently, several mouse models of the Zellweger spectrum disorders are available, which 

are represented by mice with targeted deletions in the genes encoding the peroxins PEX2, 

PEX5 or PEX13 [60–62]. Recently also a knock-in mouse model carrying a missense 

mutation in the Pex1 gene (Pex1-G844D) was reported, which recapitulates the most 

frequent mutation in the human Zellweger spectrum disorders with a milder pathology [63]. 

As Pex7-deficient mice represent a model for RCDP type 1, but not for Zellweger spectrum 

disorders, we discuss this model in the context of ether phospholipid deficiency (Section 

5.5.). Moreover, mouse models with Pex11α [64] and Pex11β [65] deficiencies have been 

generated.

The phenotype of mice with Pex2, Pex5 and Pex13 deficiency resembles the severe form of 

human Zellweger syndrome. These mice are born alive, but are growth-retarded and severely 

hypotonic. Moreover, they do not feed and die within 67#x2013;24 h after birth [60–62]. 

When the Pex2 mutation was maintained on a mixed genetic background (Swiss Webster × 

129Svev), about 25% of the Pex2−/− pups survived for one to two weeks [66]. Furthermore, 

postnatal survival could be improved by oral bile acid application (9% alive after 30 days) 

[67]. In all mice with a global peroxisome deficiency (Pex2, Pex5 and Pex13 deficiency), a 

reduced thickness of the neocortical plate was observed, which reflects abnormal lamination 

that has been linked to impaired neuronal migration and increased cellular density in the 

underlying white matter [60–62]. Also cerebellar malformation was explored in all three 

models of PBD revealing abnormalities in cerebellar foliation. However, because the 

cerebellum develops largely postnatally in mice, a detailed characterization of cerebellar 

development was only possible in the longer surviving (Swiss Webster × 129Svev) Pex2−/− 

mice [68,69]. These studies revealed multiple anomalies affecting the interaction of climbing 

fibers, granule cells and Purkinje cells and, thus, the cerebellar circuitry. The number of 

granule cells was reduced due to defects in their migration from the external to the internal 

granule cell layer and increased apoptotic cell death. The Purkinje cells displayed stunted 

dendrite trees with abnormal branches and spine morphology. The disturbed dendritic spine 

compartmentalization reflected a delayed arborization and translocation of the climbing 

fibers from the inferior olivary nucleus (the major excitatory input to the Purkinje cells from 

the caudal medulla). In addition, progressive axonal swellings along Purkinje cell axons 

indicated ongoing dystrophic, neurodegenerative processes.

With regard to the Pex11-related mouse models, it should be noted that in contrast to the 

other peroxins, the PEX11 family members act as membrane elongation factors during 

peroxisome proliferation [70]. Whereas PEX11α appears not to be essential for the 

formation of functional peroxisomes, the absence of PEX11β leads to several pathological 

features shared by the mouse models of Zellweger syndrome, including neuronal migration 

defects, enhanced neuronal apoptosis, developmental delay, hypotonia and neonatal lethality 

[65]. As the import of peroxisomal proteins is not impaired in this mouse model, no 

accumulation of VLCFA and only a slight decrease in plasmalogen levels were detected in 

the brain [65]. The mechanism, by which Pex11β deficiency causes Zellweger-like 

symptoms, in spite of the mild metabolic defects, remains to be resolved.
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5.1.3 The importance of peroxisomal Junctions for individual cell types of 
the brain—The power of mouse genetics provides an opportunity to discriminate the 

contribution of peroxisomal functions from different cell types to brain development and 

function. The conditional inactivation of selected genes in specific cell types or tissues has 

been used to generate mice with a deficiency in all peroxisomal functions restricted to 

subsets of brain cells. By crossing mice with a “floxed” Pex5 gene (Pex5 flanked by loxP 
recombination sites), which are susceptible to the removal of the DNA region between the 

loxP sites by the cyclization recombinase (Cre), and mice expressing Cre in a subset of cells, 

mouse lines have been generated, in which peroxisomes are selectively absent from different 

compartments of the CNS according to the specificity of the Cre-driving promoters. When 

using mice, which express Cre under the nestin promoter (Nestin-Cre driver mice), 

inactivation of Pex5 occurs in all neural precursor cells at embryonic stages, but not in the 

microglia lineage. This results in the ablation of peroxisomal functions in the vast majority 

of neurons, astrocytes and oligodendrocytes of mice already at prenatal stages [71]. These 

Nestin-Pex5−/− mice appear normal at birth, but develop substantial growth retardation after 

the first postnatal week. Progressive motor impairments ensue, resulting in lethargy and 

death before six months of age. In these mice, peroxisome-dependent metabolite levels were 

deranged (increased VLCFA, decreased plasmalogen levels) in the brain at late embryonic 

stages, but were normal in the liver. In the developing brain, a defect in neuronal layer 

formation in the cerebral cortex was observed indicative of neuronal migration defects and, 

postnatally, delayed cerebellar development including immature foliation and dendritic 

arborization of Purkinje cells [72]. Marked hypomyelination was detected already during the 

second to third postnatal week (probably due to insufficient formation of myelin) and was 

found in all brain regions (later probably also due to demyelination), together with axonal 

loss, reactive astrocytes as well as activated microglia and macrophages [73]. Also brain-

specific (Nestin-Cre-dependent) inactivation of Pex13 in mice resulted in a similar 

phenotype with impaired cerebellar development, neuronal cell death, astrogliosis and 

microgliosis as well as signs of mitochondria-mediated oxidative stress [74]. Similarly, 

selective knockout (KO) of Pex5 in oligodendrocytes by using Cnp-Cre drivers had severe 

consequences for the adult brain [75]. Interestingly, no developmental defects were observed 

at birth or after two months although CNPase is expressed in progenitors before myelination 

as well as in adult oligodendrocytes. However, young adult mice gradually developed 

impaired motor function and premature death due to axonal degeneration, progressive 

subcortical demyelination and neuroinflammation, starting at two to six months of age. In 

contrast, peroxisome ablation in projection neurons of neocortex and hippocampus, obtained 

with Nex-Cre driver mice [76], or in astrocytes obtained with GFAP-Cre drivers [76], had no 

obvious deleterious effect on brain development or function. This was surprising, because 

Pex5 deletion in astrocytes resulted in accumulation of VLCFA as well as reduced 

plasmalogen levels in the brain. Taken together, these studies indicate that in the murine 

brain, peroxisomes are most crucial for oligodendrocytes and the myelin compartment.

However, also the selective loss of peroxisomal functions in hepatocytes of the liver, 

obtained by α-fetoprotein-Cre driver mice [72], results in brain abnormalities including 

defects in cerebral neuronal migration and cerebellar development (hypotrophy, increased 

apoptosis, immature foliation, delayed granule cell migration and stunted Purkinje cells). 
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This finding is further corroborated by observations in Pex5-deficient mice (ubiquitous KO), 

in which liver-specific ectopic expression of Pex5 [77] resulted in partial rescue of the brain 

defects. These studies indicate a role of brain-extrinsic effects (effects originating from 

outside the brain) in CNS development in peroxisomal disorders. The mechanisms are not 

resolved but Faust and collaborators showed that bile acid treatment can partially restore the 

cerebellar anomalies in Pex2-deficient mice [69]. This treatment partially compensates for 

the lack of mature C24 bile acids in this mouse model and, thus, restores intestinal 

absorption of dietary lipids. However, it is unclear, whether the beneficial effect of this 

treatment on postnatal CNS/cerebellum development is due to an improved metabolic state 

of the pups because of increased lipid absorption, or prevention of steatorrhoea and 

cholestasis, or whether the addition of mature bile acids reduces the synthesis of bile acid 

precursors, which might impair CNS development. However, the absence of developmental 

problems in the CNS of racemase-deficient mice, in which bile acid precursors accumulate 

as well [78], renders an exclusive effect of bile acid precursors quite unlikely.

5.2 Brain pathology in peroxisomal β-oxidation disorders in humans and mice

As peroxisomes fulfill a variety of metabolic functions, which are concomitantly ablated 

upon inactivation of peroxisome biogenesis (in human patients suffering from Zellweger 

syndrome or in Pex-deficient mice), the attribution of particular aspects of brain pathology 

cannot be traced back to a single pathway such as β-oxidation. The investigation of single 

enzyme and transporter deficiencies and mouse models lacking individual peroxisomal 

enzymes or transporter proteins allows a comparison of the physiological consequences of a 

selective loss of individual metabolic pathways for brain function. However, even these 

conditions have limitations, because metabolic pathways such as the peroxisomal β-

oxidation handle many different substrates, which renders a direct correlation between the 

loss of an enzymatic activity and a class of substrates impossible. Peroxisomal β-oxidation 

can degrade VLCFA, branched-chain fatty acids, bile acid intermediates, long-chain 

dicarboxylic acids and polyunsaturated fatty acids like tetracosahexaenoic acid (C24:6), 

which undergoes one cycle of β-oxidation in peroxisomes to produce DHA (C22:6). 

