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ABSTRACT
Epithelial ovarian carcinoma (EOC) is a relatively rare 
malignancy but is the fifth-leading cause of cancer-related 
death in women, largely reflecting early, prediagnosis 
dissemination of malignant disease to the peritoneum. At 
odds with other neoplasms, EOC is virtually insensitive 
to immune checkpoint inhibitors, correlating with a 
tumor microenvironment that exhibits poor infiltration 
by immune cells and active immunosuppression. Here, 
we comparatively summarize the humoral and cellular 
features of primary and metastatic EOC, comparatively 
analyze their impact on disease outcome, and propose 
measures to alter them in support of treatment sensitivity 
and superior patient survival.

INTRODUCTION
Epithelial ovarian carcinoma (EOC) is among 
the top five causes of cancer-related death 
in women.1 Indeed, while EOC is relatively 
rare (it accounts for approximately 2% of 
all malignancies affecting women, basal cell 
and squamous cell skin cancers excluded), 
prognosis is particularly poor as most cases 
are diagnosed as late-stage invasive disease.1 
EOC is traditionally classified into five histo-
logical subtypes: high-grade serous ovarian 
carcinoma (HGSOC), low-grade serous 
ovarian carcinoma (LGSOC), mucinous 
ovarian carcinoma (MOC), endometrioid 
ovarian carcinoma (EnOC), and ovarian 
clear cell carcinoma (OCCC), each of which 
has different cellular origins and molec-
ular profiles.2 The immune contexture and 
density of tumor-infiltrating T lymphocytes 
(TILs) vary considerably among different 
EOCs, being highest in HGSOCs, interme-
diate in EnOCs, and lowest in LGSOCs, 
MOCs, and OCCCs.3 Consistent with a role 
for TIL in EOC progression, a recent study 
on more than 5900 advanced EOC patients 
demonstrated a markedly higher risk of 
mortality for women with MOC and OCCC 
subtypes as compared with patients with 
HGSOC and EnOC.4 HGSOC, in which 
epithelial ovarian cells or secretory cells are 

present in the mucosa of fallopian tubes, is 
the most common and aggressive form of 
EOC.2 Poor outcomes in HGSOC are largely 
dictated by early dissemination to the perito-
neal cavity, especially the omentum, resulting 
in the formation of metastatic lesions and 
malignant ascites that ultimately resist 
currently approved therapeutic strategies.2 
A recent study harnessing single-cell RNAseq 
has provided an even more in-depth resolu-
tion of HGSOC, identifying multiple subtypes 
with differential disease outcome.5 6

The majority of women with EOC achieve 
indeed complete remission after primary or 
interval cytoreductive surgery combined with 
chemotherapy based on a platinum-taxane 
doublet. Homologous recombination (HR) 
defects imposed by germline or somatic 
BRCA1 DNA repair-associated (BRCA1) or 
BRCA2 mutations are not only key determi-
nants of platinum sensitivity in EOC patients 
but also provide a strong rationale for main-
tenance therapy based on poly(ADP-ribose) 
polymerase (PARP) inhibitors, which is gener-
ally associated with improved progression-free 
survival (PFS).7 Nonetheless, more than 50% 
of women affected by EOC ultimately expe-
rience recurrence with treatment-resistant 
disease and succumb within 5 years of diag-
nosis, calling for the urgent development of 
novel therapeutic approaches to this deadly 
malignancy.

Successful introduction of immune check-
point inhibitors (ICIs) for the treatment 
of multiple tumor types has created enor-
mous expectations around the possibility of 
harnessing the patient’s own immune system 
against EOC.8 9 However, compared with 
other neoplasms, such as non-small cell lung 
carcinoma and melanoma, EOC is poorly 
sensitive to ICIs employed as standalone 
immunotherapeutic agents,9 most likely due 
to indolent anticancer immunity and robust 
immunosuppression at baseline.10 In this 
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context, a strongly immunosuppressive tumor microen-
vironment (TME) may considerably contribute to disease 
progression and metastatic dissemination, calling for the 
implementation of combinatorial immunotherapeutic 
strategies beyond immune checkpoint inhibition.11 
Indeed, additional mechanisms appear to be crucial for 
the generation of an immunosuppressive contexture in 
EOC, including increased levels of immunomodulatory 
cytokines, enzymes and metabolites including inter-
leukin (IL)-6, IL-10, vascular endothelial growth factor 
A (VEGFA), macrophage migration inhibitory factor 
(MIF), indoleamine 2,3-dioxygenase 1 (IDO1), arginase 
1 (ARG1), and lactate.12–15 These factors increase along 
with disease progression, paralleling the accumulation 
of immunosuppressive cell types such as CD4+CD25+-

forkhead box P3 (FOXP3+) regulatory T (TREG) cells, 
tumor-associated macrophages (TAMs), tolerogenic 
dendritic cells (DCs), and myeloid-derived suppressor 
cells (MDSCs).16–19 Thus, multiple immunosuppressive 
factors quench anticancer immunity in the TME of EOCs, 
hence representing potential therapeutic targets for drug 
development.

Importantly, recent technological developments, 
including modern genomic, transcriptomic and pheno-
typic assays at single-cell resolution, have provided an 
in-depth characterization of the cellular and humoral 
immune contexture of EOC and its impact on disease 
outcomes. If validated by independent prospective clin-
ical studies, these immunological biomarkers may not 
only assist in determining the response of patients with 
EOC to treatment but also enable the adoption of person-
alized treatment approaches with superior likelihood for 
success. Here, we present key immunological features of 
primary versus metastatic EOC and critically discuss their 
potential value as prognostic and predictive biomarkers.

THE IMMUNE MICROENVIRONMENT IN OVARIAN CARCINOMA
The immunological contexture of both primary and 
metastatic EOC lesions builds on a complex network 
of immune and non-immune cells that interact, both 
physically and via soluble mediators, with each other, 
with malignant cells and with the extracellular matrix 
(figure  1.20–22 Importantly, while some immune cells, 
such as T lymphocytes, B cells and DCs, can be found 
within EOC cell nests, many cellular components of the 
immune system, such as MDSCs, natural killer (NK) cells, 
mast cells and neutrophils, are primarily localized at the 
invasive margin.21 Moreover, it became clear that the 
immunological configurations of primary and metastatic 
EOC differ considerably from each other,20 23 as well as 
that the degree of primary and metastatic EOC infiltra-
tion by immune cells exhibit considerable heterogeneity 
across patients.24–26 In this setting, analytical approaches 
that go beyond the mere estimation of cellular density 
in diagnostic biopsies to include spatial localization and 
functional orientation of the immune compartment of 
metastatic EOC have identified components of the EOC 

immune contexture that are linked to improved disease 
outcome, as discussed here below.10 27

T lymphocytes
An elevated number of T lymphocytes infiltrating the 
tumor core or stroma has been linked to favorable prog-
nosis in a large panel of malignancies.10 28 In line with 
this notion, a high density of CD3+ T cells in either 
primary or metastatic tumor biopsies has been attributed 
to independent prognostic value for improved PFS and 
overall survival (OS) in numerous cohorts of women with 
EOC (table 1).3 21 29–40 Importantly, such a positive prog-
nostic impact is primarily associated with the expression 
of CD8+ T cell memory markers, markers of CD4+ TH1 
polarization, and TIL localization to EOC islets rather 
than stromal areas.29 41 42 Moreover, although CD8+ T 
cell density appears to be increased in metastatic EOC 
samples compared with their primary counterparts,20 23 
the abundance of CD8+ T cells in either compartment 
retains prognostic value.29 43

A retrospective analysis of the immune landscape of 
more than 7000 EOC samples encompassing all major 
histological subtypes (HGSOC, LGSOC, MOC, EnOC, 
and OCCC) revealed that the strong positive prog-
nostic impact of CD8+ TILs is limited to HGSOC, MOC, 
and EnOC, but not LGSOC and OCCC.44 Intriguingly, 
HGSOC generally harbors the most dense immune infil-
trate as compared with other EOC subtypes.44 These 
findings have largely been recapitulated by independent 
investigators.41 Of note, abundant CD8+ T cell infiltra-
tion was linked to favorable disease outcome, regardless 
of residual disease, therapeutic strategy, or germline 
BRCA1 mutations.44 Similar results were obtained in a 
meta-analysis encompassing the results of 10 previously 
published studies, ultimately including a total of 1815 
patients encompassing all EOC histologies.28

Although some studies have attributed a negative prog-
nostic value to robust EOC infiltration by TILs expressing 
programmed cell death 1 (PDCD1, best known as PD-1) 
or cytotoxic T lymphocyte-associated protein 4 (CTLA4), 
potentially linked to PD-1- or CTLA-4-dependent T cell 
exhaustion,35 other studies have revealed a rather bene-
ficial prognosis, possibly because an elevated number of 
PD-1+ cells correlates with abundant tumor infiltration by 
T cells altogether45 or because a subset of CD8+PD-1+ T 
cells expressing integrin subunit alpha E (ITGAE, best 
known as CD103) retain functional competence in the 
ovarian TME.33 In support of this possibility, a subset of 
CD8+CD103+ T cells that was preferentially localized at 
epithelial tumor regions and expressed cytotoxic mole-
cules has been significantly correlated with improved 
disease outcome in HGSOC patients.33 46 47 Conversely, 
CD8+ cytotoxic T lymphocytes (CTLs) expressing the 
coinhibitory receptor hepatitis A virus cellular receptor 2 
(best known as TIM-3) exhibit bona fide features of func-
tional exhaustion, and their abundance has been associ-
ated with poor disease outcome, indicating that TIM-3 
plays a prominent role in limiting immune responses 
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against HGSOC (table 1).45 In line with this notion, recent 
studies have identified a key role for the coexpression 
of various coinhibitory receptors for T cell exhaustion/
dysfunction.48 49 Specifically, IL-27 was shown to drive a 
transcription program that promotes the coexpression of 
PD-1 and TIM-3, as well as lymphocyte activating 3 (LAG3) 
and T cell immunoreceptor with Ig and ITIM domains 
(TIGIT).48 Taken together, these findings identify a 
potential interaction between TIM-3 and other coinhibi-
tory receptors that may be relevant for the establishment 
of robust immunosuppression in EOCs. In line with this 
possibility, coblockade of TIM-3 and PD-1 has been linked 
to tumor regression and improved anticancer T cell 
responses in patients with advanced solid carcinomas.50 
Importantly, this combination might also circumvent 
some of the toxic effects observed with CTLA-4 and PD-1 
coinhibition, as the expression of TIM-3 (but not CTLA-4 
and PD-1) is predominantly linked to terminally differ-
entiated T cells producing interferon gamma (IFNG).50

In summary, tumor infiltration by CD8+ CTLs, memory 
T cells and TH1 cells is associated with prolonged PFS 
and OS, particularly in patients with HGSOC. Conversely, 
tumor infiltration by TIM-3+ cells stands out as a negative 
prognostic factor. The impact of T cells expressing other 
activation and exhaustion markers on EOC outcome 
remains to be precisely elucidated.

