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Background: Imbalances in gut microbiota composition are linked to hypertension,

host metabolic abnormalities, systemic inflammation, and other conditions. In the

present study, we examined the changes of gut microbiota in women with early-onset

preeclampsia (PE) and in normotensive, uncomplicated pregnant women during late

pregnancy and at 1 and 6 weeks postpartum.

Methods: Gut microbiota profiles of women with PE and healthy pregnant women

in the third trimester and at 1 and 6 weeks postpartum were assessed by 16S

rRNA gene amplicon sequencing. Plasma levels of interleukin-6 (IL-6), intestinal fatty

acid-binding protein (I-FABP), zonulin, and lipopolysaccharide (LPS) were measured in

the third trimesters.

Results: At the genus level, 8 bacterial genera were significantly enriched in

the antepartum samples of PE patients compared to healthy controls, of which

Blautia, Ruminococcus2, Bilophila, and Fusobacterium represented the major

variances in PE microbiomes. Conversely, 5 genera, including Faecalibacterium,

Gemmiger, Akkermansia, Dialister, and Methanobrevibacter, were significantly depleted

in antepartum PE samples. Maternal blood pressure and liver enzyme levels

were positively correlated to the PE-enriched genera such as Anaerococcus,

Ruminococcus2, Oribacterium, and Bilophila, while the fetal features (e.g., Apgar

score and newborn birth weight) were positively correlated with PE-depleted

genera and negatively correlated with PE-enriched genera. Moreover, maternal

blood IL-6 level was positively associated with gut Bilophila and Oribacterium,

whereas LPS level was negatively associated with Akkermansia. In terms of

postpartum women, both the gut microbial composition and the PE-associated

microbial alterations were highly consistent with those of the antepartum women.
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Conclusion: PE diagnosed in the third trimester of pregnancy is associated with a

disrupted gut microbiota composition compared with uncomplicated pregnant women,

which are associated with maternal clinical features (blood pressure level and liver

dysfunction) and newborn birth weight. Moreover, these antepartum alterations in gut

microbiota persisted 6 weeks postpartum.

Keywords: gut microbiota, preeclampsia, pregnancy, 16S rRNA gene sequencing, microbial dysbiosis

INTRODUCTION

Preeclampsia (PE), the second leading cause of
maternal mortality worldwide (Huppertz, 2008; Ghulmiyyah
and Sibai, 2012; Mol et al., 2016), is characterized by severe
hypertension and multiple organ damage (Brown et al., 2018),
and it can result in fetal intrauterine growth retardation,
premature birth, or fetal death (Kovo et al., 2015). Untreated
preeclampsia can be lethal with complications such as eclampsia,
liver rupture, stroke, and kidney failure (Souza et al., 2013). In
2010, preeclampsia complicated 3–5% of pregnancies in Western
countries and a higher percentage in low- and middle-income
countries (Hutcheon et al., 2011; Ananth et al., 2013). Early-onset
preeclampsia, which usually occurs between 20 and 34 weeks
of gestation, leads to approximately 4 times more maternal
death (Lisonkova et al., 2014) and 8 times more perinatal death

or severe neonatal morbidity compared with mothers without

preeclampsia (Lisonkova and Joseph, 2013; Khader et al., 2018).
The specific etiology of preeclampsia is still unclear, and the
combination of known risk factors for preeclampsia (such as
women’s age, body weight, previous preeclampsia, gestational
hypertension, and first pregnancy) can only predict 30% of

women who develop preeclampsia in clinical practice (Leslie
et al., 2011; Mol et al., 2016).

Gut microbiota has profound effects on regulating host

metabolism (Pedersen et al., 2016; Liu R. et al., 2017). It
also plays an important role in blood pressure elevation

during pregnancies (the hallmark of preeclampsia) (Gomez-
Arango et al., 2016a). However, the interconnection between
gut microbiota and preeclampsia is still unknown. Byproducts
of gut microbial metabolism such as formate, hydrogen sulfate
and toxic molecules (e.g., trimethylamine N-oxide), can directly
induce elevation in blood pressure (Holmes et al., 2008; Tang
et al., 2015; Tomasova et al., 2016). In contrast, themicrobial flora
generated short chain fatty acids can affect immune, epithelial,
nervous system, and blood vessel functions to modulate blood
pressure (Krautkramer et al., 2016; Schiering et al., 2017;
Yan et al., 2017). Increasing evidence has revealed that gut
microbiota is crucial to the development and maturation of host
immune components, such as gut-associated lymphoid tissue
and immunocytes (Kamada et al., 2013; Pickard et al., 2017),
and also contributes to immune responses and to inhibiting
inflammation (Wesemann et al., 2013). Notably, the mucosal
surfaces of the gut experience low-grade inflammationwith rising
levels of pro-inflammatory cytokines and white blood cells as
pregnancy advances, which also contributes to disturbances in
intestinal flora (Koren et al., 2012). The above immune responses

play a leading role in two main pathophysiological processes
occurring in PE patients: (1) poor trophoblastic invasion resulted
from the altered production of immunoregulatory cytokines and
angiogenic factors and (2) a systemic inflammatory response
(Laresgoiti-Servitje, 2013). Thus, these evidences highlight the
potential and important association between gestational gut
microbiota and preeclampsia.