Moreover, fatty acid-like compounds with signaling activity such as prostaglandins and 

leukotrienes and some classes of xenobiotics are degraded in peroxisomes [3]. Notably, 

some activities in the β-oxidation pathway can be executed by more than one isoenzyme 

(Fig. 1). Human peroxisomes harbor two acyl-CoA oxidases, two bifunctional enzymes and 

two thiolases, whereas murine peroxisomes are equipped with three acyl-CoA oxidases, two 

bifunctional enzymes and three thiolases. As most of the human isoenzymes of the 

peroxisomal β-oxidation have different substrate specificities, some enzyme deficiencies 

lead to a rather selective accumulation of specific peroxisomal β-oxidation substrates, as will 

be discussed in the corresponding sections below.

5.2.1 Peroxisomal acyl-CoA oxidase deficiency—Patients with an inactivating 

mutation in ACOX1 lack peroxisomal acyl-CoA oxidase activity, which is responsible for 

the degradation of saturated VLCFA, polyunsaturated fatty acids and dicarboxylic acids, but 

not branched-chain fatty acids or bile acid intermediates (Fig. 1). Still, in many respects, the 

clinical presentation of acyl-CoA oxidase deficiency (formerly pseudoneonatal 

adrenoleukodystrophy) resembles Zellweger spectrum disorders, notably neonatal 
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adrenoleukodystrophy [79]. Most patients show neonatal onset of hypotonia, seizures, 

failure to thrive, hepatomegaly, psychomotor retardation, sensory deafness, absent reflexes, 

and visual loss with retinopathy and extinguished electroretinograms [80]. Patients may 

show some early delay in motor development with a typical regression by 273x2013;3 years 

of age. Brain imaging (MRT and/or CT) revealed cerebral and/or cerebellar white matter 

abnormalities in all investigated patients in a study involving 12 subjects, of whom three 

showed neocortical dysplasia [79]. As for the Zellweger spectrum disorders, recently several 

cases of acyl-CoA oxidase deficiency with less severe clinical phenotypes were reported, 

which progressively developed neurological symptoms in later childhood [81].

To recapitulate the human disease, a mouse model with generalized Acox1 deficiency was 

generated [82], in which VLCFA accumulate. In Acox1−/− mice, marked peroxisome 

proliferation in the liver was observed and accompanied by an increase in H2O2 

concentration, leading to the development of hepatic adenomas and carcinomas at 15 months 

of age [36]. However, no brain pathology has been described for these mice. To date, neither 

patients with mutations in ACOX2 nor Acox2 or Acox3-deficient mice have been described.

5.2.2 D-Bifunctional protein deficiency—In humans, two peroxisomal bifunctional 

proteins exist: D-bifunctional protein (DBP; alternatively termed multifunctional protein 2; 

encoded by HSD17B4) and L-bifunctional protein (LBP; alternatively termed 

multifunctional protein 1; encoded by EHHADH), both having a catalytic 2-enoyl-CoA 

hydratase activity and a (3R)-hydroxyacyl-CoA dehydrogenase activity (Fig. 1). All known 

human patients with bifunctional protein deficiency harbor mutations in the HSDI7B4 gene 

[83], whereas no patients with a mutation in the EHHADH gene, encoding LBP, have yet 

been identified. The existence of two enzymatic domains allows the classification of 

mutations based on the location and the nature of the mutation. Mutations affecting both 

domains or destabilizing the protein are classified as DBP deficiency type I, those affecting 

only the hydratase domain as DBP deficiency type II, and those solely affecting the 

dehydrogenase unit as DBP deficiency type III. However, as both enzymatic steps are 

essential for peroxisomal β-oxidation, the complete loss of both activities as well as of the 

individual enzymatic activities causes neurodevelopmental abnormalities and death within 

the first two years of life [83]. The severe form of DBP deficiency mimics Zellweger 

syndrome in all aspects including cranio-facial dysmorphism, neuronal migration defects 

(similar to that depicted in Fig. 2A) and premature death [84]. Also, demyelination of the 

central white matter is present [83].

Similar to the Zellweger spectrum disorders, recently also patients with unexpected 

phenotypes of DBP deficiency were identified using next generation sequencing [85]. These 

patients presented with ovarian dysgenesis, hearing loss, and ataxia comparable to Perrault 

Syndrome (MIM #233400) demonstrating clinical overlap of DBP deficiency and the 

genetically heterogeneous Perrault Syndrome [85]. One of the documented patients, who 

was 27 years old at the last examination [85], had normal levels of VLCFA and phytanic 

acid [86]. Normal serum VLCFA levels have been reported also in other patients with later 

clinical onset of DBP deficiency. The correct diagnosis in these cases was initiated by 

neuroimaging or whole exome sequencing [87,88]. This further demonstrates that 
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peroxisome-related neurological deficits and the level of metabolites linked to peroxisomal 

functions do not necessarily correlate when measured in the blood of patients.

A mouse model of DBP deficiency (here termed Mfp2 deficiency) has been described, in 

which VLCFA accumulate specifically in brain, and the degradation of branched-chain fatty 

acids as well as the maturation of bile acid precursors were disturbed [89]. Mfp2-deficient 

mice appear quite normal at birth but are severely growth-retarded during the lactation 

period. Their life span is markedly reduced with a part of the population dying early (at 

around two weeks of age) [89] while the rest lives for up to six months [90]. Notably, this is 

much longer than the survival of Pex5-deficient mice (6–24 h) [60]. Moreover, Mfp2-

deficient mice do not show signs of neurodevelopmental abnormalities such as migration 

defects at early time points [90] [91]; but later on, these mice develop cerebellar aberrations 

and axonal loss, which is reflected by motor impairment and lethargy [92]. Thus, in contrast 

to the human disorders, where Zellweger syndrome and DBP deficiency are clinically very 

similar, their respective mouse models are remarkably different. Interestingly, the brain 

pathology of Mfp2-deficient mice resembles the conditional Nestin-Pex5 mouse model (see 

5.1.3), in which functional peroxisomes are absent from all neural cell types of the CNS 

[71].

5.2.3 2-Methylacyl-CoA racemase deficiency—The enzyme 2-methylacyl-CoA 

racemase (AMACR) inverts the steric configuration at the position next to the thioester, 

resulting in the conversion of (2R)-methyl branched-chain fatty acids into (2S)-methyl 

branched-chain fatty acids. Only branched-chain acyl-CoAs such as pristanic acid or bile 

acid intermediates with the 2-methyl branch in the S configuration are substrates for 

peroxisomal β-oxidation. Accordingly, pristanic acid and the bile acid intermediates DHCA 

and THCA, but not VLCFA, accumulate in AMACR-deficient patients (Fig. 1) [93]. The 

phenotype of patients with AMACR deficiency (MIM #614307) often involves adult-onset 

sensory neuropathy [94] and late-onset cerebellar ataxia [95]. Occasionally, other symptoms 

and types of pathology have been described such as white matter anomalies [96], relapsing 

encephalopathy [97] and a more complex adult phenotype including peripheral neuropathy, 

epilepsy, bilateral thalamic lesions, cataract, pigmentary retinopathy and tremor [98]. 

Finally, some patients had cholestatic liver disease in the first neonatal weeks [99].

The generation of a racemase-deficient mouse model has been described [78], but so far only 

the pathological features of peripheral lipid metabolism have been investigated [100]. 

However, upon phytol supplementation of the diet, the mice developed severe pathology in 

the brain after 40 days, including demyelination and activation of astroglial cells [101].

5.2.4 SCPx deficiency and gene redundancy of peroxisomal thiolase activity 
and the consequences for brain function—In man, two enzymes with thiolase 

activity, acetyl-CoA acyltransferase 1 (ACAA1) and sterol carrier protein X (SCPx), are 

present in peroxisomes (Fig. 1). However, only for SCPx, the thiolase required for the 

breakdown of branched-chain fatty acids, a single patient with a deficiency of the enzyme 

(MIM #613724) has been described so far [102]. Among other clinical features, this adult 

patient presented with dystonic head tremor and spasmodic torticollis; and cranial MRI 
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showed bilateral hyperintense signals in the thalamus, butterfly-like lesions in the pons and 

lesions in the occipital region [102].

In the mouse, three enzymes with thiolase activity exist: two closely related proteins (96% 

amino acid sequence identity) encoded by the differentially regulated genes Acaa1a and 

Acaa1b, and SCPx. In a classical gene KO model, Acaa1b deficiency showed a very mild 

phenotype and hardly any accumulation of VLCFA, indicating a compensatory effect from 

Acaa1a and/or Scpx in mice [103]. In Scpx-deficient mice, methyl-branched-chain fatty acid 

catabolism is impaired resulting in a mild phenotype under standard conditions [104]. 

However, high phytol diet treatment led to a much more severe phenotype, in which the 

mice rapidly lost body weight and acquired an unhealthy appearance and inactivity, reduced 

muscle tone, ataxia and trembling [104].

5.3 Brain pathology in X-linked adrenoleukodystrophy

Three peroxisomal ATP-binding cassette (ABC) transporters, ABCD1, ABCD2 and 

ABCD3, mediate the translocation of activated fatty acids and probably other compounds 

across the peroxisomal membrane, in order to get metabolized within the peroxisomes (Fig. 