TREG cells
TREG cells are a heterogeneous population of CD4+ T 
lymphocytes that express the high-affinity IL-2 receptor 
chain IL-2 receptor subunit alpha (best known as 
CD25) and the transcription factor FOXP3.51 TREG cells 
are essential for maintaining tolerance and preventing 
autoimmunity.51 However, developing malignancies, 
including EOC, harness TREG cells to establish local 
immunosuppression through a variety of mechanisms: 
(1) direct lysis of immune effector cells; (2) inhibition 
of antigen-presenting cells (APCs); (3) secretion of 

Figure 1  Principle of cancer immunosurveillance in primary and metastatic ovarian carcinoma. Primary immune cell 
populations, cytokines and chemokines involved in the interaction between primary and metastatic ovarian carcinoma and 
the host immune system. ARG1, arginase 1; CCL, chemokine (C-C motif) ligand; CXCL, chemokine (C-X-C motif) ligand; 
CTLA-4, cytotoxic T-lymphocyte-associated protein 4; GITR, glucocorticoid-induced TNFR related gene; GZMB, granzyme B; 
IDO1, indoleamine 2,3-dioxygenase 1; IFNG, interferon gamma; IL, interleukin; LAG3, lymphocyte activation gene 3; mDCs, 
myeloid dendritic cells; MDSCs, myeloid-derived suppressor cells; NK, natural killer; PD-1, programmed cell death 1; PD–L1, 
programmed death ligand 1; pDC, plasmacytoid dendritic cell; PGE2, prostaglandin E2; PRF1, perforin 1; TAM, tumor-associated 
macrophage; TIM-3, coinhibitory receptor hepatitis A virus cellular receptor 2 (HAVCR2, best known as Tim-3); TGFB1, 
transforming growth factor beta 1; TLS, tertiary lymphoid structure; TNF, tumor necrosis factor; TREG, regulatory T cell; VEGFA, 
vascular endothelial growth factor A.
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Table 1  Prognostic relevance of T lymphocytes, dendritic cells (DCs), tertiary lymphoid structures (TLSs) and B cells in 
primary and metastatic ovarian carcinoma

Histology Stage No of patients Method Impact Note Ref.

T lymphocytes

Primary lesion

CD3+ T cell EOC* III, IV 174 IHC, IF Beneficial High density of intratumoral TILs 
correlated with improved survival

40

HGSOC All 199 IHC Beneficial High density of CD3+ T cells 
correlated with improved disease 
outcome

3

CD8+ T cell EOC All 270 IHC Beneficial High density of CD8+ T cells 
correlated with favorable disease 
outcome

29

EOC All 117 IHC Beneficial High density of CD8+ T cells 
correlated with favorable prognosis

30

EOC All 500 IHC Beneficial High density of CD8+ T cells 
associated with low BRCA1 
expression

41

EOC All 1815 Meta-analyses Beneficial High density of CD3+ and CD8+ T 
cells correlated with improved disease 
outcome

28

EOC All 497 IHC, IF Beneficial High density of CD103+CD8+ T cells 
correlated with improved survival

33

EOC II, III, IV 203 IHC, RT-PCR Beneficial High density of CD8+ T cells 
correlated with favorable disease 
outcome

34

EOC All 70 IHC Beneficial CD8+ T cells negatively correlated 
with PD-L1 expression in tumor

35

EOC All 199 IHC Beneficial High density of CD8+ T cells 
correlated with improved disease 
outcome

3

HGSOC,
EnOC,
OCCC

All 135 IHC Beneficial High density of CD103+CD8+ T cells 
correlated with improved disease 
outcome

22

EOC All 7377 IHC Beneficial High density of CD8+ T cells 
correlated with prolonged OS

44

EOC All 210 IHC Beneficial High density of intratumoral CD8+ 
CTLs correlated with favorable 
disease outcome

37

HGSOC III 100 IHC Beneficial High density and clonal selection of 
TILs correlated with improved disease 
survival

31

HGSOC All 178 IHC Beneficial CD8+ T cells were shown to abolish 
clinically relevant chemoresistance 
by altering glutathione and cystine 
metabolism in malignant cells

32

HGSOC All 147 IHC Beneficial High density of CD8+ T cells 
correlated with improved disease 
outcome

21

HGSOC All 232 IHC Beneficial High density of CD8+ T cells 
correlated with improved disease 
outcome

38

HGSOC All 283 IHC Beneficial High density of CD8+ T cells 
correlated with favorable prognosis

39

HGSOC All 80 IF Detrimental High density of PD-1+TIM-3+CD8+ 
T cells correlated with poor disease 
outcome

45

CD45RO+ T cell EOC All 270 IHC Beneficial High density of CD45RO+ memory 
T cells correlated with increased 
disease specific survival

29

EOC All 33 IHC Beneficial High density of CD45RO+ T cells 
correlated with higher survival rate

42

Continued
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Histology Stage No of patients Method Impact Note Ref.

TREG cell EOC All 270 IHC Beneficial High density of TREG cells correlated 
with favorable disease outcome

29

EOC All 92 IHC, FC Detrimental High density of CD8+ TREG cells, 
induced by TGFB1, correlated with 
poor disease outcome

66

EOC All 232 IHC Detrimental High density of TREG cells associated 
with advanced stage of disease and 
suboptimal debulking

38

EOC III,IV 26 IHC,FC Detrimental High density of ICOS+ TREG cells, 
dependent on ICOS-L stimulation by 
pDC, correlated with poor disease 
outcome

17

EOC All 103 IF Detrimental High density of TREG cells, inducing 
the expression of B7-H4 on TAMs, 
correlated with poor disease outcome

56

EOC All 70 IF Detrimental High density of TREG cells in tumor 
and malignant ascites was associated 
with increased production of CCL22 
by cancer cells and TAMs

54

EOC All 869 Meta-analyses Detrimental High density of TREG cells correlated 
with poor disease outcome

55

EOC All 210 IHC Detrimental High density of TREG cells in lymphoid 
aggregates correlated with reduced 
survival time

37

HGSOC All 199 IHC Beneficial High density of TREG cells correlated 
with improved disease outcome

3

HGSOC,
MOC,
Other

All 99 IHC, RT-PCR Detrimental High density of TREG cells correlated 
with poor OS and PFS

53

HGSOC,
MOC,
OCCC

All 25 FC,RNAseq, Cytof Detrimental High density of TREG cells, suppressing 
CD8+ T cells proliferation, correlated 
with poor disease outcome

62

CD8/TREG EOC All 270 IHC Beneficial High ratio of CD8+ T cells/TREG cells 
correlated with improved disease 
outcome

29

EOC All 117 IHC Beneficial High CD8+ T cells/TREG cells ratio 
correlated with favorable prognosis

30

EOC All 400 IHC,IF Beneficial High CD8+ T cells/TREG cells ratio 
correlated with favorable prognosis

57

TREG/TH17 EOC III, IV 124 IF Detrimental High TREG cells/TH17+ cells ratio, 
derived by TAMs, associated with 
disease progression and metastasis

60

Metastatic lesion

CD8+ T cell EOC III, IV 147 IHC Beneficial High density of CD8+ CTLs in omental 
metastasis correlated with improved 
disease specific survival

29

HGSOC III, IV 80 IHC None High density of CD8+ T cells in 
peritoneal metastasis were not shown 
to associate with disease outcome

20

CD45RO+ cell EOC III, IV 147 IHC Beneficial High density of CD45RO+T cells in 
omental metastasis correlated with 
improved disease specific survival

29

HGSOC III, IV 77 FC Beneficial High density of CD45RA-CCR7-CD8+ 
T cells in peritoneal ascites correlated 
with improved RFS

43

TREG cell EOC III, IV 147 IHC Detrimental High density of TREG cells in omental 
ascites, mediated by CCL22 
produced by cancer cells and TAMs, 
correlated with poor disease outcome

29

Table 1  Continued

Continued
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Histology Stage No of patients Method Impact Note Ref.

CD8/TREG EOC III, IV 147 IHC Detrimental High CD8+ T cells/TREG cells ratio in 
omental metastasis correlated with 
poor disease specific survival

29

DCs

Primary lesion

mDC *EOC All 33 IHC Beneficial High density of CD1a+ DCs correlated 
with improved OS

42

 �  n.a. n.a. n.a. FC, IHC Benefical High level of CXCL17 correlated with 
increased density of B7-H4+ DCs and 
favorable disease outcome

74

 �  n.a. n.a. n.a. FC, IHC Beneficial High density of CD103+ DCs, as 
potent stimulators of CTLs, correlated 
with favorable disease outcome

72

 �  HGSOC All 147 IHC Benefical High density of mature DC-LAMP+ 
DCs correlated with increased 
frequency of CTLs and improved 
disease outcome

21

pDC n.a. All 44 FC Detrimental High density of CD4+CD123+BDCA2+ 
pDC correlated with poor disease 
outcome

77

 �  EOC All 60 IHC, FC Detrimental High expression of IDO correlated 
with reduced density of CD8+ T cells, 
tumor progression and poor disease 
outcome

78

 �  n.a. n.a. n.a. IHC, FC Detrimental SDF-1 was shown to induce 
chemotaxis and protection of pDCs 
from TAM-mediated apoptosis

79

 �  EOC III, IV 26 IHC, FC Detrimental High density of HLA-DR+CD123+ pDC 
mediated stimulation of ICOS+ TREG 
cells associated with poor disease 
outcome

17

Metastatic lesion

mDC HGSOC III, IV 80 IHC Beneficial High density of mature DC-LAMP+ 
DCs in peritoneal metastasis 
correlated with improved disease 
outcome

20

pDC n.a. All 44 FC Detrimental High density of CD4+CD123+BDCA2+ 
pDCs in malignant ascites correlated 
with poor disease outcome

77

TLSs and B cells

Primary lesion

B cell *EOC All 135 IHC Beneficial High density of CD20+ B cells 
correlated with improved disease 
outcome

36

 �  EOC All 266 RNAseq Beneficial High BCR segments correlated with 
improved prognosis

82

 �  EOC All 154 IHC Detrimental High density of CD138+ plasma cells 
correlated with poor disease outcome

85

 �  HGSOC, 
EnOC

All 224 RNAseq Beneficial High expression of CD38 correlated 
with favorable prognosis

