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Abstract

Some of the earliest success in de novo tissue generation was in bone tissue, and ad-

vances, facilitated by the use of endogenous and exogenous progenitor cells, continue

unabated. The concept of one health promotes shared discoveries among medical

disciplines to overcome health challenges that afflict numerous species. Carefully

selected animal models are vital to development and translation of targeted therapies

that improve the health and well‐being of humans and animals alike. While inherent

differences among species limit direct translation of scientific knowledge between them,

rapid progress in ex vivo and in vivo de novo tissue generation is propelling revolutionary

innovation to reality among all musculoskeletal specialties. This review contains a com-

parison of bone deposition among species and descriptions of animal models of bone

restoration designed to replicate a multitude of bone injuries and pathology, including

impaired osteogenic capacity.
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1 | INTRODUCTION

The goal and focus of innumerable scientific efforts throughout recorded

history was to decipher and harness the power and unlimited potential

of the cell. Discovery, isolation, and culture of cells that can assume

characteristics of numerous lineages, including those from distinct em-

bryonic layers, ignited a virtual explosion of discovery in the vast arena

of cell therapies over the last two to three decades. A natural trajectory

of the therapeutic momentum is to replace musculoskeletal tissue

compromised by trauma, disease, or malformation with healthy tissue

via de novo tissue generation. Broad approaches include in vitro gen-

eration of viable, implantable tissue, and application of exogenous cells

and materials to recruit and direct endogenous cells. Carriers for cell

delivery are composed of materials that facilitate tissue formation by

progenitor cells, and they are routinely customized at the macro‐, micro‐,
and ultra‐structural levels to replicate tissue matrix, including organic

and inorganic components. Tremendous advances in de novo tissue

generation provide unlimited opportunities to restore musculoskeletal

tissue and impact the health and wellbeing of global community mem-

bers at any stage of life.

The process of moving innovative de novo musculoskeletal tissue

generation from concept to clinical reality is incremental and iterative.

Key elements of successful translation from bench to bedside are

reproducible animal models that recapitulate targeted musculoskeletal

pathology. Models vary widely among joints and limbs and between

traumatic, degenerative, and developmental conditions. Many are

induced by surgical or chemical means, and test therapies are applied

immediately or after a period of time following the initial injury.

Numerous considerations are associated with selection of an animal

model. There are specific factors related to the scientific questions or

techniques to be tested and practical considerations like animal cost,

availability, and regulation‐compliant surgical and housing facilities.
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Published substantiation of, and investigator experience with a model in

addition to validated outcome assessment assays, including proteomic

and genomic panels, also guide selection. Customized genetic makeup

and immunodeficiency are found primarily in rodents. Findings from

such highly tailored models require testing in larger mammal models

before clinical translation and implementation.

Orthotopic evaluation of bone healing in a large animal model is

frequently part of the final preclinical testing stages. In addition to

anatomy and magnitude of load bearing,1 bone formation and micro-

structure are critical assessments of an animal model (Table 1). It is also

important to remember that, while bone composition is relatively highly

conserved, it is not identical among species2; canine and porcine are

relatively close in composition and density to human, while rat has few

similarities. Additionally, bone regeneration declines and morphology3

changes differently with age among distinct life spans.4,5 This is espe-

cially relevant to defining critical size defect (CSD)6 sizes at various

maturity levels in animals (Table 2). The following sections provide an

overview of animal bone regeneration models beginning with a general

comparison of bone turnover rates.

2 | BONE FORMATION DURING NORMAL
HOMEOSTASIS

2.1 | Bone remodeling

For comparisons among species, the rate of natural bone formation

during normal homeostasis should be considered (Table 1, Figure 1).