1). The abundance of these transporter proteins varies between cell types and tissues 

[28,105–107]. Inherited defects in the ABCD1 (formerly ALD) gene are the genetic basis 

for X-linked adrenoleukodystrophy (X-ALD; MIM #300100) [108]. X-ALD is the most 

common peroxisomal disorder with an estimated combined male and female incidence 

between 1:16,800 [109] and 1:30,000, with similar incidence rates across the world [110]. 

Human ABCD1 transports CoA-activated saturated straight-chain VLCFA across the 

peroxisomal membrane for further degradation by the peroxisomal β-oxidation machinery 

(Fig. 1) [111]. Upon ectopic overexpression in yeast, ABCD1 can mediate the transport of a 

broader spectrum of substrates [112], and overlapping substrate specificities have been 

demonstrated for the three peroxisomal ABC transporters [113–115]. Because ABCD2 and 

ABCD3 as well as the peroxisomal β-oxidation enzymes are intact in X-ALD, only 

saturated straight-chain VLCFA accumulate, but to a variable extent in different cell types 

and tissues. This selective substrate transport deficiency as well as the overlapping functions 

of the peroxisomal ABCD transporters explains why, in contrast to DBP deficiency and acyl-

CoA oxidase deficiency, some X-ALD patients can remain pre-symptomatic through more 

than five decades, even in the complete absence of ABCD1 transporter activity. In addition 

to the impaired degradation of VLCFA, probably also increased fatty acyl chain elongation 

of long- to very long-chain acyl-CoA esters contributes to the accumulation of VLCFA (in 

particular C26:0) in X-ALD. Leading studies of Stephan Kemp's group suggest an important 

role of the rate-limiting enzyme in this process, elongation of very long-chain fatty acids 1 

(ELOVL1), in the homeostasis of VLCFA in X-ALD [116,117]. Among the seven known 

ELOVL family members, which have different chain length selectivity, ELOVL1 favors 

saturated and monounsaturated CoA-activated fatty acids with a chain length of 20 to 24 

carbons [118,119]. Indeed, upon knockdown of ELOVL1 mRNA in X-ALD fibroblasts, the 

storage of C26:0 decreased significantly [116].

Although X-ALD does not involve any developmental defect or delay, it is characterized by 

remarkable clinical heterogeneity. The main phenotypes are adrenomyeloneuropathy (AMN) 
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and cerebral ALD (CALD), the devastating inflammatory and demyelinating form of X-

ALD [120]. Both phenotypes can occur within the same kindred [121] and no general 

genotype–phenotype correlation exists for the severity in X-ALD [122–125]. Adrenal 

insufficiency represents another major pathological aspect in X-ALD, which often represents 

the initial symptom and affects 80% of male patients before adulthood but is rare in 

heterozygous female patients [126]. Virtually all male patients with mutations in the ABCD1 
gene eventually develop AMN, a slowly progressive myelopathy with typical onset in the 

third or fourth decade of life. The earliest symptoms are usually urge incontinence and 

sensory disturbances in the legs followed by spastic gait. The major neuropathological 

feature in AMN is a distal dying-back axonopathy, which involves the dorsal columns and 

corticospinal tracts in the lower thoracic and lumbar regions [127], as well as the more 

proximal segments of the corticospinal tracts in the internal capsule [128]. The peripheral 

nerves are also involved, with primary axonal degeneration in most AMN patients [129]. 

Evidence of myelopathy or peripheral neuropathy was recently observed in more than 80% 

of women carrying heterozygous ABCD1 mutations and older than 60 years. Thus, female 

patients develop symptoms similar to those in male AMN patients but at later age [130,131].

In the human brain, based on immunohistochemical detection, ABCD1 is predominantly 

expressed in oligodendrocytes, microglia, astrocytes and endothelial cells but not in most 

neurons, with the exception of a few regions: hypothalamus, basal nucleus of Meynert, 

periaqueductal gray matter and the locus coeruleus [16,30]. Furthermore, ABCD1 is also 

highly expressed in dorsal root ganglia, where the neuronal cell bodies of the afferent 

sensory axons are located, which degenerate in AMN [30]. Thus, pathophysiological 

involvement is suggested for neurons as well as for oligodendrocytes in the case of 

axonopathy. By electron microscopy, mitochondrial abnormalities have been observed in 

neurons of AMN patients [132]. The mitochondrial abnormalities have been confirmed and 

are believed to be a major pathogenic factor contributing to neurodegeneration in AMN (Fig 

3A). Cytosolic deposits of crystalline lamellar lipids were observed in brain macrophages, 

Schwann cells of peripheral nerves, adrenocortical cells, and Leydig cells of the testes. 

Cholesterol esters of VLCFA constitute a major component of these crystalline structures. 

Furthermore, it has been reported that VLCFA can disturb calcium homeostasis and cause 

mitochondrial dysfunction in neuronal cell cultures as well as toxicity to oligodendrocytes 

[133].

About 60% of male X-ALD patients develop CALD, the fatal cerebral demyelinating form 

of the disease. This can occur either in childhood, most commonly between 5 and 10 years 

of age, before onset of AMN (about 35%) or later in adolescence or adulthood, often on the 

background of AMN (35%). In children, the first symptoms are emotional lability, 

hyperactive behavior, school difficulties, impaired auditory discrimination and difficulties in 

vision [134]. These early clinical symptoms are not specific and often the correct diagnosis 

of X-ALD is delayed. This phase is followed by a rapidly progressing neurological decline, 

typically leading to a vegetative state or death within two to five years. For a male patient 

born with an ABCD1 mutation, it cannot be predicted whether or when the cerebral form 

will develop. It is currently hypothesized that the cerebral inflammatory phenotype results 

from a “second hit”, superimposed on the axonal pathology [120]. Based on the lack of a 

genotype–phenotype correlation in X-ALD, it is likely that a combination of genetic, 
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epigenetic and environmental factors plays an essential role as trigger for the development of 

CALD. This is also supported by the development of different clinical phenotypes in 

monozygotic twins [135,136] and the observation that moderate head trauma can initiate 

cerebral demyelination in AMN patients [137,138]. In magnetic resonance images of the 

brain of CALD patients, a typical enhancement of the border of the demyelinating lesion is 

visible after gadolinium administration reflecting an increased permeability of the blood 

brain barrier due to a marked inflammatory reaction [139]. In this active region, infiltration 

of macrophages, CD4+ and CD8 + cytotoxic T cells, as well as activated microglia and 

astrocytes can be observed [140]. This severe neuroinflammation probably causes the loss of 

oligodendrocytes, which die by cytolysis rather than by apoptosis [140]. Expression of 

proinflammatory cytokines such as tumor necrosis factor α, interleukin (IL)-1, IL-2, IL-6, 

IL-12 and interferon-γ and chemokines is increased [141–143]. The importance of microglia 

in the disease mechanism is supported by the observation of a zone within the perilesional 

white matter, immediately beyond the actively demyelinating lesion edge, lacking microglia 

[144]. This might be due to the migration toward the active age of the lesion. In the same 

study, clusters of activated and apoptotic microglia were detected within the subcortical 

white matter [144]. Another characteristic of the inflammation in CALD is the resistance to 

anti-inflammatory therapy. Based on our recent observations, we have suggested that this is 

due to the intrinsic metabolic defect of macrophages and microglia in X-ALD; these cells 

cannot degrade VLCFA, which they have taken up by phagocytosing of myelin debris 

(particular rich in VLCFA in X-ALD), and then fail to support normal immunological brain 

function [107, 123]. Based on this intrinsic defect, the continuous metabolic stress in the 

macrophage/microglia populations could also be the reason why only in rare cases a 

spontaneous arrest of brain inflammation occurs. Allogenic hematopoietic stem cell 

transplantation [145,146] and autologous stem cell-based gene therapy [147] can arrest the 

inflammatory demyelinating process with a typical delay of 12–18 months, which has been 

attributed to the slow replacement of microglia with bone marrow-derived phagocytes 

[147,148]. It must be noted that, due to the rapid disease progression, hematopoietic stem 

cell transplantation is only beneficial when performed at an early stage of disease.

Transcriptomic analyses of X-ALD brain tissue have indicated that already in AMN patients, 

a proinflammatory status prevails [149]. Musolino and coworkers recently demonstrated that 

inactivation of ABCD1 induces significant alterations in the brain endothelium via c-MYC 

and may thereby contribute to the increased trafficking of leukocytes across the blood–brain 

barrier [150]. As the cell-autonomous (intrinsic) metabolic defect in the monocyte–

macrophage lineages is also present in AMN patients, together with blood–brain barrier 

abnormalities, it appears reasonable that this fragile system is predisposed for converting to 

the inflammatory form of X-ALD, triggered by a broad spectrum of genetic and 

environmental factors.