84

 �  HGSOC All 194 IHC Beneficial High density of CD27-CD20+ memory 
B cells correlated with cytolytic 
immune response and favorable 
prognosis

81

 �  HGSOC All 147 IHC Beneficial High density of CD20+ B cells 
correlated with CTLs response and 
improved RFS and OS

21

 �  HGSOC All 199 IHC Beneficial High density of CD20+ B cells 
correlated with favorable disease 
outcome

3

Table 1  Continued

Continued
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immunosuppressive cytokines, such as IL-10 and trans-
forming growth factor beta 1 (TGFB1); and (4) depletion 
of growth factors and nutrients.52 While most circulating 
TREG cells stably express FOXP3 as a gene imprinted 
during thymic development, a tumor-infiltrating subset 
of TREG cells appears to retain some degree of plasticity 
and transdifferentiate towards a phenotype with limited 
immunosuppressive functions and the capacity to secrete 
IFNG and IL-17 under inflammatory conditions.51 52 Simi-
larly, a subset of tumor-infiltrating TH1-polarized CD4+ 
T cells can transdifferentiate into FOXP3+ TREG cells in 
response to TGFB1.51

The majority of studies have shown that a high prevalence 
of TREG cells within TILs is associated with poor outcome in 
patients with all EOC histologies, especially when overall 
CTL infiltration is limited (table 1).17 30 37 38 53–56 Similar 
results were obtained by a meta-analysis of 869 patients 
encompassing all EOC histologies from four previous 
studies.55 Conversely, a positive prognostic value has been 
attributed to tumor-infiltrating TREG cells in a cohort of 
270 HGSOC patients, most likely reflecting abundant 
TIL infiltration altogether.29 These findings suggest that 
the ratio of CTLs and TREG cells may constitute a superior 
indicator of active immunity in the ovarian TME, as vali-
dated in a number of studies.29 30 57

Tumor-infiltration by TREG cells is influenced by a 
variety of mechanisms, including multiple pathways 
driven by TAMs.58 For instance, C-C motif chemokine 
ligand 22 (CCL22), produced by malignant cells and 
TAMs, recruits TREG cells through a C-C motif chemokine 
receptor 4 (CCR4)-dependent mechanism.59 Moreover, 
miRNAs contained in TAM-derived exosomes appear to 
promote the interaction of TREG cells with CTLs, resulting 

in an increased TREG/TH17 cell ratio and disease progres-
sion.60 Conversely, TREG cells promote expression of the 
immunosuppressive molecule V-set domain containing 
T cell activation inhibitor 1 (VTCN1, best known as 
B7-H4) on various APCs, including TAMs.56 Of note, 
hypoxia-induced upregulation of CCL28 also promotes 
the recruitment of TREG cells to the ovarian TME through 
a mechanism that involves CCR10 and ultimately leads 
to IL-10 production in support of disease progression.61 
TREG cells isolated from HGSOCs express various recep-
tors associated with TCR engagement, including the 
coinhibitory receptor PD-1 and the coactivating receptors 
inducible T cell costimulator and tumor necrosis factor 
(TNF) receptor superfamily member 9 (TNFRSF9, best 
known as 4-1BB).62 Moreover, compared with TREG cells 
from other carcinomas, TREG cells from EOCs exhibit a 
highly activated state and increased immunosuppressive 
capacity, as documented in numerous studies on various 
histological subtypes of EOC.62

Thus, the abundance of TREG cells in primary EOC is 
commonly associated with poor disease outcome and 
metastatic progression. Conversely, the impact of TREG 
cell infiltration in metastatic EOCs remains relatively 
unknown.

Dendritic cells
Conventional DCs (cDCs) are commonly viewed as supe-
rior APCs, largely reflecting their capacity to efficiently 
process extracellular antigens and present them on 
MHC-II and MHC-I molecules to naïve CD4+ and CD8+ 
T cells, respectively, in the context of the abundant secre-
tion of pro-inflammatory cytokines.63 Based on functional 
and phenotypic features, cDCs can be subdivided into at 

Histology Stage No of patients Method Impact Note Ref.

 �  HGSOC All 155 IHC Beneficial High density of CD20-

CD38+CD138+CD79a+ plasma cells 
correlated with CTLs response and 
improved disease outcome

83

TLS HGSOC All 147 IHC None The presence of TLSs was not 
associated with disease outcome

21

 �  HGSOC All 155 IHC Beneficial TLSs were shown to facilitate the 
development of antitumor immunity 
associated with favorable disease 
outcome

83

Metastatic lesion

B cell HGSOC III, IV 80 IHC None High density of CD20+ B cells in 
peritoneal metastasis was not 
associated with disease outcome

20

 �  HGSOC III, IV 41 IHC Beneficial High density of memory 20+ B cells 
in omental metastasis correlated 
with cytolytic immune response and 
favorable disease outcome

89

*Encompassing all EOC histological subtypes.
CTL, cytotoxic T lymphocyte; CXCL9, C-X-C motif chemokine ligand 9; EnOC, endometroid ovarian cancer; EOC, epithelial ovarian carcinoma; FC, flow 
cytometry; HGSOC, high-grade serous ovarian carcinoma; ICOS, inducible T cell costimulator; IDO, indoleamine 2,3-dioxygenase; IF, immunofluorescence; IHC, 
immunohistochemistry; LAMP, lysosomal-associated membrane protein; mDC, myeloid DC; MOC, mucinous ovarian cancer; n.a., not available; OCCC, clear cell 
ovarian cancer; OS, overall survival; PD-1, programmed cell death 1; pDC, plasmacytoid DC; PFS, progression-free survival; RFS, relapse-free survival; RNAseq, 
RNA-sequencing; TAM, tumor-associated macrophage; TGFB1, transforming growth factor beta 1; TIL, tumor-infiltrating lymphocyte; TREG, regulatory T cell.

Table 1  Continued
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least two main subsets: type I (cDC1s) and type II cDCs 
(cDC2s),64 classified as CD11clowHLA-DR+DEC205+XCR1+, 
and CD11c+HLA-DR+CD11b+CD1a+CD14+, respec-
tively.63 cDC1s are not only highly proficient at cross-
priming tumor-targeting CD8+ CTLs in tumor draining 
lymph nodes but can also recruit T cells to the TME and 
provide them with proinflammatory cytokines.64 Unfor-
tunately, cDC1s are very rare in the ovarian TME and 
exhibit features of immaturity, especially at early disease 
stages, implying that they might contribute to tumor 
progression.64 At least in part, this reflects the abun-
dance of immunosuppressive cytokines, including IL-10, 
TGFB1, and VEGFA,14 65 66 and other immunosuppressive 
factors, including the PD-1 ligand CD274 (best known 
as PD-L1).67 68 In line with this notion, PD-L1 blockade 
enhances DC-mediated T-cell activation, correlating with 
IL-10 downregulation and increased secretion of IL-2 and 
IFNG.69

HGSOC infiltration by BAFT3-dependent CD103+ 
cDC1s correlates with the abundance of C-X-C motif 
chemokine receptor 3 (CXCR3) ligands, including 
C-X-C motif chemokine ligand 9 (CXCL9), CXCL10, and 
CXCL11, which facilitate the recruitment of clinically 
relevant effector T cells into the TME.43 70 CD103+ cDC1s 
are also dependent on the transcription factor IFN regu-
latory factor 8 (IRF8) and zinc finger and BTB domain 
containing 4,71 as well as the cytokines colony stimulating 
factor 2 (CSF2, best known as GM-CSF) and FMS-related 
receptor tyrosine kinase 3 ligand, which are associated with 
favorable clinical outcome in ovarian carcinoma.72 Simi-
larly, the abundance of mature DCs expressing lysosomal-
associated membrane protein 3 (LAMP3, best known as 
DC-LAMP) has been associated with improved prognosis 
in patients with various malignancies, including primary 
and metastatic HGSOC.21 Of note, the majority of mature 
DC-LAMP+ DCs are localized to the tumor stroma and 
are associated with tertiary lymphoid structures (TLSs) 
rather than in direct contact with malignant cell nests.21 73 
Nonetheless, an elevated density of mature DCs in the 
ovarian microenvironment correlates with biomarkers of 
TH1 polarization and cytotoxic activity, both of which are 
favorable indicators in patients with all EOC histologies 
(table 1).20 21 42 74

At odds with cDCs, plasmacytoid DCs (pDCs), defined 
as CD11c-CD123+CD303+HLA-DRlow cells, are mostly 
involved in antiviral immune responses, reflecting their 
capacity to produce elevated amounts of type I IFN on 
activation.75 High levels of pDCs in the ovarian micro-
environment are generally associated with immuno-
suppression and poor prognosis, as comprehensively 
documented in patients with various EOC histological 
subtypes (table  1).17 18 76–79 IL-10 and CXCL12 are the 
primary factors responsible for EOC infiltration by 
CXCR4-expressing pDC precursors, culminating in the 
accumulation of pDCs expressing the immunosuppressive 
enzyme IDO1.78 79 Consistent with this, a high density of 
pDCs in the EOC environment is associated with impaired 
TIL proliferation, decreased effector functions as well as 

neoangiogenesis and metastatic disease dissemination 
in preclinical disease models.15 Interestingly, tumor-
infiltrating CD4+CD123+BDCA2+ pDCs exhibit a partially 
mature phenotype (indicative of activation) compared 
with their ascitesborne and bloodborne counterparts.77 
However, these tumor-associated pDCs produce limited 
amounts of type I IFN, IL-6, CCL4, CCL5, and TNF on 
Toll-like receptor (TLR) stimulation, suggesting that local 
pDC dysfunction may contribute to disease progression.77

Altogether, these findings suggest that EOCs harness 
various mechanisms to alter DC functions to establish 
immunosuppressive circuitries that foster disease progres-
sion across various EOC subtypes.63 76 Thus, therapeutic 
interventions that restore DC functions stand out as 
promising approaches to initiate EOC-targeting immune 
responses of clinical relevance.80

B cells and TLSs
Tumor infiltration by B cells is robustly associated with 
improved survival in patients with EOC, especially 
HGSOC (table 1).3 21 36 81–85 Nevertheless, accumulating 
findings suggest a positive impact of B cells also in other 
histological EOC subtypes, including MOC, EnOC, and 
OCCC.36 84 Although B cells primarily reside in the tumor 
stroma in the context of TLSs, they can also be found 
within tumor cell nests.86 B cells at all stages of differenti-
ation have been detected in EOC, including IgD+CD38+/- 
naïve B cells, IgD+CD38+ pregerminal and IgD−CD38+ 
germinal B cells; IgD−CD38+/− memory B cells as well 
as plasma cells (PCs) with a IgD−CD38++ phenotype.87 
Similar to lymph nodes, TLSs contain prominent B-cell 
follicles adjoined by discrete T-cell zones containing CD4+ 
and CD8+ T cells, as well as follicular DCs, high endo-
thelial venules, and lymphatic vessels.73 TLSs are docu-
mented in only approximately 30% of all EOC patients, 
but their presence is strongly associated with favorable 
clinical outcome (table 1).21 83