TABLE 1 Animal model long bone characteristics

Small mammal Large mammal NHP and human

Sexual maturity age Murine: 6–8 weeks7 Canine: 7–21 months8 Human: ~17 years9

Rat: 6 weeks10 Ovine: 7–8 months11 NHP: 4–6 years12

Lapin: 10–12 weeks13 Porcine: 5–6 months11

Equine: 7–14 months10

Skeletal maturity age Murine: 16–24 weeks Canine: 10–11 months Human: ~25 years

(Growth plate closure

age/life expectancy

age x 100)14

(13.9–27.8)7 (4.3–6.9)8 (16.7–25)15

Rat: 24–32 weeks Ovine: ~40 months NHP: 7.2‐10 years

(22–35)10 (9.4)16 (11.2–17.5)17,18

Lapin: 28–30 weeks Porcine: 18–22 months11,19,20

(5.5–8.1)13 Bovine: 12‐37 months

(6.7–20.1)14

Equine: ~3 years

(5.8–6.3)21

Fractional area of

secondary

bone (FASB)

Rat: minimal22 Ovine: 2%–91%23 Human: ≈48%24

Lapin: minimal25 Bovine: ≈11%24 NHP: 61%–74%26

Equine: 5%–75%23,27

Bone remodeling period Murine: ~2 weeks7 Canine: ~2 months28,29 Human: 6–9 months7

Rat: ~6 days30 Ovine: ~80 days31 NHP: 8–24 months32

Lapin: 70 days33 Porcine: 1–5 months32

Bone formation rate/

bone volume (BFR/

BV) at skeletal

maturity (bone type)

Murinea: ≈1900%

(cancellous)34–36
Canine: 0.5%–6.4%

(cortical)28,37,38
Human: 3%–4%

(cortical)39–41

Rat: ≈19% (cortical)42 20%–50% (cancellous)38 ≈26.3%

(cancellous)43

≈1158%

(cancellous)44
Ovine: 55%–72%

(cancellous)45
NHP: 13%–38%

(cancellous)46,47

Lapin: ≈20.7%

(cortical)33
Porcine: ≈53% (cancellous)32

Equine: ≈10% (cortical)48

Pelvic limb axial force Lapin: 201% BW49 Caprine: ≈100% BW50,51 Human: 470% BW52

Ovine: 48% BW53

Abbreviations: BW, body weight; NHP, nonhuman primate.
akeletally immature.
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Two measures of bone activity are the extent of remodeling and rate of

remodeling. Both vary with species, age, bone, and bone region. The

fractional area of secondary bone (FASB), area comprised of secondary

osteons in cortical bone, represents the amount of remodeling present. It

is defined as the percentage of the total area of secondary bone relative

to the total area of interstitial bone and secondary bone together.134 The

higher the FASB, the greater the extent of bone remodeling. In general,

the amount of remodeled bone increases with age. Additionally, bone

regions under compressive stress have the highest extent of remodeling

and therefore secondary osteons while those under tensile stress retain

more primary bone.23,135‐137 Due to anatomical differences among spe-

cies, there are regional differences within bones. As an example, the

human femur experiences largely compressive stresses,138,139 while most

quadruped femurs are subjected to both tensile and compressive stress;

this leads to important species‐specific characteristics in regional bone

remodeling.140

Bone maturity is an important consideration in animal models.