In 1997, three independent groups had generated mouse models for X-ALD by targeted 

inactivation of the Abcd1 gene [151–153]. Although the biochemical phenotype of X-ALD 

(i.e., accumulation of saturated VLCFA) was well replicated in all three models, Abcd1-

deficient mice did not experience brain inflammation and demyelination as seen in humans 

with CALD. However, after 18 months of age, these mice start to develop a late-onset, mild 

motor behavior phenotype with resemblance to AMN including sciatic nerve conduction 
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abnormalities and mild signs of axonopathy and myelin instability in the spinal cord [154]. 

Interestingly, Abcd1 deficiency could further enhance microglia activation and axonal 

degeneration in mice with mild myelin abnormalities caused by the loss of the myelin-

associated glycoprotein [155]. It is intriguing that also Abcd1/Abcd2 double-deficient mice 

do not develop brain inflammation or demyelination [156], in spite of the finding that 

Abcd1/Abcd2 double-deficient peritoneal macrophages are metabolically much more 

severely affected than those from single transporter-deficient mice [157]. Also in these mice, 

the neuropathology is restricted mainly to axonopathy in the spinal cord and, with the major 

contribution from Abcd2 deficiency, the dorsal root ganglia resulting in a sensory 

neuropathy [156]. However, in the double mutant mice these abnormalities develop about six 

months earlier than upon sole Abcd1 deficiency.

In addition to exploring the effects of therapeutics aimed at normalizing VLCFA levels in 
vivo, these mouse models have been applied to further characterize the mitochondrial 

damage noticed in X-ALD. The mitochondrial disturbances are probably not simply 

secondary effects due to VLCFA accumulation itself [158] but more complex, involving 

oxidative stress and cell type- and tissue-specific mechanisms that are of particular 

importance for axonal degeneration in the spinal cord [43,159]. Interestingly, lipoxidative 

damage was observed early (at three months of age) in the spinal cord of Abcd1-deficient 

mice, long before the onset of any neuropathological or motoric abnormalities were detected 

[160].

Evidence for the role of oxidative stress in plasma of X-ALD patients comes from an 

increased level of thiobarbituric acid reactive species (TBA-RS) reflecting induction of lipid 

peroxidation, as well as a decrease of plasma total antioxidant reactivity, indicating a 

deficient capacity to rapidly handle an increase of ROS [161]. Additional evidence comes 

from the finding of decreased levels of total and reduced glutathione, which were associated 

with high levels of oxidized glutathione, in lymphocytes of X-ALD (predominantly AMN) 

patients [162]. Also, decreased plasma thiols and a high level of carbonyls were found, 

additionally supporting the idea of oxidative stress – at least in blood cells – in X-ALD 

patients [162]. Encouraging results were obtained from a study applying an antioxidant 

cocktail consisting of vitamin E, N-acetylcystein and lipoic acid to aging Abcd1-deficient 

mice; this dietary treatment was sufficient to prevent the onset of locomotor disability and 

axonal damage [163]. In line with these findings, also oral administration of pioglitazone, an 

agonist of peroxisome proliferator-activated receptor γ (PPARγ) and inducer of 

mitochondrial biogenesis and respiration, was able to prevent mitochondrial damage and 

oxidative stress in Abcd1-deficient mice and could rescue the locomotor disability and 

axonal damage in the Abcd1/Abcd2 double-deficient mouse model [164].

It has previously been suggested that mitochondrial dysfunction and oxidative stress within 

the axons are, at least partially, secondary to dysfunctions in the oligodendroglia/myelin 

compartment resulting in compromised support of axonal integrity [14,165,166]. In this 

context, it is noteworthy that mice with a sole defect in a myelin protein, such as proteolipid 

protein or 2′,3′-cyclic nucleotide phosphodiesterase, display axonal dysfunction without 

demyelination in the spinal cord and brain [167,168]. Most interestingly, mice with 

oligodendroglia-selective peroxisome deficiency (see also Section 5.1.3.) can also be 
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considered as a phenocopy model for the inflammatory form of X-ALD, recapitulating 

widespread axonal degeneration, progressive subcortical demyelination and a 

proinflammatory milieu with B and T cell infiltration of brain lesions [75].

Our current hypothesis envisions the inability to degrade VLCFA combined with the 

increased elongation of VLCFA, in particular in oligodendrocytes and neurons, as the 

primary cause of the late-onset, slowly progressing, chronic myeloneuropathy in AMN (Fig. 

3A). In heterozygous X-ALD females, a similar disorder develops, but with a later onset and 

slower progression; most likely random X-inactivation of the intact ABCD1 copy leads to 

chimerism with a variable extent of ABCD1-deficient cells.

5.4 Brain pathology in α-oxidation deficiency in man and mice

With respect to the peroxisomal fatty acid catabolism, 2-methyl branched-chain fatty acids 

can directly enter the peroxisomal β-oxidation pathway, whereas 3-methyl branched-chain 

fatty acids cannot. Instead, 3-methyl branched-chain fatty acids can either be degraded by ω-

oxidation (for review see [169]) or by peroxisomal α-oxidation (see Fig. 1). Among the 

enzymes involved in the α-oxidation pathway, only phytanoyl-CoA hydroxylase (PHYH) 

has been associated with a human disorder. Mutations in the PHYH gene have been 

established as the genetic cause for classical Refsum disease (MIM #266500) [170, 171]. 

The 3-methyl branched-chain fatty acid phytanic acid, solely taken up from dietary sources, 

accumulates in patients with Refsum disease. Because the disease is caused by the 

cumulative load of phytanic acid in tissues, the age of onset varies from early childhood to 

the fourth decade of life [56]. Refsum disease is characterized by progressive retinitis 

pigmentosa culminating in blindness, peripheral neuropathy and cerebellar ataxia [172]. 

When phytanic acid levels in the plasma remain low due to dietary restriction or repeated 

plasmapheresis the progression of the symptoms can be arrested [173,174]. Because 

phytanoyl-CoA hydroxylase is imported into peroxisomes via its PTS2 motif in a PEX7/

PEX5L dependent manner, the α-oxidation pathway is also impaired in RCDP type 1 (PEX7 
deficiency, see Section 5.5) and in RCDP type 5 (deficiency in PEX5L).

A mouse model for Refsum disease has been generated by targeted disruption of the Phyh 
gene [175]. Because standard mouse chow is very low in branched-chain fatty acids, Phyh-

deficient mice have an unremarkable phenotype. However, dietary supplementation with 

0.25% phytol (the precursor of phytanic acid) for three weeks or 0.1% phytol for six weeks 

caused ataxia, reflecting Purkinje cell loss and astrogliosis in the cerebellum, and peripheral 

neuropathy, as revealed by nerve conduction velocity measurements [175].

5.5 Nervous system pathology in ether phospholipid deficiency in man and mice

So far, the biological functions of ether phospholipids (also simply termed ether lipids), 

especially in the CNS, have not been fully unraveled. However, many clues have been 

derived from the pathology of ether phospholipid-deficient mice and men. In humans, the 

lack of these lipids causes the lethal disease RCDP, an autosomal recessively inherited 

disorder with an estimated incidence of about 1:100,000. On a genetic basis, several 

different types are distinguished; RCDP type 1 (MIM #215100) is evoked by mutations in 

the gene encoding PEX7 [176–178], the cytosolic receptor for peroxisomal import of PTS2-
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containing proteins, whereas RCDP type 2 (MIM #222765) and type 3 (MIM #600121) are 

caused by mutations in the genes of the first two enzymes for biosynthesis of ether 

phospholipids, dihydroxyacetone phosphate acyltransferase (DHAPAT, DAPAT; encoded by 

the GNPAT gene) and alkyl-dihydroxyacetone phosphate synthase (ADHAPS; encoded by 

the AGPS gene), respectively [179,180]. Due to the fact that not only ether lipid biosynthesis 

but also peroxisomal α-oxidation is impaired in RCDP type 1, it is classified as a PBD 

rather than a pure ether lipid biosynthesis defect (see also Section 5.1). However, as the 

different RCDP types are clinically indistinguishable and the clinical manifestations of 

Refsum disease (see Section 5.4) are considerably less severe than that of RCDP type 1, we 

will cover RCDP type 1 in the present section, which focuses exclusively on ether 

phospholipids. The contribution of α-oxidation deficiency to the clinical phenotype may, 

however, be more prominent in RCDP type 1 patients with a milder disease course (see 

below) [181,182]. In addition, it can be speculated that some PEX7 mutations affect proteins 

with certain PTS2 variants more strongly than others, thereby shifting the impact of the 

affected pathways on pathology. Recently, two additional subtypes of RCDP were identified 

based on the strong reduction of plasmalogen levels in the patients and the similarity of their 

symptoms with “classical” RCDP. First, the disorder of three patients with a deficiency in 

FAR1, the gene coding for fatty acyl-CoA reductase 1, which generates the fatty alcohols 

necessary to form the ether bond of the 1-alkyl chain in ether phospholipid biosynthesis 

[183], was categorized as RCDP type 4 [80]. Second, the disease in patients with mutations 

specifically affecting the long isoform of PEX5, PEX5L, which is required for efficient 

transport of cargo-loaded PEX7 to peroxisomes [184], was designated RCDP type 5 [185].