A recent study suggested a significant shift of gut microbial
composition in PE patients in late pregnancy (Liu J. et al.,
2017); however, their findings remain limited due to the
limitation of sample size and the lack of longitudinal
investigation. Here, we conducted 16S rRNA gene sequencing
to analyze the gut microbiota of 101 fecal samples of PE
patients and 79 samples of healthy controls, separately in
antepartum, 1 and 6 weeks postpartum. We identified the
bacterial taxa associated with preeclampsia and revealed
dynamic changes in the gut microbiota of patients from
late pregnancy to postpartum. We also detected potential
correlations between preeclampsia-associated microbes and host
clinical characteristics, providing pieces for understanding the
underlying mechanisms of preeclampsia.

METHODS

Ethics Statement
This study was approved by the Ethics Committee of Guangdong
Women and Children Hospital, and informed consent was
obtained from all subjects in accordance with the Declaration of
Helsinki (World Medical Association, 2013).

Study Cohort and Sample Collection
All pregnant women who planned to delivery at Guangdong
Women and Children Hospital from January 2017 to December
2017, were recruited for our study. After consenting and
excluding those with comorbidities, multiple pregnancies,
gestational diabetes and chronic hypertension, 150 singleton
pregnant women with a live birth were included for analysis.
In total, 78 cases newly diagnosed with preeclampsia with
severe effect in their third trimesters were categorized as the
PE group, while 72 normotensive and uncomplicated women
were designated as the normal controls (NC group). All enrolled
participants were re-invited for a follow-up visit on an average of
1 and 6 weeks postpartum. At last, a total of 101 fecal samples
of the PE group (number of samples: n = 48, 35, and 18 at
antepartum, 1 and 6 weeks postpartum, respectively) and 79
samples of the NC group (n = 51, 17, and 11 at the above
three time points, respectively) were collected. The phenotypic
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characteristics of the participants are summarized in Table 1, and
detailed information is given in Table S1. No smoking among
participants and their family members during pregnancy was
reported. All participants were of Han nationality, the ethnic
majority in China. Antenatal and postnatal clinical information
and pregnancy outcomes were measured and collected by well-
trained staffs according to standard procedures (see below
sections for details).

The first fecal specimens (antepartum) were collected after
hospitalization but before childbirth. All pregnant women
delivered by cesarean section. At 1 and 6 weeks postpartum, fecal
samples were collected at home by the participants, following a
standardized procedure including antiseptic handling, collection
in sterile tubes and immediate freezing at −20◦C. The samples
were then transferred to the laboratory immediately on ice and
stored at−80◦C until DNA extraction.

Biochemistry and Derived Traits
Prepregnancy body weight was extracted from their pregnancy
health records. Body mass index (BMI) was calculated by
dividing the weight in kilograms by the square of height in
meters. Office blood pressure during antepartum evaluations
was measured by trained research nurses using a mercury
sphygmomanometer with an appropriate cuff size, auscultating
the Korotkoff sounds with the participant in the sitting position
(Lei et al., 2017). Office hypertension was defined by a systolic
blood pressure (SBP) ≥ 140 mmHg and/or diastolic blood
pressure (DBP) ≥ 90 mmHg on three visits or by current
treatment with antihypertensive medications. Preeclampsia was
diagnosed according to the current guidelines (American College
of Obstetricians Gynecologists Task Force on Hypertension
in Pregnancy, 2013): (1) SBP/DBP ≥ 140/90 mmHg on two
occasions for at least 4 h with previously normal blood pressure;
(2) proteinuria ≥ 300 mg/24-h urine collection; and (3) in
the absence of proteinuria, new onset of any of the following:
platelet count < 100,000/µL; serum creatinine concentration
> 1.1 mg/dL or a doubling in the absence of other renal
disease; elevated blood concentrations of liver transaminases to
twice normal concentration; pulmonary edema; and cerebral or
visual symptoms. Additionally, preeclampsia with severe features
was diagnosed with any of the following findings: SBP/DBP
≥ 160/110 mmHg on two occasions at least 4 h apart; platelet
count < 100,000/µL; elevated blood concentrations of liver
transaminases to twice normal concentration; severe persistent
right upper quadrant or epigastric pain; serum creatinine
concentration > 1.1 mg/dL or a doubling in the absence of
other renal disease; pulmonary edema; and new-onset cerebral
or visual disturbances.

Fasting blood and 24-h urine samples in parallel to the
BP monitoring were performed. Biochemical measurements
included fasting plasma glucose level, plasma levels of total
cholesterol, high density lipoprotein cholesterol (HDL),
low density lipoprotein cholesterol (LDL), triglycerides,
creatinine, 24-h urinary protein excretion, interleukin-6 (IL-
6), intestinal fatty acid-binding protein (I-FABP), zonulin,
and lipopolysaccharide (LPS). In the second visit, which was
performed 1 week after childbirth, the subjects’ body weight,

blood pressure and diet questionnaire were also recorded.
Plasma IL-6 (Thermo/eBiosecience) concentrations were
quantified using a double antibody sandwich enzyme-linked
immunosorbent assay (ELISA). Plasma I-FABP (R&D Systems)
concentrations were quantified by specific ELISA. Zonulin in
plasma was estimated by competitive ELISA (Alpha Diagnoestic
International). Plasma LPS (antibodies online) was estimated by
sandwich ELISA.