Interestingly, in the ovarian setting, TLSs are frequently 
surrounded by dense infiltrates of mature PCs.83 85 PCs 
are generally associated with a high density of CD8+ and 
CD4+ T cells, as well as CD20+ B cells, which stands out 
as an immunological configuration compatible with 
the induction of clinically relevant tumor-targeting 
immunity.83 CD20+ B cells are found in more than 40% 
of HGSOCs, and their abundance also correlates with 
tumor infiltration by CD4+ and CD8+ T cells, as well as 
with the abundance of transcripts encoding various T 
cell markers, such as TIA1 cytotoxic granule associated 
RNA binding protein (TIA1), granzyme B (GZMB) and 
FOXP3.3 21 Importantly, abundant EOC infiltration by both 
CD8+ CTLs and CD20+ B cells is associated with a more 
favorable disease outcome than infiltration by either cell 
population alone, suggesting the existence of cooperative 
interactions between CD8+ CTLs and CD20+ B cells in the 
ovarian microenvironment.21 81 83 In line with this notion, 
the majority of EOC-infiltrating CD20+ B cells express 
high levels of costimulatory molecules, including CD80 
and CD86, as well as MHC Class I and Class II molecules, 
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as they display a CD27- memory phenotype linked to 
markers of somatic hypermutation, oligoclonality and 
IgG class switching.88

As recently shown by us and others, both omental 
and peritoneal HGSOC metastases are highly infiltrated 
by CD20+ B cells with a memory phenotype.20 23 89 As in 
primary EOCs, transcript levels of CD20 correlate with 
markers of cytotoxic responses, suggesting that B cells 
infiltrating metastatic EOC promote anticancer immune 
responses, a notion that has been mechanistically vali-
dated on B-cell depletion in syngeneic mouse models of 
peritoneal metastasis.89 Although the density of CD20+ 
B cells is significantly increased in peritoneal metastases 
compared with primary EOC lesions,23 the abundance of 
metastasis-infiltrating CD20+ B cells is not associated with 
disease outcome (table 1).20

Taken together, these observations suggest that TLSs 
represent key sites for the induction and maintenance of 
clinically relevant EOC-targeting immunity and that B cells 
mediate a central function in this context. An improved 
understanding of the biology of tumor-infiltrating B cells 
is highly anticipated to harness this lymphocyte subset for 
therapeutic purposes.

Tumor-associated macrophages
TAMs, which constitute the largest fraction of the myeloid 
infiltrate in the majority of solid malignancies, including 
all EOCs,90 can be found within tumor cell nests, at the 
tumor invasive margin and in the stroma. A high degree 
of TAM heterogeneity has been observed not only across 
different histological subtypes of EOC, with HGSOCs and 
MOCs being the EOCs most abundantly infiltrated by 
TAMs, but also in women with the same EOC subtype and 
even different EOC lesions in the same patient.90 91 More-
over, TAMs display a high degree of functional plasticity 
and can rapidly adapt to changing microenvironmental 
conditions to acquire different phenotypic, metabolic, 
and functional profiles.92 In particular, exposure of 
tumor-infiltrating monocytes and macrophages to cyto-
kines, such as IL-4, IL-5, IL-10, IL-13, CCL2, TGFB1, and 
CSF1 (best known as M-CSF), as well as to prostaglandin 
E2 (PGE2), which is abundantly produced by dying cancer 
cells, promotes the acquisition of anti-inflammatory and 
protumoral (so-called M2-like) properties.93

In ovarian carcinoma, M2-like TAMs robustly promote 
neo-angiogenesis and disease progression in the context 
of largely immunosuppressive rewiring of the TME.94 In 
line with this notion, high levels of CD206+CD163+CD204+ 
M2-like TAMs within primary and metastatic EOCs of all 
histologies are generally associated with reduced sensi-
tivity to treatment and poor prognosis (table  2).65 94–100 
Conversely, M1-like TAMs, defined as CD68+CD86+HLA-
DR+iNOS+ cells, constitute a good prognostic factor 
in women with EOC, largely reflecting their ability to 
promote robust inflammatory responses that limit disease 
progression, although their presence is significantly 
decreased in the TME of patients with advanced EOC 
(table 2).91 98 101 102

The immunosuppressive functions of M2-like TAMs 
involve a variety of global anti-inflammatory cytokines (eg, 
IL-10 and TGFB1) and chemokines (eg, CCL17, CCL18, 
CCL22) that facilitate the following functions: (1) inhib-
iting antigen presentation to T cells, (2) subverting DC 
maturation, (3) blocking CTL effector functions, and (4) 
driving the recruitment of TREG cells.103 M2-like TAMs in 
the ovarian TME also limit immune effector functions by 
producing exosomes.60 Specifically, TAM-derived exosomes 
contain high amounts of proteins, as well as DNA, mRNA 
and miRNA molecules, which together suppress T cell 
activity and promote an imbalance between TREG cells and 
TH17 cells by directly targeting signal transducer and acti-
vator of transcription 3 (STAT3) in CD4+ T cells.60

Multiple studies have identified a crucial role for TAMs, 
especially CD163+TIM-4+ omental TAMs, in the metastatic 
dissemination of ovarian cancer cells to the peritoneal 
cavity.19 Indeed, the specific depletion of this TAM popu-
lation prevents the development of metastatic disease 
in mouse models of ovarian cancer, and the molecular 
circuitries that underlie these functions may represent a 
novel therapeutic target in the ovarian setting.19 Moreover, 
TAMs are important for the formation of spheroids during 
transcoelomic EOC metastasis. In particular, TAMs can 
produce large amounts of epidermal growth factor (EGF) 
to activate EGF receptor (EGFR) and VEGFC signaling in 
surrounding cells, ultimately leading to upregulation of 
multiple integrins and intercellular adhesion molecule 1 
(ICAM1) and hence promoting cancer cell proliferation, 
migration, adhesion, spheroid formation and implantation 
into the peritoneal cavity.94 In line with this notion, EGFR-
blocking and ICAM1-blocking strategies inhibit spheroid 
formation and metastatic disease progression in mouse 
models of EOC,94 standing out as potential targets for the 
development of novel approaches to the management of 
EOC patients.

Finally, TAMs support tumor progression by increasing 
the availability of selected nutrients in the primary, and even 
more so metastatic, ovarian TME. Specific TAM subsets can 
indeed accumulate lipids in support of their immunomod-
ulatory properties, ultimately leading to deregulation of 
multiple factors involved in lipid metabolism, including the 
lipid chaperones fatty acid binding protein 4 (FABP4) and 
FABP5.104 In advanced EOC, TAMs preferentially express 
FABP4, which supports tumor progression by favoring 
IL-6-driven STAT3 signaling.105 FABP4 also plays a key 
role in the interaction between ovarian cancer cells and 
adipocytes.104 In line with these observations, FABP4 defi-
ciency impairs metastatic tumor growth in mouse models 
of EOC.106 Intriguingly, EOC cells actively promote choles-
terol efflux by TAMs, culminating in depletion of lipid rafts 
and increased IL-4 signaling.107 Thus, genetic deletion of 
the ABC transporters that mediate cholesterol efflux limits 
EOC progression in mice.107

Altogether, these findings indicate that EOCs harness 
macrophage polarization to an M2-like phenotype as 
a mean to establish immunosuppression in support of 
local and distant disease dissemination. The therapeutic 
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Table 2  Prognostic relevance of tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), natural 
killer (NK) cells and cancer associated fibroblasts (CAFs) in primary and metastatic ovarian carcinoma

Histology Stage Noofpatients Method Impact Note Ref.

TAMs

Primary lesion

M1-like TAM EOC* III, IV 140 FC Beneficial High density of M1-like TAMs 
correlated with favorable 
disease outcome

102

EOC III, IV 102 IHC, IF Beneficial High M1/M2-like TAMs ratio 
correlated with improved 
disease outcome

98

EOC All 112 IHC, IF Beneficial High M1/M2-like TAMs ratio 
correlated with improved 
disease outcome

101

M2-like TAM EOC All 794 Meta-analyses Detrimental High density of M2-like TAMs 
correlated with poor disease 
outcome

95

EOC III, IV 110 IHC Detrimental High density of CD163+ TAMs 
and high CD163/CD68+ cells 
ratio correlated with poor PFS 
and OS

97

EOC III, IV 102 IHC, IF Detrimental High expression of Mucin-2 
correlated with low M1/
M2-like TAMs ratio and poor 
disease outcome

98

EOC III 128 IHC Detrimental High density of EGF-secreting 
M2-like TAMs correlated with 
poor disease outcome

94

EOC All 124 IHC, IF Detrimental High density of TAMs-derived 
exosomes correlated with 
high TREG/TH17 ratio and poor 
disease outcome

60

n.a. All n.a. IHC Detrimental Low expression of tumor 
cell derived MIF correlated 
with increased apoptosis of 
malignant cells and favorable 
disease outcome

99

 �  HGSOC All 30 FC Detrimental High density of M2-like TAMs 
correlated with poor RFS and 
OS

65

 �  HGSOC All 199 IHC, IF Detrimental High density of CD206+CD68+ 
cells correlated with poor 
disease outcome

96

Metastatic lesion

M1-like TAM EOC III, IV 140 FC Beneficial High density of M1-like TAMs 
in malignant ascites correlated 
with favorable disease 
outcome

102

M2-like TAM EOC III 128 IHC Detrimental High density of EGF-secreting 
M2-like TAMs correlated with 
poor disease outcome

65

HGSOC III, IV 50 IF Detrimental High density of CD68+CD163+ 
M2-like TAMs in peritoneal 
metastasis correlated with 
poor RFS and OS

20

HGSOC All 30 FC Detrimental High density of M2-like TAMs 
in malignant ascites correlated 
with poor RFS and OS

94

Continued
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Histology Stage Noofpatients Method Impact Note Ref.