Broadly speaking, humans and nonhuman primates have highly re-

modeled cortical bone at maturity followed by large mammals; small

mammals like lapin, rat, and murine have minimal remodeled bone as

adults.24‐26,141 Among large mammals, the canine and equine FASB are

closest to that of human.23,27,142,143 Another distinct difference between

animal and human bone is the prominent proportion of plexiform bone, a

form of primary bone present during bone growth in rapidly growing

mammals, that can result in a relatively low FASB (Figure 2).23,24,144

Large mammals typically develop secondary bone near the endosteum

while plexiform bone remains adjacent to the periosteum.22

Additionally, the relative size of the osteonal resorption and Haversian

TABLE 2 Critical defect size and fixation among bones and species

Bone Species Defect size (mm) Fixation Potential advantages

Calvarium Murine >Ø 254,55

Rat >Ø 556,57

Guinea Pig 1058

Lapin >Ø 659,60

Canine 2061,62

Ovine >3063–65

Porcine >Ø 1066,67 Bone composition similar to human2

Rib Canine >5068,69 Thoracic wall kinetics similar to human70,71

Ovine 4072 Plate

Porcine 10073

Ilium Lapin >Ø 574,75

Caprine >Ø 876–78

Humerus Lapin >779‐81 Plate, intramedullary rod

Canine >Ø 582‐86

Ovine >Ø 687‐89

Radius Rat >590,91

Lapin >1492‐94 Segmental defect without fixation possible

Established radiographic and histologic scoring

system95

>1096‐98 Plate

Femur Rat >499‐103 Plate, external fixator,

Intramedullary rod

Highly standardized fixation systems

Macrostructurally similar to human1

Canine >21104‐107 Plate, Intramedullary Rod Macrostructurally similar to human1

Bone composition similar to human2

Caprine Ø 876

Tibia Lapin 15108 Plate

Ovine >304,109‐112 Plate, external fixator Defect strain similar to human

Vertebrae Rat >Ø 3113‐115

Caprine Ø 576

Ovine >Ø 6116‐122

Mandible Rat >Ø 3123‐128

Porcine >17129‐131 Macrostructure and microstructure and

masticatory force similar to human132,133

Note: Ø, cortical defect diameter.
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canal areas within secondary osteons is positively correlated with

body mass; the higher the body mass, the greater the area of each.

Animals close in size to human counterparts may have similar

secondary osteon structures.145

2.2 | Bone formation rate

Distinct from the amount of remodeled bone is the rate of trabecular or

cortical bone turnover, often measured as the bone formation rate per

unit of bone volume (BFR/BV).146 In humans, the BRF/BV is a well

established measure147,148 that is affected by age,149 use,42,150 and

comorbidities.39,151,152 In animal models, it is used to assess both the rate

of bone remodeling and bone healing.153 In general, BFR/BV is higher in

cancellous bone than cortical bone, and tends to be higher in small versus

large mammals and lowest in human cortical and cancellous bone.28,32‐48

Age has a large impact on BFR/BV in animal models. In rats, the BFR/BV

of the proximal tibial metaphysis varies from 290.9% and 335.2% at 1

and 3 months of age, to 61.9% and 80.1% at 6 and 14 months of age,

respectively154; in dogs, the BFR/BV of the femoral mid‐diaphysis is 72%
in immature and 1%–6.4% in mature animals.28,37 The process of bone

remodeling during normal homeostasis is somewhat demonstrative of,

but not identical to, bone healing capacity.155 Additionally, the FASB and

BFR/BV permit some relative comparisons among species, but they are

only two representative measures of normal bone remodeling (Figure 1).

Any number of measures may be used or combined to monitor inherent

bone forming capability,146 an important consideration when utilizing

animal models to test bone regeneration strategies.

3 | MODELS OF BONE REGENERATION

3.1 | Flat Bone

Common flat bone models include the calvarium, costae, and ilium. These

non‐load bearing bones permit use of multiple CSDs without fixation, and

intramembranous ossification is highly conserved among species.156,157

Among the three, full‐thickness (bicortical), round defects in the rodent

and lapin calvarium are the most popular for initial in vivo, orthotopic,

and non‐orthotopic testing (Figure 3).56,57,59,60 Notably, the dura mater is

reported to be a source of bone morphogenetic protein 2 (BMP‐2) in
young animals that seems to diminish with age.58,158 The surgical

procedure for calvarial defect creation is relatively simple, and the thin

murine calvarium permits in vivo cell imaging with multi‐photon micro-

scopy to investigate spatiotemporal coordination of cells that contribute

to bone healing.159 As an example, two‐photon microscopic imaging was

used to confirm that exogenous bone marrow derived multipotent

stromal cells on collagen/hydroxyapatite scaffolds were primarily re-

sponsible for new bone formation in murine calvarial defects while host

cells participated most in periosteum regeneration.160 Both circular de-

fects and craniectomies are reported in large mammals like canine, ovine,

and porcine in which ostectomies recapitulate craniectomies for

F IGURE 1 Animal and human remodeled
cortical bone (fractional area of secondary
bone) and bone formation rate (bone
formation rate per unit of bone volume) with
wedge area representing relative amounts
and rates [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 2 Photomicrograph of an undecalcified section of ovine
endosteal cortical bone from the radius. Plexiform cortical bone is on the
left. Active remodeling is indicated by the presence of secondary osteons
(white arrow heads) on the right. Toluidine blue stain. Scale bar =100µm.