DNA Extraction and 16S rRNA Gene
Sequencing
The microbial genomic DNA was extracted according to the
MOBIO PowerSoil R© DNA Isolation Kit 12888-100 protocol,
and DNA was stored at −80◦C in Tris-EDTA buffer solution
before use. To enable amplification of the V4 region of
the 16S rRNA gene and add barcode sequences, unique
fusion primers were designed based on the universal primers
set, 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 806R
(5′-GGACTACNVGGGTWTCTAAT-3′), along with barcode
sequences. PCR mixtures contained 1 µL of each forward and
reverse primer (10µM), 1 µL of template DNA, 4 µL of dNTPs
(2.5mM), 5 µL of 10 × EasyPfu Buffer, 1 µL of Easy Pfu DNA
Polymerase (2.5 U/µL), and 1 µL of double distilled water in a
50 µL reaction volume. Thermal cycling consisted of an initial
denaturation step at 95◦C for 5min, followed by 30 cycles of
denaturation at 94◦C for 30 s, annealing at 60◦C for 30 s, and
extension at 72◦C for 40 s, with a final extension step at 72◦C
for 4min. Amplicons from each sample were run on an agarose
gel. The expected band size for 515F-806R is ∼300–350 bp.
Amplicons were quantified with the Quant-iT PicoGreen dsDNA
Assay Kit (ThermoFisher/ Invitrogen cat. no. P11496; following
the manufacturer’s instructions).

The amplicon library was combined in equal amount
and subsequently quantified (KAPA Library Quantification Kit
KK4824) according to the manufacturer’s instructions, and
high-throughput sequencing on the Illumina MiniSeq platform
at Promegene Co. Ltd. (Shenzhen, China) was performed to
generate 150 bp paired-end reads (exclude the primer sequences)
for each sample.

Microbiome Analyses
Raw sequencing reads were eliminated from analysis if they
produce >8 homopolymers, >2 mismatches in the primers,
or >1 mismatches in the barcode. High-quality paired-end
sequencing reads were analyzed based on the quantitative
insights into microbial ecology (QIIME2, https://qiime2.org/)
platform (Kuczynski et al., 2012), and the standard tools/plugins
provided by QIIME2. First, raw 16S sequences were performed
for quality control and to feature table construction using the
DADA2 algorithm (Callahan et al., 2016). Possible phiX reads
and chimeric sequences were removed, and the remaining reads
were truncated from 0 to 140 bases (for both forward and reverse
reads) to avoid the sequencing errors at the end of the reads.
Paired-end reads were overlapped at the maximum mismatch
parameter of 6 bases, which means a minimum similarity
threshold of 90% on the overlap zone of the forward and reverse
reads. The representative sequences (named “feature” in QIIME2
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TABLE 1 | Characteristics of the subjects with early-onset preeclampsia and normal pregnancy.

Antepartum 1 week postpartum 6 weeks postpartum

Normal Preeclampsia P-value Normal Preeclampsia P-value Normal Preeclampsia P-value

control (NC) (PE) control (NC) (PE) control (NC) (PE)

No. of individuals 51 48 17 35 11 18

PREGNANT WOMEN PARAMETERS

Age, years 29.7 ± 4 32.2 ± 5.5 0.052 29.5 ± 3.8 33 ± 5.4 0.025 29.5 ± 2.9 33.8 ± 5.4 0.036

Gestational weeks 39.8 ± 1.3 31.2 ± 4.2 < 0.001 39.4 ± 1.1 31.4 ± 4.9 < 0.001 39.7 ± 0.8 33.3 ± 6.5 0.001

Pre-preg. weight (kg) 52.7 ± 6.5 56.9 ± 10.3 0.094 49.7 ± 7.8 59 ± 12.6 0.011 53.3 ± 8.4 51.6 ± 6.6 0.617

Antenatal weight (kg) 66 ± 7.8 69.1 ± 10.3 0.261 62.6 ± 9.5 67 ± 9.4 0.202 75.5 ± 9.9 63.6 ± 8.9 0.09

Height (cm) 158 ± 4.4 158 ± 4.9 0.676 158 ± 6 158 ± 6 0.629 158 ± 6 157 ± 4 0.841

Pre-preg. BMI (kg/m2) 21 ± 2.5 22.8 ± 4.1 0.072 19.9 ± 3 23.3 ± 4.2 0.009 21.5 ± 3.4 20.9 ± 2.6 0.662

Fetal birth weight (kg) 3.2 ± 0.3 1.4 ± 0.7 < 0.001 3.2 ± 0.3 1.4 ± 0.9 < 0.001 3.3 ± 0.3 1.7 ± 1.2 0.026

Placenta weight (g) 544 ± 69 334 ± 129 0.001 517 ± 54 339 ± 129 0.001 523 ± 30 320 ± 170 0.032