MDSCs

Primary lesion

MDSC *EOC All 32 FC Detrimental High density of M-MDSCs 
correlated with poor disease 
outcome

110

 �  HGSOC,
EnOC,
MOC

All 29 FC None High density of PD-L1+ 
MDSCs was not associated 
with disease outcome

117

 �  HGSOC III, IV 79 IF, FC Detrimental High expression of 
AMPKα1 associated with 
immunosuppressive activity of 
MDSCs

124

 �  HGSOC III, IV 56 Microarray IHC Detrimental High VEGF levels correlated 
with MDSC migration and 
poor prognosis

14

 �  HGSOC All 140 IHC Detrimental High density of MDSCs 
correlated with inhibited T cell 
activation, cancer metastasis 
and poor disease outcome

123

 �  n.a. All 60 IHC Detrimental High density of MDSCs 
associated with stemness 
of cancer cells induced by 
CSF2/p-STAT3 signaling 
pathway

114

 �  n.a. All 340 IHC, IF Detrimental High levels of PGE2 produced 
by MDSCs correlated with 
increased PD-L1 expression 
and stem cell-like properties 
of cancer cells

116

 �  n.a. All 52 FC Detrimental Metformin derived 
inhibition of CD73/CD39 
expression in MDSCs 
correlated with decreased 
immunosuppression and 
favorable disease outcome

118

 �  n.a. III, IV n.a. RT-PCR, ELISA Detrimental High levels of CXCL1/2 
correlated with Snail 
expression, MDSC infiltration 
and poor disease outcome

115

Metastatic lesion

MDSC EOC III, IV n.a. ELISA, FC Detrimental High CXCL12 levels correlated 
with accumulation of MDSCs 
in malignant ascites and poor 
disease outcome

113

 �  EOC All 29 FC Detrimental High density of M-MDSCs in 
peritoneal fluid correlated with 
poor disease outcome

110

 �  EOC All 31 ELISA Detrimental High IL-6 and IL-10 levels 
correlated with accumulation 
of CD14 +HLA-DR-MDSCs in 
malignant ascites and poor 
disease outcome

111

 �  EOC III, IV 13 FC ELISA Detrimental High density of MDSCs in 
malignant ascites correlated 
with increased level of NO and 
enhance development of TH17 
cells from CD4 + precurcors

119

Table 2  Continued

Continued
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Histology Stage Noofpatients Method Impact Note Ref.

 �  EOC III, IV 15 FC, ELISA Detrimental High density of MDSCs 
associated with 
overexpression of IDO, iNOS/
NOS2, IL-10 in malignant 
ascites and supression of TH1 
mediated antitumor immune 
response

120

 �  EOC III, IV 22 RT-PCR Detrimental High density of MDSC in 
malignant ascites associated 
with PGE2-derived 
DNMT3A upregulation and 
immunosupression

112

 �  HGSOC,
EnOC,
MOC

All 26 FC None High density of MDSCs in 
malignant ascites was not 
associated with disease 
outcome

117

NK cells

Primary lesion

NK cells *EOC All 497 IHC, IF Beneficial High density of CD103+ NK 
cells correlated with favorable 
disease outcome

33

 �  HGSOC All 283 IHC Beneficial High density of CD57+ NK 
cells correlated with favorable 
prognosis

39

 �  HGSOC All 81 IHC None High density of mature DC-
LAMP+ DCs correlated with 
higher frequency of cytotoxic 
NKp46+ NK cells

21

 �  Serous,
MOC,
EnOC

All 38 IHC, IF Beneficial High expression of MIF 
correlated with impaired NK 
cells cytotoxicity and poor 
prognosis

13

Metastatic lesion

NK cells HGSOC III, IV 80 IHC None High density of NKp46+ NK 
cells in peritoneal metastasis 
did not correlate with disease 
outcome

20

 �  HGSOC III, IV 20 FC Beneficial High density of CD56+ NK 
cells in peritoneal ascites 
correlated with improved OS 
and RFS

127

 �  Papillary 
serous

III 50 FC Detrimental Low expression of NKp30 
correlated with impaired 
cytotoxicity and poor disease 
outcome

131

 �  n.a. III, IV n.a. FC Beneficial High density of NK cells 
correlated with increased 
recruitment of iDCs and 
effector CD8+ T cells

133

CAFs

Primary lesion

CAF *EOC All 527 IHC Detrimental High levels of IL-1β and low 
expression of p53 in CAFs 
correlated with poor disease 
outcome

142

Table 2  Continued

Continued
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potential of TAM-targeting or TAM-repolarizing agents, 
such as CSF 1 receptor (CSF1R) inhibitors in patients with 
EOC, however, remains to be elucidated.

Myeloid-derived suppressor cells
MDSCs are a heterogeneous population of relatively 
immature myeloid cells that differ in morphology and 
function from terminally differentiated myeloid cells, 
such as DCs, macrophages and neutrophils.108 There are 

two major groups of MDSCs in humans, namely, granulo-
cytic/polymorphonuclear MDSCs (PMN-MDSCs), which 
generally display a CD11b+CD33+CD14−CD15+ surface 
phenotype, and monocytic MDSCs (M-MDSCs), which 
are most often CD11b+CD33+CD14+CD15− MDSCs.109

An increased number of circulating or tumor-infiltrating 
MDSCs has been detected in patients with various malig-
nancies,109 including women with primary and metastatic 

Histology Stage Noofpatients Method Impact Note Ref.

 �  EOC II,III,IV 255 IHC Detrimental High levels of IL-6 in CAFs 
correlated with paclitaxel 
chemoresistance and poor 
disease outcome

224

 �  HGSOC n.a. n.a. IHC Detrimental High expression of 
LPP correlate with 
chemoresistance and poor 
disease outcome

149

 �  HGSOC III, IV 15 Microarray Detrimental High expression of versican 
(VCAN) in CAFs mediated by 
TGFB1 promote the motility 
and invasion of tumor cells

146

 �  HGSOC III, IV 144 RT-PCR Detrimental High levels of HOXA9 
stimulate CAFS and correlated 
with poor disease outcome

153

 �  n.a. III, IV 66 IHC Detrimental High expression of FAB 
correlated with poor disease 
outcome

138

 �  n.a. n.a. n.a. ELISA Detrimental High expression of FGF1 
correlated with disease 
progression and poor 
outcome

139

 �  n.a. n.a. n.a. IF Detrimental High levels of CAFs 
associated with 
chemoresistance and poor 
disease outcome

150

Metastatic lesion

CAF HGSOC III, IV n.a. miRNA,
gene array 
analyses

Detrimental MicroRNAs reprogram 
normal fibroblasts into CAFs 
associated with poor disease 
outcome

143

 �  HGSOC III, IV n.a. In vitro testing Detrimental Chemokines and cytokines 
produced by CAFs are 
required for stimulation of 
glycogen mobilization and 
cancer metastasis

144

 �  HGSOC III, IV n.a. ELISA Detrimental High level of TGFB1 in CAF 
exosomes correlated with 
poor disease outcome

154

*Encompassing all EOC histological subtypes
CSF2, colony stimulating factor 2; CXCL12, C-X-C motif chemokine ligand 12; EGF, epidermal growth factor; EnOC, endometroid 
ovarian cancer; EOC, epithelial ovarian carcinoma; FAB, fatty acid binding; FC, flow cytometry; FGF1, fibroblast growth 
factor 1; HGSOC, high-grade serous ovarian carcinoma; iDC, immature dendritic cell; IDO1, indoleamine 2,3-dioxygenase; IF, 
immunofluorescence; IHC, immunohistochemistry; IL-6, interleukin; MIF, migration inhibitory factor; M-MDSC, monocytic MDSC; 
MOC, mucinous ovarian cancer; n.a., not available; NO, nitric oxide; OS, overall survival; PD-L1, programmed death ligand 1; PFS, 
progression-free survival; PGE2, prostaglandin E2; RFS, relapse-free survival; STAT3, signal transducer and activator of transcription 3; 
TGFB1, transforming growth factor beta 1; TREG, regulatory T cell; VEGF, vascular endothelial growth factor.

Table 2  Continued
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EOC.16 110 111 Nevertheless, association between histolog-
ical subtypes of EOC and MDSC abundance has never 
been investigated. Various tumor-derived cytokines (eg, 
IL-6, IL-10, IL-18, TNF, and VEGFA), growth factors (eg, 
M-CSF, GM-CSF) and other mitogens (eg, PGE2) promote 
the formation of MDSCs from myeloid progenitors in the 
bone marrow.14 111–113 This largely reflects the activation of 
signaling transduction cascades culminating with STAT3 
signaling, which also promotes MDSC immunosuppres-
sion by downregulating IRF8 while upregulating CCAAT 
enhancer binding protein beta.114 Conversely, the accu-
mulation of MDSCs within neoplastic lesions is driven by 
a variety of cytokines and chemokines, including CXCL1, 
CXCL8, CXCL12, CCL1, CCL2, CCL3, CCL5 and CCL7, 
which primarily operate via CCR4 and CCR5.113 115

Accumulating preclinical and clinical evidence indicates 
that PMN-MDSCs and M-MDSCs suppress both innate 
and adaptive immune responses driven by ovarian cancer 
cells.16 116–120 While the majority of such studies focused 
on HGSOCs, data from a limited number of patients 
with MOC and EnOC also support the protumoral role 
of MDCSs.110 Of note, PMN-MDSCs preferentially use 
reactive oxygen species, peroxynitrite, ARG1 and PGE2 to 
mediate immune suppression.112 119 Conversely, M-MDSCs 
predominantly harness nitric oxide, immunosuppressive 
cytokine such as IL-10 and TGFB1, and membrane-bound 
molecules, such as PD-L1 to impair CTL and NK cell func-
tions.121 MDSCs also drive tumor progression by favoring 
epithelial-to-mesenchymal transition (EMT), invasiveness 
and metastatic dissemination in malignant cells and by 
promoting neoangiogenesis.114 116 Recent data suggest 
that MDSCs are also involved in the establishment of the 
premetastatic niche.122 Consistent with these findings, 
elevated numbers of circulating or intratumoral MDSCs 
correlate with poor disease outcome in women with 
various EOC subtypes (table 2).14 110 112 113 123 124

Altogether, these observations suggest that both 
M-MDSCs and PMN-MDSCs establish immunosuppres-
sion and support metastatic dissemination in EOC. Thus, 
targeting MDSCs stands out as a promising approach 
to promote EOC-directed immune responses. Potential 
approaches to this objective include (1) blocking the 
formation of MDSCs in the bone marrow, (2) impeding 
MDSC recruitment to neoplastic lesions, and/or (3) 
reprogramming MDSCs to terminally differentiate and 
lose their immunosuppressive potential.