The pathology in all subtypes of RCDP has been more or less exclusively assigned to the 

lack of plasmalogens, although also other ether phospholipids, like alkylphospholipids 

(lacking the vinyl ether bond characteristic for plasmalogens) or platelet-activating factor, 

are depleted in all types of RCDP and, in case of RCDP type 1, elevated plasma levels of 

phytanic acid have been detected [186]. Irrespective of the affected gene, all RCDP patients 

share common symptoms. The most typical are the eponymous shortening of the proximal 

long bones (rhizomelia) and epiphyseal stippling (chondrodysplasia punctata) as well as 

congenital cataracts, joint contractures and growth and developmental retardation [187]. The 

severity of the disease varies remarkably, depending strongly on the residual activity of the 

affected enzyme and, thus, the level of plasmalogens [188–191]. The most severe form of 

the disease leads to lethality within the first years of life, often due to respiratory failure. In 

contrast, patients with a less severe disease course present with only some of the 

characteristic symptoms and can survive into young adulthood [192–194]. In human ether 

phospholipid deficiency, multiple pathological features affect brain development and 

function. Mental disability and delayed motor development are hallmarks of RCDP. 

However, the extent to which the brain is affected varies remarkably between patients and 

many of the symptoms are restricted to the severer forms of the disease. Frequent delay in 

brain development is further reflected by the finding of microcephaly in many RCDP cases. 

Also epileptic seizures are very common but non-specific; seizure type and frequency vary 

considerably and even affected children with multiple seizure types have been reported 

[191,192]. The age of onset of seizure activity is reportedly higher in milder cases of RCDP 

[191].
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MRI examination in children with RCDP has revealed varying pathologic features, although 

some cases, usually with a milder phenotype, with unremarkable MRI results are also found 

[195]. Consistently, most reports describe enlargement of ventricles and the subarachnoid 

space, abnormalities in white matter signal intensity and delayed supratentorial white matter 

myelination with frequent involvement of the parieto-occipital area [195–200]. In line with 

myelination defects also in the PNS, peripheral neuropathy has been reported in a clinical 

subset of RCDP patients [201]. The severe form of the disease is usually accompanied by 

progressive cerebellar atrophy [195], which is caused by a pronounced loss of Purkinje cells 

and, to a lesser extent, other cell types in the cerebellum [202]. Thus, in addition to 

peroxisomal β-oxidation, also ether lipid biosynthesis appears to be crucial for cerebellar 

development and function. Originally, it was assumed that increased levels of phytanic acid 

contribute to the pathogenesis in the cerebellum [52,202]. However, this hypothesis is 

strongly weakened by the presence of cerebellar atrophy in a case of RCDP type 3, in which 

ether lipid deficiency is the only metabolic defect, and, conversely, by the absence of 

cerebellar atrophy in a case with particularly high phytanic acid levels [191]. Sporadically, 

also other brain malformations have been observed, like temporal atrophy [197], agenesis of 

the corpus callosum [203], polymicrogyria [200], and pachygyria [204,205]. Neuronal 

migration defects never reach the extent of those observed in Zellweger syndrome (see Fig. 

2A), but several cases with dysplastic olivary bodies have been reported [202,206]. These 

findings emphasize the fact that multiple peroxisomal functions are required for proper 

development of the brain. In addition to the brain pathology, patients suffering from the 

severe form of RCDP often develop stenosis of the spinal canal (cervical stenosis) 

[195,207]. From a metabolic point of view, MR spectroscopy of the brain has shown 

increased levels of myo-inositol, a marker for gliosis, in line with previous reports of gliosis 

in autopsy cases of RCDP [52,208]. MR spectroscopy has also revealed elevated levels of 

mobile lipids, most likely caused by accumulation of long-chain acyl-CoAs, as well as a 

reduction of choline and the presence of acetate [199,209].

More insight into the pathomechanisms of ether lipid deficiency has been gained from the 

generation of ether lipid-deficient mouse models. Currently, gene KO mouse models exist 

for RCDP types 1–3 (Pex 7, Gnpat and Agps KO mice, respectively) [210–212], of which 

the first two models have been extensively characterized. Recently, also a mouse model with 

inducible inactivation of alkyl/acyl-dihydroxyacetone phosphate reductase (AADHAPR; 

also named peroxisomal reductase activating PPARγ, PexRAP), the enzyme catalyzing the 

third step in ether lipid biosynthesis (following the DHAPAT and ADHAPS reactions) and 

shown to be located at the outer face of the peroxisomal membrane [213], was generated 

[214]. Furthermore, hypomorphic mouse models with residual transcript levels of the Pex7 
[215] or the Agps [216] gene and, consequently, residual levels of ether lipids have been 

described, which mimic the milder form of the human disease. Many of the phenotypic brain 

abnormalities described in these ether lipid-deficient mice resemble the observations in 

humans, with the advantage of animal models being the opportunity to elucidate the 

underlying molecular processes in more detail. Several studies have reported 

hypomyelination in different brain areas (neocortex, corpus callosum, cerebellum) of ether 

lipid-deficient mice [217,218], but no progressive demyelination as seen in several mouse 

models of Zellweger syndrome [73]. Also myelin of the PNS is affected in ether lipid-
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deficient mice. Deficiencies in myelination as well as Schwann cell development and 

differentiation are found [219] resulting in peripheral neuropathy, as judged by reduced 

motor neuron conduction velocity [220]. Remarkably, hypo- and dysmyelination in the CNS 

of ether lipid-deficient animals is accompanied by slight loss of axons and mild astrogliosis 

in some brain areas, whereas microgliosis, which has been reported in several RCDP cases, 

and the induction of inflammatory cytokines appear to be less pronounced [73]. However, 

neuroinflammation with marked microglia activation was observed upon combined 

deficiency of Pex7 and Abcd1 in 11-months-old mice of mixed background (Swiss Webster 

and C57BL/6J:129S1) [220] suggesting that ether lipid deficiency has little effect on 

immune cell activation under basal conditions but more drastic consequences in the presence 

of an additional immunostimulatory factor. This concept is also supported by the finding that 

plasmalogens suppress microglia activation after systemic injection of lipopolysaccharides 

(LPS) in mice [221,222]. Furthermore, in murine cell lines, plasmalogens seem to counteract 

neuronal death elicited by serum starvation [223,224] by utilizing a process, which has been 

reported to involve protein kinase B (AKT) signaling [224].

Cerebellar pathology is a striking feature in human cases of ether lipid deficiency and has 

received special attention in the study of the corresponding mouse models. Concordantly, 

foliation defects with underdevelopment of fissures, particularly affecting foliae VI and VII, 

have been reported in Gnpat KO mice at different postnatal stages [218,225]. Also, a 

migration defect of granule cell precursors [218] and increased numbers of apoptotic cells in 

the external granule layer [225] were found. Furthermore, hypomyelination in cerebellum 

(and also in cortical areas) of Gnpat KO mice was accompanied by changes in the 

architecture of the nodes of Ranvier resulting in a delay in the propagation of action 

potentials [218]. Microscopy studies revealed structural abnormalities in the innervation of 

Purkinje cells by parallel fibers and climbing fibers as well as axonal swellings with 

accumulation of smooth ER-like structures in Purkinje cells [218].A detailed review of 

cerebellar pathology in the context of ether lipid deficiency and other peroxisomal disorders 

has been published recently [226].

In the first description of the Pex7 KO mouse, neuronal migration defects in the neocortex of 

mutant embryos were reported; however, these were much less pronounced than the 

migration deficits in mice completely lacking peroxisomes (e.g. Pex5 KO mice) [210]. 

Remarkably, although similar techniques were used, no such alterations could be detected in 

the brains of Gnpat KO mice [225], pointing towards a role of phytanic acid in the 

development of these migration defects or potential differences in the background strains of 

the mice used in the different studies. Da Silva and coworkers also speculated that a not yet 

identified peroxisomal protein harboring a PTS2 (and therefore being dependent on PEX7) 

may be responsible for these apparently conflicting results [227]. By making use of the 

progress in the elucidation of PTS2 structure requirements [228], future studies may 

substantiate this idea.

Involvement of the visual system is another typical feature of RCDP that has been 

extensively studied in mouse models. Lens anomalies, particularly bilateral cataracts, have 

been reported in all ether lipid-deficient mouse models, including the hypomorphic mice. 

Furthermore, hypoplasia of the optic nerve, microphtalmia, a persistent hyaloid artery [211] 
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and abnormal vascularization [229] were detected in Gnpat KO mice. These ocular 

abnomalities have been covered in detail in previous reviews [217,230].