CLINICAL AND IMMUNE INDEXES (ANTENATAL)

i-FABP (pg/ml) 1090.9 ± 652.9 1450.6 ± 732.4 0.068

zonulin (ng/ml) 19.6 ± 10.2 24.0 ± 39.7 0.553

IL-6 (pg/ml) 6.3 ± 17.7 18.9 ± 23.6 0.031

LPS (pg/ml) 2.9 ± 3.0 4.8 ± 4.8 0.036

SBP (mmHg) 114 ± 12 139 ± 18 < 0.001

DBP (mmHg) 69 ± 10 91 ± 12 < 0.001

FBG (mmol/L) 4.4 ± 0.4 4.6 ± 0.6 0.207

HbA1C (%) 5 ± 0.4 5.1 ± 0.5 0.597

TG (mmol/L) 2.6 ± 1 3.8 ± 1.8 0.009

TCH (mmol/L) 5.6 ± 1.3 6.4 ± 1.4 0.049

HDL-C (mmol/L) 1.9 ± 0.4 1.9 ± 0.4 0.652

LDL-C (mmol/L) 2.6 ± 0.9 3.1 ± 0.9 0.055

HCT (%) 35.6 ± 4.2 37.1 ± 3.9 0.145

ALT (U/L) 12 ± 14.6 18.5 ± 15.7 0.104

AST (U/L) 16.4 ± 6.6 21.8 ± 8.6 0.014

CRE (umol/L) 45.1 ± 7.2 62.3 ± 18.7 < 0.001

The data for NC and PE were presented as mean ± SD. P-values were calculated by Student’s t-test. BMI, body mass index; i-FABP, intestinal fatty acid binding protein; IL-6,

interleukin 6; LPS, lipopolysaccharide; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; HbA1C, hemoglobin A1c; TG, triglyceride; TCH,

total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; HCT, hematocrit; ALT, alanine aminotransferase; AST, glutamic oxaloacetic

transaminase; CRE, creatinine.

nomenclature) were then generated by removing the redundant
and low occurrence (n < 5 in pool samples) sequences. We
used the term “operational taxonomic unit (OTU)” instead of
“feature” in the whole article for convenience. Then, taxonomic
assignment of the OTUs were determined based on a pretrained
Naive Bayes classifier (trained on the Greengenes 13_8 99%
OTUs DeSantis et al., 2006) via the q2-feature-classifier plugin,
and the taxonomic composition at the phylum, class, order,
family, genus, and species levels were generated based on OTU
annotation. To avoid sampling depth bias, 20,000 reads were
randomly selected from each sample when calculating the OTU
and taxa relative abundances.

Phylogenetic analyses were realized via the q2-phylogeny
plugin, which performed multiple sequence alignment on
the OTU sequences and generated phylogenetic trees of
the OTUs from the alignment result. Four estimators
of the alpha diversity, including Shannon’s diversity
index, observed OTUs, Faith’s phylogenetic diversity (a

qualitative measure of community richness that incorporates
the phylogenetic relationships between the OTUs) and
Pielou’s evenness, and four estimator of the beta diversity,
including Jaccard distance, Bray-Curtis distance, unweighted
UniFrac distance, and weighted UniFrac distance, were
used in this study and calculated based on the QIIME2
q2-diversity plugin.

Enterotype of the fecal samples were determined based on
their genus level composition using a reference-based alignment
algorithm (http://enterotypes.org/) (Costea et al., 2018).

Functional composition of the samples was generated
using the PICRUSt2 algorithm (Langille et al., 2013). For
each sample, the composition of the Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa et al., 2017) orthologs
(KOs) was predicted based on the functional information
of the reference OTUs. KEGG modules and pathways
composition were generated according to the assignment
of KOs at https://www.kegg.jp/.
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Statistical Analyses
Statistical analyses were implemented at the R v3.3.2 platform
(https://www.r-project.org/). Permutational multivariate
analysis of variance (effect size analysis) was performed with the
adonis function of the R vegan package (https://cran.r-project.
org/web/packages/vegan/index.html), and the adonis P-value
was generated based on 1,000 permutations. Distance-based
redundancy analysis (dbRDA) was performed on the OTUs
and taxonomic composition profiles with the vegan package,
based on the Bray-Curtis distance, and visualized via the R ade4
package. The PE-associated OTUs and taxa were identified based
on the Wilcoxon rank-sum test. Random forest models were
analyzed with the R randomForest package (1,000 trees). The
performance of the predictive model was evaluated with the
leave-one-out cross validation. Receiver operator characteristic
(ROC) analysis was performed using the R pROC package.
The ROC curve was created by plotting the true positive rate
(sensitivity) against the false positive rate (1- sensitivity), and
the area under the curve (AUC) was calculated to assess the
ensemble. Procrustes analysis was performed with the R vegan
package, and the Procrustes P-value was generated based on
1,000 permutations. P-value < 0.05 was considered statistically
significant. The q was used to evaluate the false discovery rate for
correction of multiple comparisons, and was calculated based on
the R fdrtool package.

RESULTS

Study Cohort and Sequencing Summary
To evaluate the associations between PE and the composition
of women’s gut microbiome in the perinatal/postnatal period,
we analyzed the fecal samples of PE patients and healthy
controls at antepartum (n = 48 vs. 51), 1 week postpartum
(n = 35 vs. 17), and 6 weeks postpartum (n = 18 vs. 11).
Patients and controls were matched according their body weight
parameters including prepregnancy weight, antenatal weight,
height and BMI at each time point (Table 1); on average,
the PE patients were 3 years older than the controls (P <

0.05 at 1 and 6 weeks postpartum). PE patients and healthy
controls were differed in their PE-associated clinical status
at antepartum (Table 1) and after delivery (Table S1). Based
on their self-reports and questionnaires, all participants were
similar in their dietary habit and lifestyle (data not shown).
To avoid the effect of delivery mode on gut microbiota,
only pregnant women with cesarean section were included in
this study.