(Photo courtesy of Dr. Clifford Les) [Color figure can be viewed at
wileyonlinelibrary.com]
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congenital malformation, trauma, and neoplasia.61‐64,161 Instrumented

transport osteogenesis models are reported as well as self‐retaining
materials that facilitate detailed magnetic resonance imaging.61‐64 Col-

lectively, calvarial defect models in both small and large mammals are

valuable models for proof‐of‐concept testing in non‐load bearing bone.

Costal bone is a common harvest site for autologous bone and

costochondral grafts, and thoracic surgery or trauma can necessitate

rib resection.162‐164 Rib ostectomy models to test rib regeneration

options are designed to address pain, instability, and cosmesis as-

sociated with large defects.72,73,165,166 In part, due similarity in size

to human, ovine models of rib resection are common.72,167,168

Thoracic wall reconstruction models are typically in species that

share human thoracic cavity dynamics like canine and lapin.68‐71,169

A concavoconvex costovertebral joint170 in cursory mammals like

humans facilitates thoracic cavity expansion by intercostal and dia-

phragmatic musculature.171,172 Non‐cursory mammals like caprine

and ovine species have a flat costovertebral joint that relies on

diaphragmatic musculature for thoracic expansion.170

The iliac crest is another non‐load bearing bone used for mate-

rials testing with the important distinction of healing by

endochondral ossification. Caprine and ovine models of circular

unicortical or bicortical defects along the iliac crest are popular be-

cause microstructural cancellous bone volume and connectivity are

similar to human173,174 and ovine models of osteoporosis are well

established.175,176 The ilium is one of the most common sites of

autologous cancellous and corticocancellous bone graft har-

vest.163,177 Vascularized iliac bone block resections for treatment of

avascular bone lesions or multiple corticocancellous bone harvests

for staged surgical reconstructions drive efforts to enhance iliac

bone regeneration.178‐180 For large defects and iliac bone blocks, the

ovine is particularly advantageous due to anatomical properties that

are close to that of human.181 The ovine ilium has only a slightly

longer iliac shaft and smaller wing than the human female.

3.2 | Long Bone

Many animal models of long bone generation correspond to the most

prevalent long bone fractures in humans.76,92,182‐184 Multiple, round,

unicortical or bicortical, CSDs and non CSDs are used for orthotopic

F IGURE 3 Schematic representation of common animal bone defect models [Color figure can be viewed at wileyonlinelibrary.com]
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testing in virtually every bone of large and small animals.87,185 Defect

creation typically requires minimal soft tissue trauma and internal

fixation is not required. Models that incorporate ostectomy or os-

teotomy require internal or external stabilization.58,186‐190 Large

animal models have advantages of large defects and use of standard

surgical tools and devices that are not possible in small animals.191

As a general rule, long bone diaphyseal CSDs correspond to ap-

proximately 2–2.5 times the diaphyseal diameter, about 3–5 cm in

ovine109,192‐194 or 3 cm in porcine195 adult tibiae. Ostectomies are

typically used to represent comminuted or unstable fractures while

osteotomies represent minimally displaced fractures with limited

comminution.196

As indicated above, load bearing varies between quadrupeds and

bipeds, especially in the forelimb equivalent of human arms. Based

on bone mineral density changes in astronauts, bone deposition in

the human pelvic limb is especially responsive to frequency and

magnitude of loading, while the thoracic limb is less so.135,197‐201 The

relative physiologic load is comparably higher in the forelimbs and

lower in the hind limbs of most animal models. Large mammals bear

about 60% of body weight on the forelimbs while rodents and lapin

bear approximately 55%.202,203 In terms of tibial loading at a walk,

the lapin49 is reportedly closest to human,52 201% and 470% of body

weight, respectively, while caprine is about 100% of body weight.50

These important distinctions must be carefully considered when

selecting animal models and comparing results among species. Spe-

cific information about popular long bone models is provided below

(Figure 3).