So far, the molecular bases of mental disability in RCDP and the nervous system pathology 

upon ether lipid deficiency in mice and men have only been partially unraveled. Recently, a 

defect in the activation and downstream signaling of AKT was proposed to be responsible 

for the myelination deficit in the PNS of ether lipid-deficient animals [219]. It remains to be 

determined, whether a similar disturbance affects the CNS as well. Plasmalogen-deficient 

myelin might be more prone to oxidative damage [231]; however, this idea is weakened by 

the observations of reduced rather than elevated levels of malondialdehyde and no 

substantial change in other oxidative stress markers in the brains of ether lipid-deficient mice 

[40,73]. Studies in synaptosomes isolated from cortex, mimicking the process of synaptic 

transmission, have revealed a decrease in calcium-dependent release of the neurotransmitters 

glutamate and acetylcholine in Gnpat KO mice [40]. This goes along with decreased ATP 

content and an inability of synaptosomal respiration to adapt to the higher energy 

requirements of depolarization, thereby offering a potential explanation for the defects in 

synaptosomal neurotransmitter release [40] (Fig. 3B). Alternatively, changes in membrane 

properties caused by plasmalogen deficiency might play a role (Fig. 3B). The lack of 

ethanolamine plasmalogens (by far the most abundant plasmalogen in the brain) is strictly 

compensated by the structurally similar phospholipid phosphatidylethanolamine [40,232]. 

However, the characteristic biophysical properties conferred by plasmalogens [233–235] 

could be essential for neurotransmission, which involves repeated membrane fusion and 

constriction processes (Fig. 3B). Furthermore, it has been suggested that deficiency in 

plasmalogens impairs membrane rafts (formerly termed lipid rafts) [211], small membrane 

domains that organize various cellular processes [236,237] and are enriched in plasmalogens 

[238]. However, the impact of ether lipid deficiency on neurotransmission in vivo and the 

underlying molecular mechanism still have to be elucidated in greater detail.

No characterization of the nervous system in hypomorphic mouse models of RCDP has been 

published so far, which could be due to the milder phenotype of these mice, leaving the 

nervous system largely unaffected.

6 The contribution of peroxisomes to more common neurological 

disorders

Besides the fact that inherited peroxisomal disorders have drastic consequences for the 

nervous system, a dysfunction of peroxisomes or a dysregulation of peroxisomal metabolites 

has also been described in a variety of other, more common, neurological diseases.

6.1 Involvement of D-amino acid oxidase in amyotrophic lateral sclerosis and 
schizophrenia

Across evolution, D-amino acid oxidase (D-AAO, DAO) serves as a tool to access the 

nutritional supply; however, in the brain, this enzyme and its more specific counterpart D-

aspartate oxidase (DDO) exert a regulatory function in modulating the amount of the 

neuroactive D-amino acids D-serine and D-aspartate, respectively [239]. DAO is 
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peroxisomal [13,240], contains a functional PTS1 motif [241] and interacts with PEX5 [242] 

and also human DDO was shown to be located in peroxisomes [243,244]. These enzymes 

are flavin adenine dinucleotide (FAD)-containing flavoenzymes that oxidize certain amino 

acids, thereby generating H2O2 as side product. DAO activity is abundant in various human 

brain areas, but in the murine brain, some of the corresponding regions contain markedly 

lower activity [245].

D-Serine binds to a specific extracellular site on the N-methyl-D-aspartate (NMDA) 

receptor, which responds to glutamate as neurotransmitter, and further increases the 

signaling strength [246]. In the brain, D-serine is generated in astrocytes and released into 

the synaptic cleft [247], but also taken up from the synaptic cleft and degraded in astrocytic 

peroxisomes (see Fig. 3B).

Genetic linkage between the DAO locus and schizophrenia was first described by Chumakov 

and collaborators [248] and has since been observed by several groups. In a later study, also 

elevated activity of DAO was linked to schizophrenia [249], corresponding to reduced D-

serine levels and NMDA receptor hypoactivity. An increased activity of DAO has been 

found in the cortex of patients [250] and the protein level was increased in cerebellum and 

cortex [251], while reduced levels of D-serine were observed in the cerebrospinal fluid of 

patients [252]. Thus, inhibitors of DAO have been suggested as a therapeutic option for 

schizophrenia [253]. However, it is unclear, whether the relevant DAO activity is entirely 

peroxisomal in the astrocytes of patients.

Furthermore, a mutation in DAO was recently linked to a familiar form of amyotrophic 

lateral sclerosis (ALS) [254], which is a fatal human disease with neurodegenerative aspects 

affecting predominantly motor neurons. The link to D-amino acid metabolism was supported 

by the finding that in a mouse model for the familial form of ALS (SOD1G93A), DAO 

activity in the spinal cord was reduced and, consequently, D-serine levels were increased 

[255].

6.2 The link between ether lipid biosynthesis and autism

In 2013, a study applying whole exome sequencing identified a link between mutations in 

PEX7 (RCDP type 1) and autism spectrum disorder, a range of neurodevelopmental 

conditions characterized by deficits in communication and social interaction and repetitive 

behavior, in a family with three affected children [256]. This observation supports previous 

work showing an association between single nucleotide polymorphisms in the PEX7 gene 

and autism [257]. Prompted by their findings, the authors reviewed previously reported 

RCDP cases for potential signs of autism and found two further patients, which had later 

been diagnosed with neurodevelopmental conditions (one with autism, the other with 

attention deficit hyperactivity disorder) [256]. Additional consolidation of the proposed link 

between plasmalogen deficiency and autism comes from the finding of reduced levels of 

plasmalogens in plasma and red blood cells of autistic patients [258,259]. The mechanism, 

by which these two phenomena are connected, is still fully unexplored. Autistic features 

have, so far, not been regarded as a typical symptom of RCDP (or other peroxisomal 

disorders), although one similar case was already mentioned in 1999 [260]. The reasons for 

this might be that many children affected by the disease do not reach a stage, in which 
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symptoms of autism manifest, and that treatment of patients with RCDP focuses on other, 

more vital aspects. However, in the future, clinicians may pay more attention to signs of 

autism in RCDP patients, especially those suffering from the milder form of the disease, 

which should help to substantiate a relationship between deficiency in plasmalogens and 

autism.

6.3 Peroxisomes and Alzheimer’s disease

Several links have been found between peroxisomes and Alzheimer’s disease (AD), the most 

common form of dementia affecting several millions of people worldwide. Most 

prominently, a role of plasmalogen deficiency in the etiology of AD is considered. Many 

studies have confirmed a severe depletion of ethanolamine plasmalogens (ethanolamine is 

by far the most abundant plasmalogen head group in the CNS), in post mortem brain tissue 

of AD patients [261–266]; but also contradictory results exist [267]. The decrease in brain 

plasmalogens emerges early in the disease course [262,268] and, at least in gray matter, 

corresponds well with the deterioration of cognitive function [262]. Although, to a lesser 

extent, also associated with normal aging [269], depletion of brain plasmalogens appears to 

be rather specific for AD and not a general feature of neurodegeneration. Similar 

abnormalities could not be found in several other neurodegenerative diseases like 

Parkinson’s disease or Huntington’s disease [270]. Remarkably, deficiency of ethanolamine 

plasmalogens was also repeatedly detected in peripheral blood of AD patients [271] 

rendering these lipids potential as biomarkers for early and easy detection of the disease 

[272].

The origin of plasmalogen deficiency in AD is currently still unknown. Grimm and 

coworkers suggested that a dysregulation of AGPS expression by the amyloid precursor 

protein intracellular domain and oxidative damage by amyloid-beta (Aβ) peptides lead to 

instability and loss of activity at the protein (ADHAPS) level causing decreased 

plasmalogen biosynthesis in AD [266]. Others speculate that an Aβ-mediated increase in the 

activity of plasmalogen-selective phospholipase A2 (PLA2), as detected in certain brain 

regions of AD patients [273], depletes plasmalogens, thereby leading to excessive vesicular 

fusion and, finally, synaptic failure [274]. Other alternative explanations include increased 

oxidation of plasmalogens, in line with their proposed role as radical scavengers or excessive 

membrane degradation. However, also impaired generalized function of peroxisomes could 

contribute to the disturbance of plasmalogen homeostasis. This hypothesis is supported by 

findings of altered levels also of other peroxisomal metabolites in the context of AD. For 

example, increased VLCFA levels were detected in cortical tissues [263,264] and in 

peripheral blood [275] of AD patients (although the latter results still require confirmation). 

Also, a decrease in DHA, whose endogenous de novo production requires peroxisomes, in 

brain and liver [276] and a regional decrease in catalase activity in the temporal lobe [277] 

were reported. Furthermore, our group has previously identified an accumulation of 

peroxisomes in the somata of neurons in the gyrus frontalis of AD patients accompanied by 

a lack of peroxisomes in dendrites with abnormally phosphorylated Tau protein, which 

might prevent the transport of peroxisomes into these processes [263]. These results are 

complemented by studies in mouse models of AD, which imply that the number and protein 

content of peroxisomes are strongly modulated by the disease course [278,279], and that 
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these alterations are possibly triggered by excessive oxidative stress and/or mitochondrial 

dysfunction.

As the etiology of AD is still unresolved, also the role of peroxisomal dysfunction in the 

disease process is debated. It might be speculated, though, that a decrease in peroxisomal 

activity, even if not the primary cause of the observed pathology, aggravates oxidative stress 

and neurodegeneration in the AD brain. This fits the observation that treatment with a 

PPARα agonist, presumably by increasing the number of peroxisomes, protects cultured rat 

hippocampal neurons from Aβ-mediated cell death [280]. In line with this, based on the 

changes in expression of peroxisomal enzymes in rat cortical neuron cultures upon different 

treatment regimens with Aβ, it has also been hypothesized that peroxisomes represent an 

important defense mechanism against oxidative stress triggered by Aβ [281]. In addition, 

elevated levels of VLCFA and reduced levels of plasmalogens, both markers of peroxisomal 

dysfunction, have been suggested to stimulate the production of Aβ peptides [282,283]. 