The gut microbiotas of 180 fecal samples of pregnant women
were characterized by sequencing the V4 variable region of the
bacterial 16S rRNA gene, generating a total of 8,136,758 high
quality sequences (45,204 ± 11,017 per sample; Table S1). A
total of 2,293 OTUs were identified and taxonomically annotated
based on an open source, universal microbiome bioinformatics
platform, QIIME2 (Kuczynski et al., 2012). Of which, 74% could
be annotated into specific genus (representing 81% of total
sequences; Figure 1A), and 68% could be annotated into specific
species (representing 77% of total sequences).

Diversity and Overall Structure of Gut
Microbiota
The intrasample richness and intersample relationship of the gut
microbiota of all participates were assessed by alpha and beta
diversity indexes, respectively. No significant differences in alpha
diversity were detected during the antepartum and postpartum
periods (P > 0.05 for all four indexes of alpha diversity;
Figure S1). Similarly, the beta diversity between different groups
did not differ significantly (P > 0.05 for all four indexes of
beta diversity).

We then tested if PE was associated with the holistic
community structure over the entire cohort. PE accounted
for 1.8% (adonis P < 0.001) and 1.7% (adonis P = 0.002)
of the gut microbiota variance at the OTU and genus levels,
respectively. This effect size was relatively larger than other
collected confounding factors, including the intrinsic parameters
of pregnant women, fetal features, and antenatal clinical immune
indexes (Figure 1B; Table S2), indicating that PE stratification
was one of themain reasons in our cohort. Likewise, the grouping
of antenatal, 1 and 6 weeks postpartum also accounted for an
approximate proportion of microbial variances (1.9% at the OTU
level and 1.6% at the genus level) with PE.

Bray-Curtis distance based redundancy analysis (dbRDA,
analyzed at the genus level) captured visible separation of
both PE stratification and sample time grouping on the
overall gut microbiota (Figure 1C). PE significantly acted
on the primary constrained axis of the dbRDA plot, while
the genera Faecalibacterium, Blautia, and Ruminococcus2
represented the major contributors in the axis. Likewise,
sample time grouping affected the second constrained axis,
while Roseburia, Enterobacteriaceae, and Ruminococcus2 were
the major contributors. Noticeably, despite the samples at 1
week postpartum were separated with others, the antenatal
and 6 weeks postpartum samples were closely related in the
second constrained axis, suggesting a remarkable shift of gut
microbiota at 1 week postpartum but the majority recovered by
6 weeks postpartum.

The primary structure of the human gut microbiome is
described by enterotypes (Costea et al., 2018). In our samples, the
enterotype stratification was clearly driven by the abundance of
several dominate genera such as Bacteroides (B-type), Prevotella
(P-type), and Ruminococcus (F-type). PE patients exhibited
consistent enterotype patterns with healthy controls from late
pregnancy to postpartum (Figure 1D), despite the PE samples
seeming to have a slight increase of F-type and decrease of B-type.

Microbial Taxa Signatures
We compared the gut microbial composition of PE patients
and healthy controls at each time point to investigate microbial
signatures of PE. At the phylum level, PE patients had a
similar composition in the dominant phyla compare to
the healthy controls, except several low abundant phyla
(Fusobacteria, Tenericutes, and Verrucomicrobia) were
significantly depleted in PE patients at the antenatal time
point (Table S3). At the genus level, 8 genera were significant
enriched in antenatal PE samples (Figure 2A), of which Blautia
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FIGURE 1 | Overview of the gut microbial community in PE patients and healthy controls. (A) Summary of the taxonomic assignment of the OTUs. Inner circle, the

percentage of OTUs that assigned into a taxon at the species, genus, family, order, class, and phylum levels. Outer circle, the percentage of representing sequences

of the OTUs at all taxonomic levels. (B) Host factors that significantly affected the gut microbiota. The 12 factors associated with the variation of the gut microbiota at

the OTU level are shown. Bar plots indicate the explained variation (effect size) of each factor at the OTU level (left panel) and genus level (right panel). **, permutated P

< 0.01; *, permutated P < 0.05. (C) dbRDA plot based on the Bray-Curtis distances between microbial genera, revealing PE microbial dysbiosis at the antepartum, 1

and 6 weeks postpartum periods. Patient and control samples were mainly separated in the primary constrained axis (PE separation), and samples at different time

points were mainly separated in the second constrained axis (time point separation). Lines connect samples (colored points) in the same group, and circles cover

samples near the center of gravity for each group. Genera (yellow squares) as the main contributors are plotted by their loadings in these two components. (D)

Constitution of enterotypes in all groups. P-values between PE patients and healthy controls at three time points were calculated based on Fisher’s exact test.

and Ruminococcus2, followed by Bilophila and Fusobacterium
represented the major variances in PE microbiomes. The
main species-level members of these genera, including an
unclassified Blautia spp. (consisted 84.9% of Blautia), R. gnavus
(consisted 54.7% of Ruminococcus2), B. wadsworthia (consisted
100% of Bilophila), and F. nucleatum (consisted 100% of
Fusobacterium), were also significantly increased in PE patients
(Table S3). Inversely, 5 genera, including Faecalibacterium,
Gemmiger, Akkermansia, Dialister, and Methanobrevibacter,
were significantly depleted in antenatal PE samples, which
mostly consisted of the species F. prausnitzii (100%), G.
formicilis (100%), A. muciniphila (100%), an unclassified

Dialister spp. (100%), and M. smithii (100%), respectively.
Moreover, several genera and species were significantly altered
between the PE and control microbiota at 1 and 6 weeks
postpartum (Table S3).