3.2.1 | Thoracic Limb

There are a number of animal models to assess proximal humeral epi‐
and metaphyseal bone regeneration.82‐84,87‐89,204 In part due to

anatomical congruity between the human and canine humerus, ca-

nine cylindrical defect models are commonly employed in young to

aged adult dogs.82‐85,204 Additionally, proximal humeral osteosarco-

ma occurs naturally in adolescent to young adult dogs, 18–24

months, somewhat analogous to human adolescents.205 These points

support the value of canine models to optimize osteogenesis in the

proximal humerus. A typical critical size cylindrical defect in the

canine proximal humerus is about 5mm wide and 4mm deep in

middle‐size dogs (25–35 kg).206 A valuable stage to assess treatment

effects in the model is reportedly during the fibrous to lamellar bone

transition between 4 and 6 weeks postoperatively.82,84‐86 In addition

to histologic and histomorphometric analyses, electron probe mi-

croanalysis can be used to determine regenerated bone maturity

based on chemical composition, typically the calcium/phosphorus

ratio.82‐85,204,207 Using the outcomes above and a proximal meta-

physeal cylindrical defect model in young (1–2 years) and senior

(10–12 years) adult dogs, transforming growth factor‐β2 on titanium

cylinders increased bone volume to tissue volume by three‐fold
compared with implant alone, though regenerated trabeculae were

thinner and unmineralized osteoid higher in senior animals.84

A popular segmental defect model in the humerus is in the lapin

mid‐diaphysis.79‐81 CSDs in skeletally mature rabbits are around

7mm long and stabilized with an intramedullary rod or bicortical

plates.79‐81 In vivo monitoring is typically via radiography and

nuclear scintigraphy, and postmortem histology is standard.79‐81

Determination of torsional strength and stiffness via mechanical

testing is well established and consistent with predominant physiologic

stresses.81,208,209 Complete healing of segmental defects can be

achieved as early as 6 weeks, but there is a high rate of non‐union up to

8 months after injury, 43%–100%, reportedly a result of poor healing

capacity.79‐81 This makes the model appealing for developing treatments

to overcome similar complications in human humeral fractures.210‐212 In

one report, titanium mesh implants with BMP‐2 in polymer gel had

100% complete bony bridging of 15mm humeral defects 6 weeks after

implantation, while none of the defects without implants achieved

bridging.80 This and other reports help establish that the lapin humeral

segmental defect model is amenable to testing therapies for suboptimal

healing capacity.79,81

Most lapin and rat species have a radio‐ulnar synostosis.90‐94,96,97

Though load bearing is shared between the bones, radial ostectomies

are stable and do not require internal fixation.90,91,93,94 At lapin skeletal

maturity, segmental radial defects range from 10 to 14mm, though

14mm is recommended for a CSD; the segmental radial CSD in a

skeletally mature rat is greater than 5mm.90,91,93,94,96,97 Radiography

and microcomputed tomography (µ‐CT) as well as histology outcome

measures are standard,90,91,93,94 and the Lane–Sandhu scoring system

for both radiograph and histologic quantification of bone healing95

facilitates comparisons among studies.90,91,94 Serum biomarkers are

also possible outcome measures; prolonged healing in aged rats is

associated with significantly lower levels of bone biomarkers like

osteocalcin and alkaline phosphatase.213 Evidence of rat and lapin

radiographic bony bridging typically coincides with full recovery of

mechanical strength in compression and bending.90,91,96 Nanoindenta-

tion of thin sections (~ 100 μm) to measure modulus and hardness of

new bone has also been reported in the lapin model.98 Although

less common, segmental radial ostectomies are reported in Yucatan

miniature swine which also have a radio‐ulnar synosthosis.214

Previously, 25–30mm long defects filled with polymeric membrane in

one‐year‐old animals were bridged radiographically by 8 weeks.214 The

miniature swine model has unique advantages of a large size without

the need for internal or external fixation.