Detailed reviews covering the potential roles of plasmalogen depletion [284] or peroxisomal 

impairment [285] in the context of AD have been published in recent years.

An independent connection between peroxisomes and AD is provided by insulin-degrading 

enzyme (IDE; see Fig. 1), a Zn2+-dependent endopeptidase, whose name-giving enzymatic 

activity was described already in 1949 [286]. This peptidase can degrade a variety of 

physiologically relevant peptides reaching from glucagon via Aβ to insulin-like growth 

factors (for review see [287]). IDE has been found in peroxisomes of cultured cells upon 

overexpression; and in rat liver, a fraction of the protein was localized to peroxisomes [288–

291]. Moreover, this peptidase can degrade N-terminal peptides derived from PTS2-carrying 

pre-proteins upon processing inside peroxisomes [288]. However, IDE was also described at 

many other subcellular locations such as mitochondria [292], the nucleus [293], the plasma 

membrane [294] or the extracellular space [295].

Because IDE can also degrade Aβ [295], this protease has been suggested as a candidate for 

a modulatory function in the pathophysiology of AD [296]. In line with an important 

contribution of Aβ degradation by IDE to the pathology of AD, an early genetic 

investigation described a genetic link between late-onset AD and a region of chromosome 10 

that includes the IDE locus [297]. However, some subsequent studies using various single 

nucleotide polymorphisms found evidence for a linkage while others did not. Moreover, a 

recent meta-analysis could not confirm indications for a contribution of individual single 

nucleotide polymorphisms [298]; and in genome-wide association studies, the locus has not 

been identified [299]. In the mouse, the deletion of Ide (by gene KO) was accompanied by 

reduced degradation of insulin and higher levels of Aβ in the brain [300]. Moreover, the 

neuron-specific ectopic expression of IDE in a mouse model for AD (APPSwe/Ind) [301] 

was sufficient to relieve the burden of amyloid plaque-related pathology [302]. 

Consequently, the upregulation of IDE activity has been amply suggested for therapeutic 

purposes. However, it has to be stressed that the occurrence of IDE in various subcellular 

compartments renders the attribution of specific contributions of IDE functions to one 

location like peroxisomes rather difficult.
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6.4 Peroxisomes and other neurological diseases

In recent years, with increasing progress in lipidomic techniques, changes in the amounts of 

plasmalogens either in the brain or in the periphery have been described in a variety of 

neurological diseases. These include Parkinson’s disease [303], schizophrenia [304,305], 

Down syndrome [306,307], Pelizaeus–Merzbacher disease [308], and lysosomal storage 

disorders like Gaucher’s disease [309] or neuronal ceroid lipofuscinosis [310]. However, in 

many cases the detected changes might be too small to be physiologically relevant and are 

likely to be counteracted by compensatory lipid changes [232]. Additionally, changes of 

plasmalogen levels may be secondary to the plethora of degenerative and pathologic 

processes in these diseases. Special caution is warranted for the interpretation of altered 

levels of plasmalogens in peripheral blood, as even in the milder forms of peroxisomal 

disorders some cases are known with normal plasmalogen levels in plasma (see Section 

5.1.1.). Therefore, only limited conclusions about pathology can be drawn from these 

values; this can also be deduced from the observation that lipid levels in blood and brain in 

disease often correlate poorly [311].

It should be noted in the context of peroxisomes and neurodegenerative disorders that in all 

three Zellweger mouse models (Pex2, Pex5 and Pex13 deficiency [60–62]), increased α-

synuclein oligomerization was observed in brain tissues [312]. This is of particular interest, 

as in Parkinson’s disease and related synucleinopathies, the normally presynaptic protein α-

synuclein aggregates intraneuronally to form Lewy bodies, the neuropathological hallmark 

of these diseases. When α-synuclein was overexpressed in murine fibroblasts, the 

oligomerization and phosphorylation of α-synuclein was markedly higher in Pex5-deficient 

cells than in control fibroblasts [312]. In this study, it was suggested that α-synuclein 

oligomerization and aggregation correlate with lipid alterations rather than with 

mitochondrial dysfunction or oxidative stress.

Based on the observations that in murine experimental autoimmune encephalomyelitis 

(EAE) several peroxisomal functions appear to be impaired [313] and that peroxisome 

deficiency goes along with severe neuroinflammation, a contribution of peroxisomal 

dysfunction to the pathology in multiple sclerosis, a chronic inflammatory demyelinating 

disease of the CNS, was postulated [314]. Gray and coworkers further supported their 

hypothesis by showing decreased expression of ABCD3 mRNA together with a reduction of 

ABCD3/PMP70 immunoreactivity in gray matter within and outside of lesions, as well as a 

slight elevation of VLCFA levels in post mortem cortical gray matter from MS patients 

[314]. Contrary to the idea of a general impairment of peroxisomal functions, the results of a 

recent report indicate a tendency towards increased plasmalogen levels in the serum of 

multiple sclerosis patients [315]. However, as discussed above, peripheral lipid levels may 

be of limited relevance for the interpretation of pathological processes in the brain.

7 Concluding remarks

The functionality of the nervous system critically depends on the ability of peroxisomes to 

provide biosynthetic intermediates and to degrade undesired compounds that interfere with 

brain formation, brain function or brain preservation. Moreover, peroxisomes participate in 

the maintenance of metabolites in the appropriate concentration ranges (e.g., D-amino acid 
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or ROS levels). A lack of each of these functions causes structural abnormalities of the 

brain, in particular in the cortex or the cerebellum, defects in the intercellular 

communication of neurons affecting electrical propagation rates along the axon and synaptic 

transmission efficiency or inappropriate onset of aging and inflammatory processes.

The spectrum of neurological symptoms observed in patients suffering from PBD or single 

enzyme and transporter deficiencies is surprisingly broad. This variability can be traced back 

to: (i) residual activity of the affected protein causing milder pathologies (PBD), (ii) the 

genetic background of patients rendering them more susceptible or resilient, or (iii) 

environmental factors ranging from disease-inducing occurrences to protection by nutrition 

deprived of detrimental compounds (Refsum disease). This implies that patients with mild 

variants of PBD might even escape correct diagnosis. Moreover, the observations that 

peroxisomes tightly interact with other organelles and that peroxisomal dysfunction 

secondarily affects their functionality suggest that patients suffering from inherited diseases 

originating from peroxisomes may benefit from therapeutic approaches targeting such 

secondary sites.

Finally, increasing evidence indicates that peroxisomes also exert a modulatory role in more 

common neurodegenerative disease such as AD, autism, ALS or schizophrenia. This is 

partially supported by linkage analyses, but also by comparative measurements of enzymatic 

activities, expression levels of mRNAs or proteins or changes in metabolite concentrations 

linked to peroxisomal functions between cohorts of patients and healthy controls. Future 

work applying steadily improving bioanalytical tools will help to decipher the relationship 

between the accumulation or deprivation of biomolecules linked to peroxisomes (e.g., DHA, 

plasmalogens or D-amino acids) and certain physiological or pathophysiological conditions.
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Fig.1. 
Schematic drawing linking peroxisomal disease-related proteins to individual metabolic 

pathways. Upper part: Proteins are grouped according to their function in biosynthetic or 

degradative metabolic pathways, ROS homeostasis, proteolytic activity, transport of 

metabolites across the peroxisomal membrane (ABCD and PMP proteins), and the import of 

matrix and membrane proteins (PEX proteins). Ovals represent proteins that are involved in 

peroxisomal functions (not complete); gray ovals, proteins for which mutations have been 

linked to a human disease (for full name see Table 1). The degradation of various fatty acids 
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and bile acid precursors is symbolized by the frame depicting the homodimeric transporters 

(ABCD1–3) and the terms α- and β-oxidation, illustrated in more detail below. Lower part: 
Proteins are grouped into the degradation pathways for different activated fatty acids (fatty 

acyl-CoA: saturated, unsaturated, dicarboxylic, branched-chain) and the side chain 

shortening of di- and trihydroxycholestanoic acid (DHCA/THCA) during bile acid 

biosynthesis (all via β-oxidation) and the oxidative removal of one carbon unit from 

branched-chain fatty acids (α-oxidation). Several proteins are involved in the subsequent 

modification of the β-oxidation products, either by thiolytic cleavage (thioesterases, ACOT), 

substitution of CoA for carnitine (carnitine transferases, CRAT and CROT) or amidation of 

the CoA-activated side chain of bile acids (amino transferase, BAAT). FALDH*, two 

isoforms are known residing in peroxisomes and the ER, respectively, which precludes 

attribution of the linked disease, Sjögren–Larsson syndrome, to a particular variant. 