The majority of taxonomic alterations in antenatal PE
microbiota pertains to 1 or 6 weeks postpartum when 79.4%
and 84.4% of antenatal-altered clades (at the genus and species
levels) were within concordant tendency in samples of 1 and
6 weeks postpartum samples (Figure 2B), respectively. This
finding indicated that the antenatal-altered taxa might be
reliable microbial markers for PE across the antenatal and
postnatal stages.
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FIGURE 2 | Difference of gut microbiota between PE patients and healthy controls. (A) Boxplot shows the significantly different genera between patients and controls.

Genera with P < 0.05 (Wilcoxon rank-sum test) of samples at antepartum are shown. The boxes represent the interquartile range (IQR) between the first and third

quartiles and the line inside represents the median. The whiskers denote the lowest and highest values within 1.5 times IQR from the first and third quartiles,

respectively. (B) The PE-associated genera and species of samples at antepartum, and their tendencies in samples at 1 and 6 weeks postpartum. The bar lengths

indicate the Z-score of a genus or species at different time points, and the colors represent enrichment in patients (red, Z-score > 0) or controls (blue, Z-score < 0).

(C) ROC analysis for classification of PE status by the relative abundances of PE-associated genera, assessed by AUC.

Using the random forest model, we evaluated the performance
of gut microbial composition to predict PE status based on the

relative abundance of 13 antenatal-altered genera. The model

achieved an AUC of 0.91 (95% confidence interval, 0.86–0.97)
for the discrimination of PE patients and healthy controls in
antenatal samples (Figure 2C).

PE-Associated Microbes Correlate to
Clinical and Immune Parameters
To investigate the interassociations between gut microbial
composition and host clinical status, we identified statistical

correlations between 13 PE-associated genera and the pregnant
women’s parameters, including blood indexes, fetal features,
and antenatal clinical immune indexes. Significant associations
were observed in the separate patient and control groups
(Figure 3). For example, in PE patients, the women’s DBP
and SBP levels were positively correlated with PE-enriched
genera, such as Anaerococcus, Ruminococcus2, Fusobacterium,
and Oribacterium, while the fetal features (e.g., birth weight)
were positively correlated with PE-depleted genera. One of
the pregnant women’s immune parameters, IL-6 was positively
associated with Blautia (ρ = 0.36, q = 0.04; in PE patients) and
Bilophila (Spearman’s ρ = 0.37, q = 0.01; in healthy controls),
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FIGURE 3 | Correlation between PE-associated genera and the host parameters. The heatmap panel shows the Spearman correlation coefficient between the genera

(text color: red, enriched in PE patients; blue, enriched in healthy controls) and host parameters. Significance levels in correlation tests are denoted: +, q < 0.10; *, q

< 0.05.

and negatively associated with Faecalibacterium (ρ =−0.27, q=
0.04; in PE patients).

KEGG Functional Signatures
The functional capacity of the gut microbiota of PE patients and
healthy controls were predicted by PICRUSt analysis (Langille
et al., 2013) based on their 16S OTU profiles, which led us to
quantify the relative abundance of 494 KEGG modules. In all,
66 modules (13.4%) significantly differed in their abundance
between PE patients and healthy controls (q < 0.05; Table S4),
including 46 PE-reduced and 20 PE-enriched modules. The
majority of the PE-reduced modules involved to central and
other carbohydrate metabolism (n = 9, including 2 terpenoid
biosynthesis modules), carbon fixation (n = 4), amino acid,
cofactor, and vitamin metabolism (n = 5), ATP synthesis and
photosynthesis (n = 7), two-component regulatory system (n
= 8), and the transport systems of several small molecules
(n = 7), while the PE-enriched modules involved various
functional sets including 4 saccharide transport systems. Thirty-
six (78.3%) PE-reduced modules, as well as all the PE-enriched
modules, were significantly correlated with one or more PE-
associated genera (Figure 4). In PE-enriched genera, Blautia
and Ruminococcus2 were associated with the majority of PE-
enriched functional modules, suggesting their central role in the
PE microbiome. In addition, Fusobacterium and Bilophila had
complementary roles, as they were uniquely positively correlated
with the adverse modules involved in bile acid biosynthesis and
nicotinate degradation. In PE-reduced genera, Faecalibacterium,
Methanobrevibacter, and Akkermansia played central roles.

Longitudinal Variation of Gut Microbial
Diversity and Composition
In our cohort, the fecal samples of 15 women were collected at
antepartum and 1 week postpartum, and 11 women provided
samples at antepartum and 6 weeks postpartum, which allowed
us to investigate the longitudinal changes. From antepartum to 1
week postpartum, the observed OTUs and phylogenetic diversity
(two indexes of microbial richness) in women’s gut microbiota
were consistent (Figure 5A), but their microbial evenness was
disturbed. From antepartum to 6 weeks postpartum, all microbial
alpha diversity indexes were correlated between the two time
points. With regard to the aspect of microbial composition, we
found that samples at both 1 and 6 weeks postpartumwere highly
consistent with samples at antepartum (Figure 5B; P < 0.05 for
two comparisons).