3.2.2 | Pelvic Limb

The most common femoral segmental defect models are rat and

murine. Anatomically, the rat femur resembles that of human, and

femoral neck and greater trochanter ossification centers do not

coalesce in either species. Closure of the rat and murine femoral and

tibial physes relative to lifespan are comparable to humans and later

than other mammals.14 Immunocompromised rodent strains permit

testing of xenogeneic cells and biomaterials. Recently, human adi-

pose stromal vascular fraction cells on ceramic scaffolds that
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enhanced bone formation in immunocompromised rats in preclinical

testing also promoted proximal femoral fracture healing in a clinical

trial.99 Detection of human cells in immunocompromised animals can

be accomplished by standard methods including identification of

human genetic sequences and antigens by in situ hybridization and

immunolabeling, respectively.99 Commercially available fixation sys-

tems for rodent femoral stabilization range from radiolucent plates99

and interlocking nails100 to external fixators.99,101 Segmental defects

greater than 4mm in adult rats require about 8 weeks for complete

bridging, though study end points typically range from 4 to 12 weeks,

and bone formation is monitored similarly to the rodent

forelimb.99‐102 Evaluation of bone mineral density in regenerated rat

bone with scanning electron microscope‐based quantitative back-

scattered electron imaging has been reported.101,215 Mechanical

tests are frequently designed to assess torsional properties, though

mechanical testing varies widely.99,103 A potential disadvantage of

the rodent femoral defect model is the well‐recognized robust

healing capacity with and without fixation that can necessitate out-

come validation in larger mammals.216

Similarities between human and canine femoral anatomy

contribute to the value of the canine femoral segmental defect model

despite thinner cortices in the canine bone.1,217,218 Intramedullary rods

or cortical plates are used to stabilize CSDs of at least 21mm in

skeletally mature, middle‐ to large‐size dogs (12–55 kg).104‐107 Outcome

assessments are similar to other species, bony bridging typically occurs

around 12 weeks, and remodeling has been monitored for extended

periods, 24 weeks or more, postoperatively.104‐107 Unlike small mam-

mals, however, recovery of mechanical strength does not always coin-

cide with radiographic healing; this is likely a consequence of extensive

remodeling associated with canine bone healing, similar to human

bone.107,219 Use of gait kinetics to quantify limb use are fairly common

in canine studies.220,221 Ground reaction forces measured with a force

platform are positively correlated with bone healing and have a strong

association with callus mineralization and defect stiffness.222 A recent

study showed that addition of human osteogenic protein‐1 to cortical

allograft strips in canine femoral defects improved limb use over

allograft alone 10 weeks after surgery.104 Wide use of canine gait kinetic

measures permits comparisons among a multitude of orthopedic studies,

including those with a focus on accelerated bone formation.220,221

Among long bones, tibial ostectomies are frequently used to

model traumatic bone loss.223 As mentioned above, lapin tibial

loading is closer to human than other small mammals, so the lapin

tibial mid‐diaphyseal segmental defect model, typically stabilized

with a bone plate, may have the strongest translational va-

lue.49,52,53,108 In a large animal model, ovine tibial defects of 30mm

or more in the mid‐diaphysis are often treated with plates or ex-

ternal fixators and monitored by standard means up to 3 to 12

months followed by histology and mechanical testing.4,109‐112,224 The

ovine tibial diaphysis has a relatively simple cylindrical macro-

structure and loading mechanism compared to more structurally

complex bones.225‐227 This, in addition to similarity in weight to adult

humans, lends itself to testing of three‐dimensional printed grafts

with varied microstructure and composition.109‐112

3.3 | Vertebrae

Animal models of de novo vertebral bone synthesis are largely divided

into two types, vertebral body defects and spinal fusion. In small

mammals, vertebral body defects are typically spherical113‐115,228,229

as in an osteoporotic rat model that showed increased bone formation

and improved stiffness of new bone with platelet‐rich plasma com-

bined with a gelatin/β‐tricalcium phosphate (TCP) sponge.230 Both

kyphoplasty materials and novel implants are frequently tested in

ovine.116‐119,231,232 Defect models often replicate highly prevalent

lumbar (L) 2–5 vertebral body compression fractures. Midbody

defects up to 6mm in diameter and burst fractures created by manual

compression are reported in skeletally mature animals with 12–36

weeks postoperative follow up.116‐122,233 As with all bones, there are

important anatomical differences between human and animal

vertebrae, however, the immature domestic porcine (55–65 kg) ver-

tebral macrostructure resembles the human in pedicle dimensions,234

vertebral body height, and end‐plate and spinal canal shape.235

Polymethylmethacrylate cement containing magnets injected into

porcine thoracic vertebrae to mimic kyphoplasty attracted systemi-

cally administered magnetic nanoparticles.236 Lumber posterolateral

spinal fusion is modeled in large and small animals, among which the

rodent and lapin are commonly used to evaluate de novo bone for-

mation and remodeling in a non‐instrumented model (Figure 4).237‐240

Bilateral decortication of the L4–L5 or L5–L6 transverse processes,

with or without decortication of the spinous processes and lamina,

produces stable fracture beds to which materials are applied topically.