NK cells
NK cells are a subset of innate lymphoid cells that play a 
central role in defending the organism from viral infec-
tion, early malignant transformation and metastatic 
tumor dissemination.125 126 NK cell effector functions 
encompass potent cytotoxicity against target cells, as well 
as the secretion of immunomodulatory cytokines that 
orchestrate innate and adaptive immune responses.126 
Such functions do not involve the recognition of specific 
antigens, as they do in the case of CTLs, but are controlled 
by the balance between inhibitory and stimulatory signals 

that are conveyed to NK cells on interaction with poten-
tial targets.125

Results on EOC infiltration by NK cells are rather 
inconsistent, at least in part due to the use of rather 
heterogeneous markers for NK cell detection 
(table  2).13 20 21 33 39 127 128 Thus, high levels of NK cells 
in the TME of all EOC subtypes have been positively 
associated with improved prognosis when beta-1,3-
glucuronyltransferase 1 (best known as CD57) and 
CD103 were used as phenotypic markers, although 
these molecules are also expressed by activated CD8+ 
T cells.33 39 In contrast, when NK cells were identified 
using natural cytotoxicity triggering receptor 1 (NCR1, 
best known as NKp46), their abundance in primary and 
metastatic HGSOC lesions did not correlate with clinical 
outcome,20 21 perhaps due to functional impairments 
imposed by local immunosuppression.129 Indeed, NK 
cell effector functions in peritoneal ascites are inhibited 
on MIF-driven downregulation of killer cell lectin-like 
receptor K1 (KLRK1, best known as NKG2D).13 130 Addi-
tionally, NK cell cytotoxicity in the TME of metastatic EOC 
is limited on the downregulation of NCR2 (best known 
as NKp30), as induced by soluble and surface-exposed 
NK cell cytotoxicity receptor 3 ligand 1 (NCR3LG1, best 
known as B7-H6).131 In line with these findings, increased 
B7-H6 expression has been associated with metastatic 
disease progression and poor clinical outcome in patients 
with various EOC histological subtypes.100

In addition to mediating direct cytotoxic effects against 
neoplastic cells, NK cells can also exert anticancer activity 
by engaging the adaptive arm of the immune system. 
Specifically, NK cells can recruit cDCs to the TME on 
secretion of CCL5, X-C motif chemokine ligand 1 (XCL1) 
and XCL2.132 Moreover, IL-18-primed NK cells can favor 
tumor infiltration through immature DCs via CCL3 and 
CCL4, a process that culminates in the secretion of CTL 
chemoattractants, including CXCR3 and CCR5 ligands.133

Altogether, these observations indicate that NK cells 
dynamically interact with malignant and immune compo-
nents of the ovarian TME most often in support of anti-
cancer immunity. However, available data fail to elucidate 
a robust prognostic value for EOC infiltration by NK cells, 
potentially linked to an elevated degree of methodolog-
ical heterogeneity and/or to the functional impairment 
of EOC-infiltrating NK cells downstream of local immuno-
suppression. Efforts aimed at homogenizing the quantifi-
cation of EOC-infiltrating NK cells and obtaining further 
insights into their functional rewiring on tumor infiltra-
tion are urgently needed to clarify the therapeutic poten-
tial of NK cell-targeting agents in women with EOC.126

Cancer-associated fibroblasts
Cancer-associated fibroblasts (CAFs) are key components 
of the ovarian TME with diverse biological functions, 
including matrix remodeling as well as reciprocal inter-
actions with TILs and cancer cells.134 135 Tissue-resident 
quiescent fibroblasts, which are predominant in the 
normal stroma, and mesenchymal stem cells transform 
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into CAFs on interaction with cancer cells.136 137 CAFs 
found in EOC lesions generally express actin alpha 1, 
skeletal muscle (ACTA1, best known as SMA), fibroblast 
activation protein alpha, S100 calcium binding protein 
A (S100A4, best known as FSP1) and fibroblast growth 
factor 1 (FGF1).138 139 However, due to the continuous 
reciprocal interactions between CAFs with cancer cells, 
the former tend to undergo dynamic changes that enable 
high degrees of phenotypical and functional heteroge-
neity.139 140 Indeed, neoplastic cells secrete various cyto-
kines and soluble factors such as IL-6, IL-8, IL-1β, TGFB1, 
platelet-derived growth factor, FGF and EGF to activate 
fibroblasts.141 142 Moreover, ovarian cancer cells repro-
gram fibroblasts to become CAFs via alternations in the 
levels of 3 miRNAs, namely downregulation of miR-214 
and miR-31, coupled to upregulation of miR-155.143

On reprogramming, CAFs promote tumor growth and 
invasion through increased secretion of multiple cyto-
kines, chemokines and growth factors such as CCL5, 
IL-6, IL-8, TGFB1, VEGFA among others.144–146 Moreover, 
CAFs promote EOC progression by favoring the EMT141; 
angiogenesis,147; altered cancer metabolism144 148; 
chemoresistance;32 149 150 and immune modulation.151 152 
However, an extensive description of all the mechanisms 
through which CAFs drive EOC progression goes largely 
beyond the scope to of this review, and can be found 
elsewhere.134 135 Importantly, CAF abundance positively 
correlate with disease progression and poor disease 
outcome in women with primary138 139 142 150 153 and meta-
static EOC143 144 154 (table 2).

In summary, CAFs may also constitute valuable target 
to limit immunosuppression in the TME of patients with 
EOC. So far, this strategy has been mostly been investi-
gated in other tumors with a large CAF component, such 
as pancreatic carcinoma.134

Cytokine and chemokine profile
Accumulating preclinical and clinical evidence indicates 
that the cytokine and chemokine milieu of EOC plays 
a key role in the establishment of local and systemic 
immune contexture (table  3).155 156 Thus, the intratu-
moral or circulating abundance of multiple cytokines 
and chemokines impacts disease outcome in patients with 
EOC. For instance, elevated IL-6 levels in the ovarian TME 
have been associated with disease progression, resistance 
to treatment and poor clinical outcome in patients with 
various EOC subtypes.156–159 At least in part, this reflects 
the ability of IL-6 to promote EOC cell invasion through 
the basal membrane, as well as to (1) mediate mitogenic 
effects linked to chemoresistance and (2) promote IL-10 
secretion.160 Moreover, IL-6 reportedly activates protum-
origenic signal transducers, including JAK1 (Janus kinase 
1) and STAT3.161 162 In metastatic EOC, TAMs are the 
primary producers of IL-6, and their presence, as well 
as high bloodborne and peritoneal IL-6 levels, correlate 
with poor disease outcome.65 111 159 160 Similar findings 
have been obtained with IL-8, IL-10, VEGFA, TGFB1 and 
TNF, all of which appear to condition the ovarian TME in 

favor of disease progression and escape from immunosur-
veillance (figure 2 and table 3).14 65 66 156 163–168

The overall chemokine landscape of EOC is heteroge-
neous, with CCL2, CCL5, CXCL12 and CXCL16 being 
the most predominant molecules.155 Importantly, the 
high levels of CXCR6 and CXCL16 in serous papillary 
carcinoma tissues suggests an association with aggressive 
histological subtype as compared with EnOC.169 CCL2 
is mostly produced by malignant cells and contributes 
to TAM accumulation.170 Conversely, while CCL4 and 
CCL5 expression is mostly associated with CTL recruit-
ment,133 171 CCL22 and CCL28 levels positively correlate 
with an increased abundance of TREG cells (at least in 
primary EOCs).54 61 155 The expression of genes associ-
ated with T cell recruitment is restricted to the epithelial 
tumor component and preserved across metastatic sites, 
suggesting that T cells might easily home to metastatic 
lesions.155 However, the impact of some cytokines and 
chemokines on EOC progression and clinical outcome 
is controversial. For instance, although EOC-derived 
CXCL12 is associated with T cell recruitment,172 as are 
CXCL9 and CXCL10,70 it also drives tumor progression 
by activating the MAPK cascade in EOC cells,173 and 
promotes tumor infiltration by myeloid cells.113 156 Consis-
tent with this notion, high levels of CXCL12 or its receptor 
(CXCR3), as well as CXCL16, CXCR6 and CCL8, have 
been associated with metastatic dissemination to the peri-
toneum and ascites formation (table 3).169 173–175

In summary, the net effect of cytokine and chemokine 
signaling on EOC progression depends on the balance 
between their ability to recruit and activate specific 
immune cell populations and their capacity to drive mito-
genic signaling in EOC cells.

MODULATING THE OVARIAN TME
EOC was one of the first malignancies in which a posi-
tive association between TIL density and OS was identi-
fied.40 However, EOC-infiltrating lymphocytes are often 
suppressed and/or functionally exhausted by a variety 
of mechanisms, including (but not limited to) (1) abun-
dant secretion of immunosuppressive cytokines, such as 
TGFB1, IL-6 and IL-10, by EOC cells65 66 156 163; (2) expres-
sion of metabolic immunosuppressors, such as IDO178; 
(3) robust tumor infiltration by immunosuppressive 
TREG cells,38 46 54 M2-like TAMs and MDSCs94 95 109; and 
(4) activation of coinhibitory receptors, such as PD-1 
and TIM-3.45 176 In line with such multipronged immu-
nosuppression, ICIs are not very effective in women with 
EOC.177

Chemotherapy
Some anticancer agents, including conventional chemo-
therapeutics, targeted drugs and radiation therapy (RT), 
can be harnessed to stimulate anticancer immunity, as 
they can increase the antigenicity of malignant cells, 
boost their adjuvanticity or repolarize the TME in support 
of immunological disease control.178 At least in principle, 
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Table 3  Pro-tumoral and anti-tumoral roles of cytokines and chemokines in primary and metastatic ovarian carcinoma

Histology Stage
No of 
patients Method Impact Note Ref.

Primary lesion

IL-6 *EOC All 94 IHC Detrimental High IL-6 levels correlated 
with proliferation and 
invasivity of cancer cells

159

EOC All 221 IHC Detrimental High IL-6 levels correlated 
with tumor growth, high 
frequency of TAMs infiltrate, 
angiogenesis and poor 
disease outcome

157

HGSOC III, IV 53 IHC, IF Detrimental High IL-6 levels correlated 
with angiogenesis, increased 
infiltration of myeloid cells 
and poor disease outcome

156

 �  n.a. n.a. 25 IHC Detrimental High IL-6 levels correlated 
with disease progression

158

IL-8 HGSOC,
MOC,
EnOC

All 44 RT-PCR, IHC Detrimental High IL-8 levels 
correlated with malignant 
transformation and poor 
disease outcome

164

IL-10 HGSOC III, IV 30 ELISA Detrimental High IL-10 levels correlated 
with M2-like TAMs 
polarization and poor 
prognosis

65

TGFβ EOC All 92 IHC, FC Detrimental High TGFB1 levels 
associated with CD8+ 
Treg induction and poor 
prognosis

66

HGSOC,
EnOC

All 25 IHC, RT-PCR Detrimental High TGFβ levels associated 
with cancer cells proliferation 
and poor disease outcome

163

VEGF HGSOC III, IV 56 Microarray, IHC Detrimental High VEGF levels correlated 
with MDSC migration and 
poor prognosis

14

HGSOC,
MOC,
EnOC

All 44 RT-PCR, IHC Detrimental High VEGF levels 
correlated with malignant 
transformation and poor 
prognosis

164

TNFα EOC III, IV 60 FC, ELISA,
RT-PCR

Detrimental High TNF levels correlated 
with myeloid cells 
recruitment and tumor 
progression

165

HGSOC III, IV 53 IHC, IF Detrimental High TNF levels correlated 
with angiogenesis, increased 
infiltration of myeloid cells 
and poor disease outcome

156

IDO EOC All 60 IHC Detrimental High IDO levels correlated 
with impaired OS and PFS

78

CCL2 HGSOC,
MOC,
EnOC

All 46 ELISA Detrimental High CCL2 levels correlated 
with TAMs recruitment and 
poor disease outcome

170

CCL5 n.a. All n.a. ELISA,
RT-PCR

Beneficial High CCL5 levels associated 
with recruitment of effector 
CD8+ T cells and favorable 
disease outcome

133

Continued
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Histology Stage
No of 
patients Method Impact Note Ref.