DISCUSSION

In this study, the changes of gut microbiota of pregnant
women with PE before and after delivery were analyzed
and compared with those of normotensive, uncomplicated
pregnant women in the antepartum, 1 and 6 weeks
postpartum periods. Our study demonstrated that the
composition of gut microbiota in PE patients remarkably
differed from that in normal pregnant women throughout the
evaluation periods.

Currently, the exact cause of PE remains elusive. Previous
studies have suggested that metabolic abnormalities, systemic
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FIGURE 4 | Correlation between PE-associated genera and functional modules. The heatmap panel shows the Spearman correlation coefficient between the genera

and KEGG functional modules. Text color for genera and modules: red, enriched in PE patients; blue, enriched in healthy controls. Significance levels in correlation

tests are denoted: +, P < 0.05; *, P < 0.01.

inflammatory reactions, oxidative stress, and vascular endothelial
damage are involved in the pathogenesis of PE (Catalano
et al., 2012; Paauw et al., 2016). Our study suggested that gut
microbiota may also be one of the participants. Similar studies
on gestational hypertension and gestational diabetes mellitus
(GDM) supported the hypothesis that gestational diseases are
associated with changes in gut microbiota (Kuang et al., 2017;
Crusell et al., 2018). Gomez-Arango et al. (2016a) found that
the abundance of Odoribacter, a bacteria producing butyric acid,
was negatively correlated with the SBP of pregnant women at
16 weeks of pregnancy. Crusell et al. (2018) found that GDM
was associated with a change in the gut microbiota composition
in both the third trimester of pregnancy and postpartum. They
especially reported an enrichment in the abundance of Blautia
and Ruminococcus2 in diabetic patients, which was also observed
in the PE patients in our cohort. Studies on reducing the risk of
PE through probiotic supplementation (Brantsaeter et al., 2011)
confirmed that PE is associated with gut microbes. For years, the
strategies for managing PE have been limited to symptomatic
therapy or the termination of pregnancy (Xia and Kellems,
2013). This suggests that regulating intestinal microbiota through
probiotics may play a role in the prevention of PE. Thus,
exploring the changes and functions of intestinal microbiota in

PE may provide new ideas for the prevention and treatment
of PE.

We found that PE stratification accounted for nearly 2% of
gut microbial variation (Figure 1B), which was relatively larger
than other host parameters. As revealed by previous population-
based reports (Falony et al., 2016; Zhernakova et al., 2016), a large
proportion (80–90%) of variation of human gut microbiome was
explained by unexplained or intrinsic factors (e.g., enterotypes),
whereas the host parameters including various kinds of diseases
only explained a limited proportion of variations (usually <1%).
In addition, we identified 13 PE-associated genera (Figure 2A),
which achieved a higher discriminatory power (AUC = 0.91)
for discriminating PE and control samples at the antenatal stage
(Figure 2C) compared to that of other diseases such as diabetes
(Qin et al., 2012) and hypertension (Yan et al., 2017). Thus, these
findings highlighted the remarkable dysbiosis of gut microbiota
in PE patients.

Literature searches of the 13 PE-associated genera showed
that these bacteria were also associated with other host
diseases including obesity, higher glucose metabolic disorders,
pro-inflammatory effects, intestinal barrier dysfunction, and
bile acid dysmetabolism (see discussion below). In addition,
these microbes were able to be correlated with host immune
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FIGURE 5 | Longitudinal comparison of gut microbial diversity and composition between antepartum, 1 and 6 weeks postpartum. (A) Change in alpha diversity from

the antepartum to 1 and 6 weeks postpartum. The boxes represent the interquartile range (IQR) between the first and third quartiles and the line inside represents the

median. The whiskers denote the lowest and highest values within 1.5 times IQR from the first and third quartiles, respectively. Pearson correlation coefficient of

samples between two time points was calculated, and P-value was tested using the correlation test. (B) Procrustes analysis reveals the covariation between samples

at the antepartum, 1 and 6 weeks postpartum periods.

parameters and function markers, such as IL-6 and LPS (Signat
et al., 2011; Hunter and Jones, 2015), and such correlations
were also found in the current study (Figure 3A). Overall, these
findings suggested that PE patients harbor an inflammation-
associated microbiota. The schematic of PE-microbiota is
summarized in Figure 6, and the potential relevance of
mechanisms is described below.

In PE-enriched genera, Blautia and Ruminococcus2 were
associated with the majority of PE-enriched functional modules,
suggesting their central role in the PE microbiome. Members
of the genus Blautia are generally gram-positive bacteria that
produce acetate, ethanol, hydrogen, lactate, or succinate as
the end products of glucose fermentation (Liu et al., 2008).

Blautia has been associated with obesity and type 2 diabetes
(Cani et al., 2012; Kasai et al., 2015), and is enriched in
prepregnancy overweight/obese and excessive gestational weight
gain women (Stanislawski et al., 2017) and glucose-intolerant
individuals (Egshatyan et al., 2016). These findings are in line
with the results of Crusell et al. (2018) who showed increased
abundances associated with GDM, suggesting that enriched
Blautia abundance goes together with a nonfavorable metabolic
profile. Similarly, Ruminococcus2 was also enriched in women
with GDM (Zacarías et al., 2018) as well as type 2 diabetic patients
(Zhang et al., 2013), and R. gnavus has been reported to be
enriched in people with dysmetabolism and low microbial gene
count (Le Chatelier et al., 2013). In addition, Ruminococcaceae
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FIGURE 6 | A schematic diagram showing the PE-associated bacteria and functions that had predicted effects on the host disease, clinical status, and metabolism.