As illustrated by a rat spinal fusion study that showed syngeneic

adipose tissue‐derived multipotent stromal cells (ASCs) on β‐TCP/
collagen type I matrix enhanced bone formation over matrix with

allogeneic ASCs or matrix alone,240 bone formation is readily assessed

with radiographs, μ‐CT and routine histology.237‐239

3.4 | Facial Bone

The mandible, orbital, zygoma, maxilla, and frontal bones are frequently

sites of congenital malformation and trauma.241,242 Facial bone re-

generation is somewhat distinct in that minimal soft tissue coverage

and esthetics require close replication of the original structure. In the

rat model, CSDs in the mandible beneath the pterygomasseteric sling

are used to test materials.123‐128 A distinct feature of the rat mandible

is absence of a bony symphysis between hemimandibles that reduces

load transfer and allows asynchronous motion between them.243‐245

Asymmetric masticatory function and dominant and nondominant

hemimandibles are described in rats.246 As such random assignment of

treatment among hemimandibles or bilateral defects may be more

important in rats than other models. Segmental defects in large animal

models are frequently reported in the mandible,129,130,247‐251 hard pa-

late,252‐254 and zygoma.131 Unicortical and bicortical defects consisting

of partial and full thickness bone resections are reported throughout

the mandible in multiple large animal species including canine, ovine

and porcine. Unicortical, partial bone thickness alveolar bone “saddle
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back” defects are frequently used to test bone regeneration in the

unique bone‐tooth interface.249,255 Stabilization varies with defect size

and configuration as does time required for bone healing with

12 weeks typical for canine and ovine and porcine requiring

slightly longer.129‐131,247‐251 As in long bones, the best models are

in those bones with proportionately similar loading and comparable

anatomy to human. In terms of bone volume, trabecular thickness,

and trabecular spacing, ovine and porcine mandible are among the

closest to human.132 Additionally, the porcine temporomandibular

micro‐ and macrostructure resembles that of the human, and the

joints in both species experience similar masticatory forces.133 This

makes the porcine mandibular condylectomy model well aligned

with condyle and ramus regeneration studies.130

4 | FUTURE DIRECTIONS

Numerous novel interventions tested in animal models are the

foundation on which current standard bone regeneration therapies

are based. The future is bright as humanized animal models make it

possible to more closely align outcomes between human and non-

human species. Further advances may include larger species with

bone size, shape and stresses that are similar to human. Continued

efforts to identify shared conditions that occur naturally in animals

and humans may increase parallel clinical trials, especially for age‐
related tissue changes. Three‐dimensional printing with organic and

inorganic materials has limitless possibilities for treatment customi-

zation, not only for optimal bone size and shape, but composition and

therapeutics. Cellular therapies will be enhanced by mechanisms to

control cell migration and measure cell longevity in vivo. These are

among the innumerable other ambitious goals that are the basis for

discovery efforts that will change the future of health care options.

5 | CONCLUSIONS

The information above provides a limited glimpse of the burgeoning

scientific efforts focused on bone restoration. It also highlights that

shared goals to improve treatment options benefit all members of our

global community. The importance of carefully selected animal models

contributes to advances in de novo bone formation daily. This drives

development and translation of targeted therapies that improve the

health and well‐being of humans and animals alike. The concept of one

health has gained renewed attention recently. In a nutshell, the mes-

sage supports the benefits of sharing discoveries to address medical

challenges afflicting numerous species among medical disciplines that

attend to them. Naturally, it is vital to both recognize and respect

inherent differences among species that limit direct translation of sci-

entific knowledge. Nonetheless, the rapid progress of ex vivo and in

vivo de novo bone generation is clearing propelling a wealth of re-

volutionary innovation to reality among scientific and clinical specialists.
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