CCL18 HGSOC, MOC All 59 RT-PCR,
IHC

Detrimental High CCL18 levels correlated 
with metastatic spread and 
poor disease outcome

175

CCL22 EOC All 70 ELISA Detrimental High CCL22 levels 
associated with recruitment 
of TREG cells and poor 
disease outcome

54

CCL28 HGSOC III, IV 88 IHC Detrimental High CCL28 levels 
associated with recruitment 
of TREG cells and poor 
disease outcome

61

CXCL9, 
CXCL10

HGSOC III, IV 184 IHC Beneficial High CXCL9 and CXCL10 
levels associated with 
recruitment of effector 
CD8+ T cells and favorable 
prognosis

70

CXCL12 HGSOC III, IV 53 IHC IF Detrimental High CXCL12 levels 
correlated with angiogenesis, 
increased infiltration of 
myeloid cells and poor 
disease outcome

156

HGSOC, EnOC All 44 IHC Detrimental High CXCR4 expression 
correlated with cancer 
cells proligeration and poor 
disease outcome

173

CXCL13 HGSOC All 264 IHC, IF Beneficial High CXCL13 levels 
correlated with recruitment 
of CXCR5+CD8+ T cells in 
TLS and favorable disease 
outcome

190

CXCL16 HGSOC All 60 IHC Detrimental High CXCR6 expression 
correlated with metastatic 
spread and poor disease 
outcome

169

CXCL17 HGSOC n.a. n.a. RT-PCR Beneficial High CXCL17 levels 
associated with recruitment 
of DCs and favorable 
disease outcome

74

Metastatic lesion

IL-6 EOC All 70 Luminex Detrimental High IL-6 levels in malignant 
ascites correlated with 
chemo-resistance and poor 
PFS

168

EOC All 31 ELISA Detrimental High IL-6 and IL-10 levels 
correlated with accumulation 
of CD14+HLA-DR-MDSCs in 
malignant ascites and poor 
disease outcome

111

HGSOC III, IV 30 ELISA Detrimental High IL-6 levels correlated 
with accumulation of 
CD163+CD68+ M2-like TAMs 
in malignant ascites and 
poor disease outcome

65

IL-10 HGSOC III, IV 30 ELISA Detrimental High IL-10 levels correlated 
with M2-like TAMs 
polarization and poor 
prognosis

65

Table 3  Continued

Continued
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genotoxic chemotherapies and RT can favor the forma-
tion and/or expression of mutated neoepitopes.179 
However, expression levels may remain low and hence be 
incompatible with robust immune recognition. Chemo-
therapeutic agents used for the clinical management of 
platinum-resistant EOC, including doxorubicin, oxal-
iplatin and paclitaxel, are known to drive immunogenic 
cell death,180 which is associated with the abundant emis-
sion of immunostimulatory molecules commonly known 
as damage-associated molecular patterns (DAMPs) and 
thus might synergize with immunotherapy.178 181 In line 
with this notion, pegylated doxorubicin has been shown 
to boost the uptake of dying EOC cells by cDCs and ulti-
mately promote the cross-priming of T cells specific to 
EOC-associated antigens.182 However, the combination 
of pegylated doxorubicin with an ICI specific for PD-L1 
(avelumab) failed to demonstrate superior activity 
compared with standard of care in a recent phase III clin-
ical trial.183 184 Similar findings have been documented 
in a randomized phase II study testing the combination 
of pegylated doxorubicin with a TLR 8 (TLR8) agonist 
(motolimod).185 In addition to promoting polyploidiza-
tion and hence boosting the immunogenicity of EOC 
cells,186 paclitaxel promotes the repolarization of M2-like 
TAMs into their M1-like counterparts, as well as the deple-
tion of TREG cells and MDSCs from the ovarian TME.187 
However, available preclinical data are insufficient to 
support the initiation of clinical trials testing paclitaxel 
in combination with ICIs in women with advanced EOC. 

Metronomic cyclophosphamide has also been shown 
to deplete TREG cells from the ovarian TME, suggesting 
some potential for synergy with immunotherapeutic regi-
mens.188 In line with this notion, metronomic cyclophos-
phamide combined with an angiogenesis inhibitor and 
a PD-1-targeting ICI (pembrolizumab) is well tolerated 
and mediates clinical benefits in 95.0% and durable treat-
ment responses (>12 months) in 25.0% of women with 
recurrent EOC.189

Immune checkpoint inhibitors.
PD-1, CTLA-4, LAG3, TIM-3, and other coinhibitory 
receptors are widely expressed by EOC-infiltrating cells 
and mediate robust immunosuppressive effects.45 176 
Thus, ICIs a priori represent a valid strategy to reverse 
local immunosuppression in women with EOC. However, 
comprehensive phenotypic and functional analyses 
of EOC-infiltrating T cells and the ovarian TME have 
revealed the existence of a multilayered immunosuppres-
sive network,176 190 potentially explaining the poor clinical 
activity of ICIs documented so far in patients with EOC. 
Indeed, in the first phase II study evaluating the efficacy 
of a PD-1-targeting ICI (nivolumab) for recurrent EOC, 
the overall response rate (ORR) in 20 assessable patients 
was only 15%, with a 10% durable complete response 
rate.11 Similarly, the use of pembrolizumab as a single 
therapeutic agent for EOC has been linked to an ORR of 
9%, which was primarily associated with increased expres-
sion of PD-L1.191

Histology Stage
No of 
patients Method Impact Note Ref.

VEGF HGSOC III, IV 56 Microarray IHC Detrimental High VEGF levels correlated 
with accumulation of MDSCs 
and poor disease outcome

14

TNFα EOC All 70 Luminex Detrimental High TNFα levels in 
malignant ascites correlated 
with chemoresistance and 
poor PFS

168

CCL18 HGSOC III, IV 53 RT-PCR,
ELISA, WB

Detrimental High CCL18 levels correlated 
with cancer cells proliferation 
and metastatic spread

174

CCL22 n.a. All 70 ELISA Detrimental High CCL22 levels correlated 
with recruitment of TREG cells 
and poor disease outcome

54

CXCL12 EOC III, IV n.a. ELISA, FC Detrimental High CXCL12 levels 
correlated with accumulation 
of MDSCs in malignant 
ascites and poor disease 
outcome

113

*Encompassing all EOC histological subtypes
CCL18, C-C motif chemokine ligand 18; CXCL12, C-X-C motif chemokine ligand 12; DC, dendritic cell; EnOC, endometroid ovarian 
cancer; EOC, epithelial ovarian carcinoma; FC, flow cytometry; HGSOC, high-grade serous ovarian carcinoma; IDO, indoleamine 
2,3-dioxygenase; IF, immunofluorescence; IHC, immunohistochemistry; IL6, interleukin 6; MDSC, myeloid-derived suppressor cell; MOC, 
mucinous ovarian cancer; n.a., not available; OS, overall survival; PFS, progression-free survival; TAM, tumor associated macrophage; 
TGFB, transforming growth factor; TLS, tertiary lymphoid structure; TNFα, tumor necrosis factor alpha; TREG, regulatory T cell; VEGF, 
vascular endothelial growth factor; WB, western blotting.

Table 3  Continued
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One potential approach to improving the efficacy of 
ICIs in patients with EOC relies on the use of multiple 
nonredundant ICIs as a combinatorial regimen.176 
Supporting the validity of this approach, nivolumab 
combined with a CTLA-4-specific ICI (ipilimumab) has 
been associated with an ORR of 31.4% (vs 12.2% for 
nivolumab alone) in phase II clinical trials enrolling 100 
patients with persistent or recurrent EOC.192 Based on 
these clinical findings and the preclinical data discussed 
above, current efforts are being refocused on targeting 
coinhibitory receptors other than CTLA-4 and PD-1, 
including (but not limited to) TIM-3, LAG3 and TIGIT 
(source https://www.​clinicaltrials.​gov). The results of 
these trials are urgently awaited.

Angiogenesis inhibitors
The anti-angiogenic drug bevacizumab, a humanized 
monoclonal antibody targeting VEGFA, has now been 
employed for first-line management of advanced EOC 

for more than 7 years.193 Based on preclinical findings 
from mouse models of EOC, bevacizumab is expected 
to synergize with ICIs, largely reflecting its ability to 
promote tumor infiltration by T cells.194 Consistent with 
this notion, bevacizumab in combination with nivolumab 
has been associated with improved ORR (28.9%) and PFS 
(median 9.4 months) in women with relapsed EOC, an 
activity that was even more pronounced in patients with 
platinum-sensitive lesions.195 Similarly, an ICI specific to 
PD-L1 (durvalumab) combined with a PARP inhibitor 
(olaparib) and cediranib, a tyrosine kinase inhibitor with 
anti-angiogenic activity, achieved an ORR of 50% and a 
disease control rate of 75% in 12 randomized patients.196 
However, the results from a recent phase III study eval-
uating the addition of atezolizumab (an ICI specific for 
PD-L1) to platinum-based chemotherapy and bevaci-
zumab failed to support the use of ICIs for newly diag-
nosed stage III or IV EOCs.197

Figure 2  Cytokines and chemokines that coordinate the tumor microenvironment. Primary cytokines (A) and chemokines 
(B) produced in the ovarian tumor microenvironment. The most prominent sources and major receptors are depicted. CCL, 
chemokine (C-C motif) ligand; CCR, C-C chemokine receptor; CXCL, chemokine (C-X-C motif) ligand; CXCR, C-X-C chemokine 
receptor; CTL, cytotoxic T lymphocyte; IL, interleukin; IL6R, interleukin 6 receptor; MDSC, myeloid-derived suppressor cell; NK, 
natural killer; pDC, plasmacytoid dendritic cell; TAM, tumor-associated macrophage; TGFB1, transforming growth factor beta 
1; TGFBR, transforming growth factor beta receptor; TNF, tumor necrosis factor; TNFR, tumor necrosis factor receptor; TREG, 
regulatory T; VEGFA, vascular endothelial growth factor A; VEGFR, vascular endothelial growth factor receptor.