The PE-enriched species and functions are shown in the left red columns, and the PE-depleted species and functions are shown in the right blue columns. Center

boxes show the host properties. Lines connect the PE-associated species and host properties with potential associations, while the dotted lines indicate the

correlations which were identified in this study.

are strongly correlated with the leptin level (an adipocyte-
derived hormone that plays a direct role in the pathogenesis
of PE) in the human body (Miehle et al., 2012; Taylor et al.,
2015; Gomez-Arango et al., 2016b). Furthermore, we revealed
that Ruminococcus2 abundance in the intestinal tract of PE
patients was positively correlated with SBP/DBP on admission
and ALT/AST levels in pregnant women (Figure 3A), suggesting
that the Ruminococcus2 may also be directly related to the
incidence of PE via its effect on the host’s blood pressure or
liver function.

Bilophila (B. wadsworthia) and Fusobacterium (F. nucleatum)
also represented the major variance in PE microbiomes. B.
wadsworthia can promote higher inflammation via producing
hydrogen sulfide (da Silva et al., 2008), intestinal barrier
dysfunction and bile acid dysmetabolism (Devkota et al.,
2012; Natividad et al., 2018). Moreover, higher amounts of
B. wadsworthia can release LPS and IL-6 (Hunter and Jones,
2015), which is in agreement with the observation in this

study showing a positive correlation between the prenatal
plasma IL-6 level and the abundance of intestinal Bilophila. F.
nucleatum is one of the most prevalent gut and oral species
that is associated with a wide spectrum of human diseases
such as adverse pregnancy outcomes (e.g., preterm birth and
neonatal sepsis) (Barak et al., 2007; Han et al., 2010; Bohrer
et al., 2012; Wang et al., 2013) and gastrointestinal tract
disorders (e.g., colorectal cancer and inflammatory bowel
disease) (Han, 2015). The virulence mechanisms include
its colonization, systemic dissemination, and induction
of host inflammatory and tumorigenic responses (Han,
2015). Additionally, F. nucleatum is also a potent stimulator
of inflammatory cytokines, such as IL-6, IL-8, and TNFα
(Han et al., 2000; Park et al., 2014).

Except for the PE-enriched bacteria, several species including
Faecalibacterium, Methanobrevibacter, and Akkermansia
were depleted in PE patients. Faecalibacterium, one of
the most abundant and important commensal bacteria
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in the human gut microbiota, produces short-chain
fatty acids (SCFAs, especially butyrate) (Machiels et al.,
2014), and protects the intestines, and is involved the
reduction of obesity, diabetes and inflammation (Sokol
et al., 2008; Miquel et al., 2013). Lower production capacity
of SCFAs may therefore contribute to higher blood
pressure, and thus increase the risk of PE in pregnant
women (Pevsner-Fischer et al., 2017; Yan et al., 2017). In
addition, Akkermansia muciniphila is associated with a
low risk of diabetes (Shin et al., 2014), obesity (Everard
et al., 2013), and high inflammation (Ganesh et al.,
2013), based on its unique mucin-degrading capacity
that functions to strengthen the integrity of the host’s gut
barrier (Guo et al., 2017).

Despite the pregnant women’s gut microbiota being
largely separated by the division of three time stages, the
microbial alterations of the PE microbiome at the antenatal
stage could also reflect on the samples at 1 and 6 weeks
postpartum (Figure 2B). Particularly, but not significantly,
the gut microbiomes of samples at 6 weeks postpartum
were closer to the antenatal samples than that of the 1 week
postpartum samples, either in the whole microbial composition
(Figure 1C) or in the PE-associated taxa (Figure 2C). A
similar phenomenon was also revealed in previous studies
showing that the women’s gut microbial structure dramatically
changed during delivery and sustained recovery after a long
period of time (DiGiulio et al., 2015; Wang et al., 2018). As
a supplement, our intraindividual samples of antepartum-1
week-postpartum pairs and antepartum-6 weeks-postpartum
pairs also showed highly microbial diversity and compositional
consistency (Figure 5).

One of the limitations of the current study was sample size in
postpartum for both week 1 and 6. The lack of close matching
in individual confounding factors, such as genetic background,
host geography, diet and lifestyle could also limit interpretations
of this study results. Another limitation was that samples of

women during 1st or 2nd trimester were not included in the
study. Thus, our study could not suggest any causal relationship

between the altered gut microbiota and PE pathogenicity.
Future studies with a larger cohort from early pregnancy to
postpartum will be needed to further understand the relationship
between gut microbiome and PE. Testing specific microbiota
in animal models is also beneficial to elucidate the mechanism
of interaction between gut microbiome and preeclampsia
during pregnancy.

CONCLUSION

To our knowledge, this is the first study investigating the gut

microbiota composition in PE patients at both the time points of

antepartum and postpartum. Our findings add more important
information of correlation between gut microbiota and PE and
extend the previous knowledge. The taxonomic signatures,
microbe-clinical associations, and function signatures identified
in this study suggested possible pathways for PE pathogenicity

and provided potential markers for PE prediction
and intervention.
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