Synthetase, CoA-activation is essential for the link between α- and β-oxidation, but the 

exact enzyme has not yet been assigned. PEX, peroxin; cargo-PTS1 and PTS2-cargo, 

representative peroxisomal matrix proteins harboring a PTS1 or PTS2 motif, respectively; 

mPTS-cargo, representative peroxisomal membrane protein harboring a motif for targeting 

of peroxisomal membrane proteins (mPTS). 4,8-DMN-CoA, 4,8-dimethylnonanoyl-CoA. 

Proteins not included in Table 1: 2-HACL, 2-hydroxyacyl-CoA lyase; ABCD2, ATP-binding 

cassette transporter D2; ACAA1, acetyl-CoA acyltransferase 1; ACOT4, acyl-CoA 

thioesterase 4; ACOT8, acyl-CoA thioesterase 8; ACOX2, acyl-CoA oxidase 2; CRAT, 

carnitine O-acetyltransferase; CROT, carnitine O-octanoyltransferase; DDO, D-aspartate 

oxidase; DECR2, dienoyl-CoA reductase 2; ECH1, enoyl-CoA hydratase 1; EPHX2, 

epoxide hydroxylase 2; GSTK1, glutathione S-transferase kappa-1, IDE, insulin-degrading 

enzyme; LONP2, lon peptidase 2; PAO, polyamine oxidase; PIPOX, pipecolic acid oxidase; 

PECI, peroxisomal D3,D2-enoyl-CoA isomerase; PMP22, peroxisomal membrane protein of 

22 kDa; PMP34, peroxisomal membrane protein of 34 kDa; PRDX1, peroxiredoxin 1; 

PRDX5, peroxiredoxin 5; SOD1, superoxide dismutase 1; TYSND1, trypsin domain-

containing 1
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Fig.2. 
Schematic representation of neuronal migration defects in peroxisomal biogenesis disorders. 

(A) In the cerebral cortex (neocortex) of a healthy individual (left panel), the cell bodies of 

cortical neurons are localized in discrete layers. In comparison, the cortical lamination is 

severely disturbed and the border to the white matter in microgyric (middle panel) and 

pachygyric (right panel) brains of cases with Zellweger Syndrome is indicated (horizontal 

line). Similar abnormalities can also be found in cases of severe D-bifunctional protein 

deficiency. Roman numerals to the left correspond to normal cortical layers. WM, white 

matter. (B) In the cerebellum of a healthy individual (left panel), the Purkinje cells (blue 

triangles) are strictly arranged into a single cell-thick layer at the border of the molecular 

(outermost) layer and the thick granule cell layer. In Zellweger patients (right panel), many 

Purkinje cells are mislocalized to the granule cell layer and cerebellar white matter.
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Fig.3. 
Schematic representation of abnormalities of myelinated axons and synaptic transmission in 

peroxisomal deficiencies. (A) The left panel shows a myelinated axon at the level of a node 

of Ranvier in a healthy control. The myelin sheath of oligodendrocytes (in the CNS) or 

Schwann cells (in the PNS) surrounds and isolates the axon, except at the node of Ranvier 

allowing depolarization of the neuronal membrane and propagation of electrical signals. 

Note that a multitude of ion channels and Na+/K+-ATPases (not indicated) are located at the 

node of Ranvier and entail a high energy demand. In the right panel, different pathological 

features are indicated that may contribute to the axonal degeneration frequently observed in 

peroxisomal disorders, for example, adrenomyeloneuropathy (the late-onset variant of X-

ALD). A scenario can be envisaged, where peroxisomal dysfunction and abnormal 

accumulation of lipid metabolites in myelinating cells lead to unstable paranodal loops and a 

loss of axonal support resulting in energy deficits and oxidative damage in the axons and 

progressive axonal degeneration. (B) A normal synapse with the surrounding astrocytes is 
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depicted (left panel), representative for a synapse of any neurotransmitter. D-Amino acid 

oxidase is indicated for its role in D-serine degradation at e.g. glutamatergic synapses. The 

right panel shows several possible disturbances of synaptic function (red text) that could lead 

to altered neurotransmission, as predominantly described in ether lipid deficiency. NT, 

neurotransmitter; DAO, D-amino acid oxidase
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Table 1

Genetic basis of peroxisomal disorders.

Gene Protein Disease Phenotype MIM Reference

Peroxisome biogenesis disorders Zellweger syndrome spectrum disorder

PEX1 Peroxin 1 (PEX1) Zellweger syndrome, 214100 [316]

neonatal adrenoleukodystrophy, infantile Refsum 
disease

601539

PEX2 Peroxin 2 (PEX2) Zellweger syndrome, 614866 [46]

infantile Refsum disease 614867 [317]

PEX3 Peroxin 3 (PEX3) Zellweger syndrome 614882 [318]

PEX5 Peroxin 5 (PEX5) Zellweger syndrome, 214110 [319]

neonatal adrenoleukodystrophy 202370

PEX6 Peroxin 6 (PEX6) Zellweger syndrome, 614862 [320]

neonatal adrenoleukodystrophy, infantile Refsum 
disease

614863 [321]

PEX10 Peroxin 10 (PEX10) Zellweger syndrome, 614870 [322]

neonatal adrenoleukodystrophy 614871

PEX12 Peroxin 12 (PEX12) Zellweger syndrome, 614859 [323]

neonatal adrenoleukodystrophy, infantile Refsum 
disease

266510 [324]

PEX13 Peroxin 13 (PEX13) Zellweger syndrome, 614883 [325]

neonatal adrenoleukodystrophy 614885 [326]

PEX14 Peroxin 14 (PEX14) Zellweger syndrome 614887 [327]

PEX16 Peroxin 16 (PEX16) Zellweger syndrome 614876 [328]

Mild Zellweger syndrome spectrum disorder 614877 [58]

PEX19 Peroxin 19 (PEX19) Zellweger syndrome 614886 [329]

PEX26 Peroxin 26 (PEX26) Zellweger syndrome, 614872 [330]

neonatal adrenoleukodystrophy, infantile Refsum 
disease

614873

PEX11β Peroxin 11β (PEX11β) Mild Zellweger syndrome spectrum disorder 614920 [331,332]

PEX7 Peroxin 7 (PEX7) Rhizomelic chondrodysplasia punctata type 1 215100 [176–178]

614879 [190]

Single peroxisomal enzyme and transporter deficiencies

Fatty acid β-oxidation

ACOX1 Acyl-CoA oxidase 1 (ACOX1) Acyl-CoA oxidase deficiency 264470 [333]

HSD17B4 D-Bifunctional proteina D-Bifunctional protein deficiency 261515 [334]

Perrault syndrome 1 233400 [85]

SCP2 Sterol carrier protein 2 (SCP2)b Sterol-carrier-protein X deficiency 613724 [102]

AMACR α-Methylacyl-CoA racemase α-Methylacyl-CoA racemase deficiency 614307 [93]

Congenital bile acid synthesis defect 4 214950

ABCD1 ATP-binding cassette transporter, 
subfamily D, member 1 (ABCD1)

X-linked adrenoleukodystrophy 300100 [108]

ABCD3 ATP-binding cassette transporter, 
subfamily D, member 3 (ABCD3)

ATP-binding cassette transporter, subfamily D, 
member 3 deficiency

616278 [335]

Fatty acid α-oxidation
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Gene Protein Disease Phenotype MIM Reference

PHYH/PAHX Phytanoyl-CoA hydroxylase (PHYH, 
PAHX)

Refsum disease 266500 [170,336]

Ether phospholipid biosynthesis

GNPAT Dihydroxyacetone phosphate 
acyltransferase (DHAPAT)

Rhizomelic chondrodysplasia punctata type 2 222765 [179]

AGPS Alkyl-dihydroxyacetone phosphate 
synthase (ADHAPS)

Rhizomelic chondrodysplasia punctata type 3 600121 [180]

FAR1 Fatty acyl-CoA reductase 1 (FAR1) Rhizomelic chondrodysplasia punctata type 4/
peroxisomal fatty acyl-CoA reductase 1 
deficiency

616154 [183]

PEX5 Peroxin 5 long isoform (PEX5L) Rhizomelic chondrodysplasia punctata type 5 - [185]

Bile acid maturation

BAAT Bile acid CoA:amino acid N-acyl-
transferase (BAAT)

Familiar hypercholanemia/bile acid-CoA: amino 
acid N-acyltransferase deficiency

607748 [337]

Glyoxylate metabolism

AGXT Alanine-glyoxylate aminotransferase 
(AGXT, AGT)

Primary hyperoxaluria type I 259900 [338]

Hydrogen peroxide metabolism

CAT Catalase Acatalasemia 614097 [339]

Others

ALDH3A2 Fatty aldehyde dehydrogenase 

(FALDH)c
Sjögren–Larsson syndrome 270200 [340]

DAO D-Amino acid oxidase (DAO, DAAO) Amyotrophic lateral sclerosis 105400 [254]

a
Alternative names: 17-β-hydroxysteroid dehydrogenase IV (HSD17B4)/multifunctional protein 2 (MFP2).

b
Alternative name: sterol carrier protein X (SCPX).

c
Two isoforms are known residing in peroxisomes and the ER, which precludes attribution of the disease to a particular variant.
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