https://www.clinicaltrials.gov
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PARP inhibitors
PARP inhibitors have emerged as key therapeutic 
interventions for patients with EOC.198 Indeed, rather 
common germline mutations in BRCA1 and BRCA2, 
resulting in HR defects, make EOCs highly sensitive 
to PARP inhibitors.198 Thus, no less than three distinct 
PARP inhibitors (ie, niraparib, olaparib, and rucaparib) 
are currently approved for the treatment of recurrent, 
platinum-sensitive EOC as maintenance on platinum 
chemotherapy.199 Of note, PARP inhibitors have been 
shown to mediate multipronged immunostimulatory 
effects, largely reflecting their ability to inhibit DNA 
repair in malignant cells.200 and indicating the possibility 
for synergy with ICIs.201 Thus, PARP inhibitors might 
enhance the mutational load of EOCs as consequence 
of unrepaired DNA damage, favoring T cell infiltration, 
but also appear to drive robust type I IFN secretion down-
stream of cyclic GMP-AMP synthase and stimulator of IFN 
response cGAMP interactor 1 activation.202 203 Based on 
these preclinical findings, PARP inhibitors are currently 
being tested in combination with ICIs in more than 10 
ongoing clinical trials.12 The results of this wave of inves-
tigation are highly anticipated.

Tumor vaccines
A variety of tumor-associated antigens (TAAs) that can be 
specifically targeted by vaccination strategies have been 
identified in EOC.204 Cancer/testis antigen 1B (CTAG1B, 
best known as NY-ESO-1) is one such antigen, and several 
NY-ESO-1-based vaccines have been shown to provide 
NY-ESO-1+ EOC patients with an OS advantage.205 
However, vaccine-driven immunoediting may ultimately 
promote the selection of NY-ESO-1− EOC cell clones and 
hence enable clinical relapse. An alternative approach for 
vaccination involves the use of mutated TAAs as targets.206 
Although advantageous in some aspects, this approach 
does not circumvent the possible emergence of antigen-
negative malignant cell clones, indicating an advantage 
for vaccination strategies targeting multiple TAAs at the 
same time, such as DC-based vaccines.63 In this context, 
DCs from a patient with EOC must be provided either 
ex vivo or in vivo with a source of TAAs in the context of 
activation cues in the former setting followed by DC rein-
fusion into the patient.63 Such sources can be as diverse 
as recombinant full-length TAAs or epitopes thereof, 
TAA-encoding nucleic acids, autologous tumor lysates, 
and allogeneic cancer cell lysates. Results from a number 
of clinical trials testing ex vivo DC-based vaccines in 
women with EOC demonstrate that this approach is well 
tolerated and associated with at least some activity.63 207 
Moreover, in consideration of their mechanism of action, 
DC-based vaccines are expected to synergize with other 
immunotherapeutic interventions, such as ICI-based 
immunotherapy and adoptive T cell transfer (ACT).208 
Nonetheless, no clinical trial is currently investigating a 
DC-based vaccine combined with ICIs or ACT in patients 
with EOC, an entire line of clinical investigation that is 
urgently awaited.

Adoptive T cell transfer
ACT represents a personalized immunotherapy based on 
autologous TILs expanded ex vivo and reintroduced into 
patients together with high-dose IL-2 on lymphodeple-
tion.209 ACT has demonstrated considerable potency in 
patients with metastatic melanoma but limited success in 
women with EOC, potentially due to the strong immu-
nosuppressive networks at play in the ovarian TME or 
suboptimal TIL expansion ex vivo.210 Several pilot and 
phase I/II clinical studies are currently open to investi-
gating the therapeutic profile of ACT in women with 
advanced EOC.9 That said, available results from a pilot 
study enrolling six patients with advanced EOC suggest 
that ACT is primary active on existing target lesions but 
fails to control distant progression,211 potentially linked 
to TIL exhaustion, insufficient expansion or intralesion/
interlesion heterogeneity.212

Chimeric antigens receptor-T cells and TCR therapy
Chimeric antigens receptors (CARs) are fusion proteins 
engineered into T cells for them to recognize specific anti-
gens independent on MHC presentation.213 CAR-T cell 
therapy has achieved unprecedented success in the treat-
ment of hematological malignancies such as relapsed/
refractory B-cell leukemia and lymphoma.213 However, 
a similar success has not been witnessed in patients with 
solid tumors, due to variety of obstacles.214 In line with 
this notion, a phase I study evaluating the safety and 
efficacy of first-generation of CAR-T cells targeting the 
folate receptor alpha (FOLR1) in patients with metastatic 
EOC documented limited efficacy.215 Current efforts are 
focusing on increasing CAR-T cell potency, with a partic-
ular interest around promoting CAR-T cells infiltration 
and intratumoral persistence.216 217 Despite these and 
other limitations, numerous early phase clinical trials are 
currently testing CAR-T cells with a variety of specificities 
in women with EOC (source https://www.​clinicaltrials.​
gov). In this setting, a recent case report documented 
some therapeutic benefit (partial response and inhibi-
tion of hepatic progression) in a patient with metastatic 
EOC receiving CAR-T cells targeting mesothelin (MSLN) 
and engineered to secrete a PD-1-blocking single-chain 
fragment in combination with apatinib.218 These results 
suggest a novel therapeutic strategy for EOC and a 
Phase I study investigating this possibility is ongoing 
(NCT04503980). In similar line, T cells engineered by 
viral vectors to express the TCR gene with defined spec-
ificity (TCR-T cells) targeting NY-ESO-1 (NCT01567891, 
NCT03017131), MUC16 (NCT02498912), MAGE-A4 
(NCT03132922) and neoantigens (NCT03412877) are 
tested in early phase clinical studies in EOC patients.

Oncolytic virus therapy
An alternative strategy to resolve immunosuppression 
is administer oncolytic viruses (OVs) directly into the 
TME.219 OVs preferentially infect and replicate in malig-
nant cells, culminating with cell lysis accompanied by 
the release of various cytokines and DAMPs in support 

https://www.clinicaltrials.gov
https://www.clinicaltrials.gov
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of tumor-targeting immunity.219 Indeed, talimogene 
laherparepvec (T-VEC)—the first OV approved by the 
US Food and Drug Administration—mediated multiple 
immunomodulatory functions, including the GM-CSF-
dependent recruitment, maturation, and activation of 
APCs culminating with the initiation of robust T cell 
responses with systemic outreach.220 Along similar lines, 
the oncolytic adenovirus AD5/3 has recently been shown 
to restore immunostimulation in the EOC microenviron-
ment along with increased infiltration by CTLs.221 There-
fore, OVs represent a promising combinatorial partner 
for other immunotherapeutic regimens in the manage-
ment of solid tumors including EOC. For instance, T-VEC 
in combination with ICIs showed promising results in 
early phase clinical trials enrolling melanoma patients.222

CONCLUDING REMARKS
Immunotherapy with ICIs has revolutionized the manage-
ment of multiple tumor types, creating enormous expec-
tations around the possibility of harnessing the patient 
immune system against EOC. However, the clinical benefit 
of ICIs as standalone immunotherapeutic interventions 
in women EOC is limited. This may reflect limited pre-
existing immunity and/or the existence of robust immu-
nosuppressive pathways in the EOC microenvironment.

In line with this notion, the findings discussed herein 
demonstrate that pre-existing immunity in the ovarian 
TME has a major impact on the sensitivity of EOC to 
(immuno)therapy,40 calling for the identification of 
immune biomarkers to integrate into common diagnostic 
assessments and guide treatment selection (table 4). For 
instance, women with highly infiltrated EOCs (so-called 
‘hot’ tumors with an elevated immunoscore) may benefit 
from ICI-based immunotherapy or ACT, whereas individ-
uals with an intermediate degree of immune infiltration 
are expected to respond to agents that stimulate CD8+ T 
cell infiltration (table 4). So-called ‘cold’ tumors which 
are characterized by a low immunoscore, remain the most 
challenging to eradicate and hence are associated with 
poor prognosis.

A potential strategy to overcome the lack of pre-existing 
immunity in EOC is to combine a priming therapy that 

enhances T cell responses, such as DC-based vaccination, 
or strategies that turn the tumor into an in situ vaccine, 
such as RT, using an approach that either removes immu-
nosuppressive cues (eg, ICI-based immunotherapy, TAM 
depletion) or provides immunostimulatory signals.10 
Moreover, accumulating preclinical and clinical evidence 
indicates that epigenetic modifiers, including DNA 
demethylating agents and some chemotherapeutics, can 
stimulate anticancer immunity by various mechanisms, 
including the (1) selective depletion of immunosuppres-
sive cells; (2) lymphodepletion associated with renovation 
of the patient immunological repertoire and (3) activa-
tion of immune effector cells and hence may be benefi-
cial in patients with low or absent TILs (table 4). Similarly, 
immunogenic chemotherapeutics such as doxorubicin 
and paclitaxel, antiangiogenic drugs and PARP inhibitors 
stand out as promising partners for ICIs in the manage-
ment of patients with ‘cold’ EOC.

We surmise that rationally designed combinations of 
conventional and immunotherapeutic agents will be crit-
ical to unlock immunosuppression in the EOC micro-
environment in support of clinical efficacy. Preclinical 
studies in immunocompetent EOC identifying not only 
the agents to be used in such combinations, but also their 
optimal administration schedule223 are urgently required 
to translate an expanding literature on the immune 
contexture of EOC into clinically relevant therapeutic 
strategies.
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Table 4  Potential immunotherapeutic strategies against ovarian carcinoma

TMB status Immune contexture Vascularity Potential immunotherapy

High High Low ICIs

High High High ICIs + antiangiogenic agents

High Low Low PARPi + antiangiogenic agents

Low Low Low Immunogenic chemotherapy  + DC-based therapy

Low Low Low T-cell-based therapies (CAR-T cells, TILs)

Low Low Low Vaccines (DC-based therapy)

Low Low Low PARPs + ICIs

CAR-T cell, chimeric antigen receptor T cell; DC, dendritic cell; ICI, immune checkpoint inhibitor; PARPi, poly (ADP-ribose) polymerase inhibitor; TILs, 
tumor-infiltrating lymphocytes; TMB, Tumor mutational burden.
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